Articles | Volume 16, issue 19
https://doi.org/10.5194/amt-16-4331-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-4331-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
OH airglow observations with two identical spectrometers: benefits of increased data homogeneity in the identification of variations induced by the 11-year solar cycle, the QBO, and other factors
German Remote Sensing Data Center (DFD), German Aerospace Center
(DLR), 82234 Oberpfaffenhofen, Germany
Lisa Küchelbacher
German Remote Sensing Data Center (DFD), German Aerospace Center
(DLR), 82234 Oberpfaffenhofen, Germany
Sabine Wüst
German Remote Sensing Data Center (DFD), German Aerospace Center
(DLR), 82234 Oberpfaffenhofen, Germany
Michael Bittner
German Remote Sensing Data Center (DFD), German Aerospace Center
(DLR), 82234 Oberpfaffenhofen, Germany
Institute of Physics, University of Augsburg (UNA), 86159 Augsburg, Germany
Related authors
Thomas Trickl, Hannes Vogelmann, Michael Bittner, Gerald Nedoluha, Carsten Schmidt, Wolfgang Steinbrecht, and Sabine Wüst
EGUsphere, https://doi.org/10.5194/egusphere-2025-1952, https://doi.org/10.5194/egusphere-2025-1952, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
A powerful lidar system has been installed at the high-altitude observatory Schneefernerhaus (2575 m) to allow for atmospheric temperature measurements up to more than 80 km within just one hour. The temperature profiles are calibrated by values obtained from chemiluminscence of the hydroxyl radical around 86 km. The temperature profiles are successfully compared with satellite and lidar data.
Stefan Noll, Carsten Schmidt, Patrick Hannawald, Wolfgang Kausch, and Stefan Kimeswenger
Geosci. Model Dev., 18, 4353–4398, https://doi.org/10.5194/gmd-18-4353-2025, https://doi.org/10.5194/gmd-18-4353-2025, 2025
Short summary
Short summary
Non-thermal emission from chemical reactions in the Earth's middle und upper atmosphere strongly contributes to the brightness of the night sky below about 2.3 µm. The new Paranal Airglow Line And Continuum Emission model calculates the emission spectrum and its variability with an unprecedented accuracy. Relying on a large spectroscopic data set from astronomical spectrographs and theoretical molecular/atomic data, this model is valuable for airglow research and astronomical observatories.
Stefan Noll, John M. C. Plane, Wuhu Feng, Konstantinos S. Kalogerakis, Wolfgang Kausch, Carsten Schmidt, Michael Bittner, and Stefan Kimeswenger
Atmos. Chem. Phys., 24, 1143–1176, https://doi.org/10.5194/acp-24-1143-2024, https://doi.org/10.5194/acp-24-1143-2024, 2024
Short summary
Short summary
The Earth's nighttime radiation in the range from the near-UV to the near-IR mainly originates between 75 and 105 km and consists of lines of different species, which are important indicators of the chemistry and dynamics at these altitudes. Based on astronomical spectra, we have characterised the structure and variability of a pseudo-continuum of a high number of faint lines and discovered a new emission process in the near-IR. By means of simulations, we identified HO2 as the likely emitter.
René Sedlak, Patrick Hannawald, Carsten Schmidt, Sabine Wüst, Michael Bittner, and Samo Stanič
Atmos. Meas. Tech., 14, 6821–6833, https://doi.org/10.5194/amt-14-6821-2021, https://doi.org/10.5194/amt-14-6821-2021, 2021
Short summary
Short summary
High-resolution images of the OH* airglow layer (ca. 87 km height) acquired at Otlica Observatory, Slovenia, have been analysed. A statistical analysis of small-scale wave structures with horizontal wavelengths up to 4.5 km suggests strong presence of instability features in the upper mesosphere or lower thermosphere. The dissipated energy of breaking gravity waves is derived from observations of turbulent vortices. It is concluded that dynamical heating plays a vital role in the atmosphere.
René Sedlak, Alexandra Zuhr, Carsten Schmidt, Sabine Wüst, Michael Bittner, Goderdzi G. Didebulidze, and Colin Price
Atmos. Meas. Tech., 13, 5117–5128, https://doi.org/10.5194/amt-13-5117-2020, https://doi.org/10.5194/amt-13-5117-2020, 2020
Short summary
Short summary
Gravity wave (GW) activity in the UMLT in the period range 6-480 min is calculated by applying a wavelet analysis to nocturnal temperature time series derived from OH* airglow spectrometers. We analyse measurements from eight different locations at different latitudes.
GW activity shows strong period dependence. We find hardly any seasonal variability for periods below 60 min and a semi-annual cycle for periods longer than 60 min that evolves into an annual cycle around a period of 200 min.
Thomas Trickl, Hannes Vogelmann, Michael Bittner, Gerald Nedoluha, Carsten Schmidt, Wolfgang Steinbrecht, and Sabine Wüst
EGUsphere, https://doi.org/10.5194/egusphere-2025-1952, https://doi.org/10.5194/egusphere-2025-1952, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
A powerful lidar system has been installed at the high-altitude observatory Schneefernerhaus (2575 m) to allow for atmospheric temperature measurements up to more than 80 km within just one hour. The temperature profiles are calibrated by values obtained from chemiluminscence of the hydroxyl radical around 86 km. The temperature profiles are successfully compared with satellite and lidar data.
Stefan Noll, Carsten Schmidt, Patrick Hannawald, Wolfgang Kausch, and Stefan Kimeswenger
Geosci. Model Dev., 18, 4353–4398, https://doi.org/10.5194/gmd-18-4353-2025, https://doi.org/10.5194/gmd-18-4353-2025, 2025
Short summary
Short summary
Non-thermal emission from chemical reactions in the Earth's middle und upper atmosphere strongly contributes to the brightness of the night sky below about 2.3 µm. The new Paranal Airglow Line And Continuum Emission model calculates the emission spectrum and its variability with an unprecedented accuracy. Relying on a large spectroscopic data set from astronomical spectrographs and theoretical molecular/atomic data, this model is valuable for airglow research and astronomical observatories.
Sabine Wüst, Lisa Küchelbacher, Franziska Trinkl, and Michael Bittner
Atmos. Meas. Tech., 18, 1591–1607, https://doi.org/10.5194/amt-18-1591-2025, https://doi.org/10.5194/amt-18-1591-2025, 2025
Short summary
Short summary
Information on the energy transported by atmospheric gravity waves (GWs) is crucial for improving atmosphere models. Most space-based studies report the potential energy. We use Aeolus wind data to estimate the kinetic energy (density). However, the data quality is a challenge for such analyses, as the accuracy of the data is in the range of typical GW amplitudes. We find a temporal coincidence between enhanced or breaking planetary waves and enhanced gravity wave kinetic energy density.
Michal Kozubek, Lisa Kuchelbacher, Jaroslav Chum, Tereza Sindelarova, Franziska Trinkl, and Katerina Podolska
Atmos. Meas. Tech., 18, 1373–1388, https://doi.org/10.5194/amt-18-1373-2025, https://doi.org/10.5194/amt-18-1373-2025, 2025
Short summary
Short summary
Waves are important as main drivers of different stratispheric patterns (streamers). We analyse changes in waves and infrasound characteristics related to streamers using continuous Doppler soundings and arrays of microbarometers in Czechia. Ground measurements using infrasound arrays showed that gravity wave propagation azimuths were more random during streamers than during calm conditions. Measurements in the ionosphere during streamers did not differ from those expected for the given time.
Stefan Noll, John M. C. Plane, Wuhu Feng, Konstantinos S. Kalogerakis, Wolfgang Kausch, Carsten Schmidt, Michael Bittner, and Stefan Kimeswenger
Atmos. Chem. Phys., 24, 1143–1176, https://doi.org/10.5194/acp-24-1143-2024, https://doi.org/10.5194/acp-24-1143-2024, 2024
Short summary
Short summary
The Earth's nighttime radiation in the range from the near-UV to the near-IR mainly originates between 75 and 105 km and consists of lines of different species, which are important indicators of the chemistry and dynamics at these altitudes. Based on astronomical spectra, we have characterised the structure and variability of a pseudo-continuum of a high number of faint lines and discovered a new emission process in the near-IR. By means of simulations, we identified HO2 as the likely emitter.
René Sedlak, Andreas Welscher, Patrick Hannawald, Sabine Wüst, Rainer Lienhart, and Michael Bittner
Atmos. Meas. Tech., 16, 3141–3153, https://doi.org/10.5194/amt-16-3141-2023, https://doi.org/10.5194/amt-16-3141-2023, 2023
Short summary
Short summary
We show that machine learning can help in classifying images of the OH* airglow, a thin layer in the middle atmosphere (ca. 86 km height) emitting infrared radiation, in an efficient way. By doing this,
dynamicepisodes of strong movement in the OH* airglow caused predominantly by waves can be extracted automatically from large data sets. Within these dynamic episodes, turbulent wave breaking can also be found. We use these observations of turbulence to derive the energy released by waves.
Sabine Wüst, Michael Bittner, Patrick J. Espy, W. John R. French, and Frank J. Mulligan
Atmos. Chem. Phys., 23, 1599–1618, https://doi.org/10.5194/acp-23-1599-2023, https://doi.org/10.5194/acp-23-1599-2023, 2023
Short summary
Short summary
Ground-based OH* airglow measurements have been carried out for almost 100 years. Advanced detector technology has greatly simplified the automatic operation of OH* airglow observing instruments and significantly improved the temporal and/or spatial resolution. Studies based on long-term measurements or including a network of instruments are reviewed, especially in the context of deriving gravity wave properties. Scientific and technical challenges for the next few years are described.
René Sedlak, Patrick Hannawald, Carsten Schmidt, Sabine Wüst, Michael Bittner, and Samo Stanič
Atmos. Meas. Tech., 14, 6821–6833, https://doi.org/10.5194/amt-14-6821-2021, https://doi.org/10.5194/amt-14-6821-2021, 2021
Short summary
Short summary
High-resolution images of the OH* airglow layer (ca. 87 km height) acquired at Otlica Observatory, Slovenia, have been analysed. A statistical analysis of small-scale wave structures with horizontal wavelengths up to 4.5 km suggests strong presence of instability features in the upper mesosphere or lower thermosphere. The dissipated energy of breaking gravity waves is derived from observations of turbulent vortices. It is concluded that dynamical heating plays a vital role in the atmosphere.
Sabine Wüst, Michael Bittner, Jeng-Hwa Yee, Martin G. Mlynczak, and James M. Russell III
Atmos. Meas. Tech., 13, 6067–6093, https://doi.org/10.5194/amt-13-6067-2020, https://doi.org/10.5194/amt-13-6067-2020, 2020
Short summary
Short summary
With airglow spectrometers, the temperature in the upper mesosphere/lower thermosphere can be derived each night. The data allow to estimate the amount of energy which is transported by small-scale atmospheric waves, known as gravity waves. In order to do this, information about the Brunt–Väisälä frequency and its evolution during the year is necessary. This is provided here for low and midlatitudes based on 18 years of satellite data.
René Sedlak, Alexandra Zuhr, Carsten Schmidt, Sabine Wüst, Michael Bittner, Goderdzi G. Didebulidze, and Colin Price
Atmos. Meas. Tech., 13, 5117–5128, https://doi.org/10.5194/amt-13-5117-2020, https://doi.org/10.5194/amt-13-5117-2020, 2020
Short summary
Short summary
Gravity wave (GW) activity in the UMLT in the period range 6-480 min is calculated by applying a wavelet analysis to nocturnal temperature time series derived from OH* airglow spectrometers. We analyse measurements from eight different locations at different latitudes.
GW activity shows strong period dependence. We find hardly any seasonal variability for periods below 60 min and a semi-annual cycle for periods longer than 60 min that evolves into an annual cycle around a period of 200 min.
Cited articles
Ammosov, P., Gavrilyeva, G., Ammosova, A., and Koltovskoi, I.: Response of
the mesopause temperatures to solar activity over Yakutia in 1993–2013, Adv.
Space Res., 54, 2518–2524, https://doi.org/10.1016/j.asr.2014.06.007, 2014.
Baker, D. J. and Stair Jr., A. T.: Rocket measurements of the altitude
distributions of the hydroxyl airglow, Phys. Scripta, 37, 611–622,
https://doi.org/10.1088/0031-8949/37/4/021, 1988.
Baldwin, M. P. and Dunkerton, T. J.: The solar cycle and
stratosphere–troposphere dynamical coupling, J. Atmos. Sol-Terr. Phy.,
67, 71–82, https://doi.org/10.1016/j.jastp.2004.07.018, 2005.
Batista, P. P., Takahashi, H., and Clemesha, B. R.: Solar cycle and the QBO
effect on the mesospheric temperature and nightglow emissions at a low
latitude station, Adv. Space Res., 14, 221–224,
https://doi.org/10.1016/0273-1177(94)90139-2, 1994.
Beig, G., Keckhut, P., Lowe, R. P., Roble, R. G., Mlynczak, M. G., Scheer,
J., Fomichev, V. I., Offermann, D., French, W. J. R., Shepherd, M. G.,
Semenov, A. I., Remsberg, E. E., She, C. Y., Lubken, F. J., Bremer, J.,
Clemesha, B. R., Stegman, J., Sigernes, F., and Fadnavis, S.: Review of
mesospheric temperature trends, Rev. Geophys., 41, 1015,
https://doi.org/10.1029/2002RG000121, 2003.
Bittner, M., Offermann, D., Bugaeva, I. V., Kokin, G. A., Koshelkov, J. P.,
Krivolutsky, A., Tarasenko, D. A., Gil-Ojeda, M., Hauchecorne, A.,
Lübken, F.-J., de la Morena, B. A., Mourier, A., Nakane, H., Oyama, K.
I., Schmidlin, F. J., Soule, I., Thomas, L., and Tsuda, T.: Long
period/large scale oscillations of temperature during the DYANA campaign, J.
Atmos. Terr. Phy., 56, 1675–1700, https://doi.org/10.1016/0021-9169(94)90004-3, 1994.
Bittner, M., Offermann, D., and Graf, H. H.: Mesopause temperature variability above a midlatitude station in Europe, J. Geophys. Res.-Atmos., 105, 2045–2058, https://doi.org/10.1029/1999JD900307, 2000.
Bittner, M., Offermann, D., Graef, H. H., Donner, M., and Hamilton, K.: An
18-year time series of OH rotational temperatures and middle atmosphere
decadal variations, J. Atmos. Sol.-Terr. Phy., 64, 1147–1166,
https://doi.org/10.1016/S1364-6826(02)00065-2, 2002.
Bittner, M., Höppner, K., Pilger, C., and Schmidt, C.: Mesopause temperature perturbations caused by infrasonic waves as a potential indicator for the detection of tsunamis and other geo-hazards, Nat. Hazards Earth Syst. Sci., 10, 1431–1442, https://doi.org/10.5194/nhess-10-1431-2010, 2010.
Brooke, J. S. A., Bernath, P. F., Wester, C. M., Sneden, C., Afşar, M., Li, G., and Gordon, I. E.: Line strengths of rovibrational and rotational
transitions in the X2Π ground state of OH, J. Quant. Spectrosc. Ra., 168, 142–157, https://doi.org/10.1016/j.jqsrt.2015.07.021, 2016.
Dalin, P., Perminov, V., Pertsev, N., and Romejko, V.: Updated long-term
trends in mesopause temperature, airglow emissions, and noctilucent clouds,
J. Geophys. Res.-Atmos., 125, e2019JD030814, https://doi.org/10.1029/2019JD030814, 2020.
Espy, P. J., Ochoa Fernández, S., Forkman, P., Murtagh, D., and Stegman, J.: The role of the QBO in the inter-hemispheric coupling of summer mesospheric temperatures, Atmos. Chem. Phys., 11, 495–502, https://doi.org/10.5194/acp-11-495-2011, 2011.
French, W. J. R. and Klekociuk, A. R.: Long-term trends in Antarctic winter
hydroxyl temperatures, J. Geophys. Res., 116, D00P09, https://doi.org/10.1029/2011JD015731, 2011.
French, W. J. R. and Mulligan, F. J.: Stability of temperatures from TIMED/SABER v1.07 (2002–2009) and Aura/MLS v2.2 (2004–2009) compared with OH(6-2) temperatures observed at Davis Station, Antarctica, Atmos. Chem. Phys., 10, 11439–11446, https://doi.org/10.5194/acp-10-11439-2010, 2010.
French, W. J. R., Burns, G. B., Finlayson, K., Greet, P. A., Lowe, R. P., and Williams, P. F. B.: Hydroxyl (6−2) airglow emission intensity ratios for rotational temperature determination, Ann. Geophys., 18, 1293–1303, https://doi.org/10.1007/s00585-000-1293-2, 2000.
French, W. J. R., Mulligan, F. J., and Klekociuk, A. R.: Analysis of 24 years of mesopause region OH rotational temperature observations at Davis, Antarctica – Part 1: long-term trends, Atmos. Chem. Phys., 20, 6379–6394, https://doi.org/10.5194/acp-20-6379-2020, 2020.
Goldman, A., Schoenfeld, W. G., Goorvitch, D., Chackerian Jr., C., Dothe, H.,
Mélen, F., Abrams, M. C., and Selby, J. E. A.: Updated line parameters for OH X2Π–X2Π (v′′, v′) Transitions, J. Quant. Spectrosc. Ra., 59, 453–469, https://doi.org/10.1016/S0022-4073(97)00112-X, 1998.
Gordon, I. E., Rothman, L. S., Hill, C., Kochanov, R. V., Tan, Y., Bernath,
P. F., Birk, M., Boudon, V., Campargue, A., Chance, K. V., Drouin, B. J.,
Flaud, J.-M., Gamache, R. R., Hodges, J. T., Jacquemart, D., Perevalov, V. I., Perrin, A., Shine, K. P., Smith, M.-A. H., Tennyson, J., Toon, G. C., Tran, H., Tyuterev, V. G., Barbe, A., Csaszar, A. G., Devi, V. M., Furtenbacher, T., Harrison, J. J., Hartmann, J.-M., Jolly, A., Johnson, T. J., Karman, T., Kleiner, I., Kyuberis, A. A., Loos, J., Lyulin, O. M., Massie, S. T., Mikhailenko, S. N., Moazzen-Ahmadi, N., Muller, H. S. P., Naumenko, O. V., Nikitin, A. V., Polyansky, O. L., Rey, M., Rotger, M., Sharpe, S. W., Sung, K., Starikova, E., Tashkun, S. A., Vander Auwera, J., Wagner, G., Wilzewski, J., Wcislo, P., Yu, S., and Zak, E. J.: The HITRAN2016 Molecular Spectroscopic Database, J. Quant. Spectrosc. Ra., 203, 3–69, https://doi.org/10.1016/j.jqsrt.2017.06.038, 2017.
Holmen, S. E., Dyrland, M. E., and Sigernes, F.: Long-term trends and the
effect of solar cycle variations on mesospheric winter temperatures over
Longyearbyen, Svalbard (78∘N), J. Geophys. Res.-Atmos., 119,
6596–6608, https://doi.org/10.1002/2013JD021195, 2014.
Holtzclaw, K. W., Person, J. C., and Green, B. D.: Einstein coefficients for
emission from high rotational states of the OH(X2Π) radical, J. Quant. Spectrosc. Ra., 49, 223–235, https://doi.org/10.1016/0022-4073(93)90084-U, 1993.
Höppner, K. and Bittner, M.: Evidence for solar signals in the mesopause
temperature variability?, J. Atmos. Sol.-Terr. Phy., 69, 431–448,
https://doi.org/10.1016/j.jastp.2006.10.007, 2007.
Kalicinsky, C., Knieling, P., Koppmann, R., Offermann, D., Steinbrecht, W., and Wintel, J.: Long-term dynamics of OH* temperatures over central Europe: trends and solar correlations, Atmos. Chem. Phys., 16, 15033–15047, https://doi.org/10.5194/acp-16-15033-2016, 2016.
Kalicinsky, C., Peters, D. H. W., Entzian, G., Knieling, P., and Mathias, V.:
Observational evidence for a quasi-bidecadal oscillation in the summer
mesopause region over Western Europe, J. Atmos. Sol.-Terr. Phy., 178, 7–16,
https://doi.org/10.1016/j.jastp.2018.05.008, 2018.
Krassovsky, V. I., Shefov, N. N., and Yarin, V. I.: Atlas of the airglow
spectrum 3000–12400 Å, Planet. Space Sci., 9, 883,
https://doi.org/10.1016/0032-0633(62)90008-9, 1962.
Kvifte, G. I.: Nightglow observations at Ås during the I.G.Y., Geophysica
Norvegica, 20, 1–15, 1959.
Labitzke, K.: Sunspots, the QBO, and the stratospheric temperature in the
north polar region, Geophys. Res. Lett., 14, 535–537,
https://doi.org/10.1029/GL014i005p00535, 1987.
Labitzke, K.: On the solar cycle-QBO relationship: a summary, J. Atmos.
Sol.-Terr. Phy., 67, 45–54, https://doi.org/10.1016/j.jastp.2004.07.016, 2005.
Lange, G.: Messung der Infrarotemissionen von OH* und O2 in der
Mesosphäre, PhD thesis, University of Wuppertal, WUB-DI 82-3, Wuppertal,
1982.
Langhoff, S. R., Werner, H.-J., and Rosmus, P.: Theoretical transition
probabilities for the OH Meinel system, J. Mol. Spectrosc., 118, 507–529,
https://doi.org/10.1016/0022-2852(86)90186-4, 1986.
Laštovička, J. and Jelínek, Š.: Problems in calculating
long-term trends in the upper atmosphere, J. Atmos. Sol.-Terr. Phy., 189,
80–86, https://doi.org/10.1016/j.jastp.2019.04.011, 2019.
Laštovička, J., Akmaev, R. A., Beig, G., Bremer, J., and Emmert, J. T.:
Global change in the upper atmosphere, Science, 314, 1253–1254,
https://doi.org/10.1126/science.1135134, 2006.
Laštovička, J., Akmaev, R. A., Beig, G., Bremer, J., Emmert, J. T., Jacobi, C., Jarvis, M. J., Nedoluha, G., Portnyagin, Yu. I., and Ulich, T.: Emerging pattern of global change in the upper atmosphere and ionosphere, Ann. Geophys., 26, 1255–1268, https://doi.org/10.5194/angeo-26-1255-2008, 2008.
Lednyts'kyy, O., von Savigny, C., and Weber, M.: Sensitivity of equatorial
atomic oxygen in the MLT region to the 11-year and 27-day solar cycles, J.
Atmos. Sol.-Terr. Phy., 162, 136–150, https://doi.org/10.1016/j.jastp.2016.11.003, 2017.
Liu, W., Xu, J., Smith, A. K., and Yuan, W.: Comparison of rotational
temperature derived from ground-based OH airglow observations with
TIMED/SABER to evaluate the Einstein coefficients, J. Geophys. Res.-Space,
120, 10069–10082, https://doi.org/10.1002/2015JA021886, 2015.
Meinel, A. B.: OH emission bands in the spectrum of the night sky. II,
Astrophys. J., 112, 120–130, https://doi.org/10.1086/145321, 1950.
Mies, F. H.: Calculated Vibrational Transition Probabilities of OH(X2Π), J. Mol. Spectrosc., 53, 150–188,
https://doi.org/10.1016/0022-2852(74)90125-8, 1974.
Nelson Jr., D. D., Schiffman, A., Nesbitt, D. J., Orlando, J. J., and
Burkholder, J. B.: H + O3 Fourier-transform infrared emission and
laser absorption studies of OH(X2Π) radical –
An experimental dipole moment function and state-to-state Einstein A
coefficients, J. Chem. Phys., 93, 7003–7019, https://doi.org/10.1063/1.459476, 1990.
Neumann, A.: QBO and solar activity effects on temperatures in the mesopause
region, J. Atmos. Terr. Phy., 52, 165–173, https://doi.org/10.1016/0021-9169(90)90120-C, 1990.
Newman, P. A., Coy, L., Pawson, S., and Lait, L. R.: The anomalous change in
the QBO in 2015–2016, Geophys. Res. Lett., 43, 8791– 8797,
https://doi.org/10.1002/2016GL070373, 2016.
Nikolashkin, S. V., Ignatyev, V. M., and Yugov, V. A.: Solar activity and QBO
influence on the temperature regime of the subauroral middle atmosphere, J.
Atmos. Sol.-Terr. Phy., 63, 853–858, https://doi.org/10.1016/S1364-6826(00)00207-8,
2001.
Noll, S., Kimeswenger, S., Proxauf, B., Unterguggenberger, S., Kausch, W.,
and Jones, A. M.: 15 years of VLT/UVES OH intensities and temperatures in
comparison with TIMED/SABER data, J. Atmos. Sol.-Terr. Phy., 163, 54–69,
https://doi.org/10.1016/j.jastp.2017.05.012, 2017.
Noll, S., Winkler, H., Goussev, O., and Proxauf, B.: OH level populations and accuracies of Einstein-A coefficients from hundreds of measured lines, Atmos. Chem. Phys., 20, 5269–5292, https://doi.org/10.5194/acp-20-5269-2020, 2020.
Offermann, D., Hoffmann, P., Knieling, P., Koppmann, R., Oberheide, J., and
Steinbrecht, W.: Long-term trends and solar cycle variations of mesospheric
temperature and dynamics, J. Geophys. Res., 115, D18127, https://doi.org/10.1029/2009JD013363, 2010.
Papitashvili, N. E. and King, J. H.: OMNI Daily Data, NASA Space Physics Data Facility [data set], https://doi.org/10.48322/5fmx-hv56, 2020.
Pautet, P. D., Taylor, M. J., Pendleton, W. R., Zhao, Y., Yuan, T., Esplin, R., and McLain, D.: Advanced mesospheric temperature mapper for high-latitude
airglow studies, Appl. Optics, 53, 5934–5943, https://doi.org/10.1364/AO.53.005934,
2014.
Perminov, V. I., Semenov, A. I., Medvedeva, I. V., and Zhelenov, Yu. A.:
Variability of mesopause temperature from the hydroxyl airglow observations
over mid-latitudinal sites, Zvenigorod and Tory, Russia, Adv. Space Res., 54,
2511–2517, https://doi.org/10.1016/j.asr.2014.01.027, 2014.
Perminov, V. I., Semenov, A. I., Pertsev, N. N., Medvedeva, I. V., Dalin, P.
A., and Sukhodoev, V. A.: Multi-year behaviour of the midnight OH* temperature according to observations at Zvenigorod over 2000–2016, Adv. Space Res., 61, 1901–1908, https://doi.org/10.1016/j.asr.2017.07.020, 2018.
Pertsev, N. and Perminov, V.: Response of the mesopause airglow to solar activity inferred from measurements at Zvenigorod, Russia, Ann. Geophys., 26, 1049–1056, https://doi.org/10.5194/angeo-26-1049-2008, 2008.
Reisin, E. R. and Scheer, J.: Searching for trends in mesopause region
airglow intensities and temperatures at El Leoncito. Phys. Chem. Earth Pt. A/B/C, 27, 563–569, https://doi.org/10.1016/S1474-7065(02)00038-4, 2002.
Reisin, E. R. and Scheer, J.: Unexpected East-West effect in mesopause region
SABER temperatures over El Leoncito, J. Atmos. Sol.-Terr. Phy., 157, 35–41,
https://doi.org/10.1016/j.jastp.2017.03.016, 2017.
Roble, R. G. and Dickinson, R. E.: How will changes in carbon dioxide and
methane modify the mean structure of the mesosphere and thermosphere?,
Geophys. Res. Lett., 16, 1441–1444, https://doi.org/10.1029/GL016i012p01441, 1989.
Roesch, A. and Schmidbauer, H.: WaveletComp: Computational Wavelet
Analysis, R package version 1.1, CRAN [code], https://CRAN.R-project.org/package=WaveletComp (last access: 22 September 2023), 2018.
Salby, M. and Callaghan, P.: Connection between the solar cycle and the QBO:
The missing link, J. Climate, 13, 328–338,
https://doi.org/10.1175/1520-0442(2000)013<0328:CBTSCA>2.0.CO;2, 2000.
Salby, M., Callaghan, P., and Shea, D.: Interdependence of the tropical and
extratropical QBO: Relationship to the solar cycle versus a biennial
oscillation in the stratosphere, J. Geophys. Res.-Atmos., 102, 29789–29798, https://doi.org/10.1029/97JD02606, 1997.
Scheer, J., Reisin, E. R., Espy, J. P., Bittner, M., Graef, H.-H., Offermann,
D., Ammosov, P. P., and Ignatyev, V. M.: Large-scale structures in hydroxyl
rotational temperatures during DYANA, J. Atmos. Terr. Phys., 56, 1701–1715, https://doi.org/10.1016/0021-9169(94)90005-1, 1994.
Schmidt, C.: Entwicklung eines bodengebundenen Infrarotspektrometers für
die zeitlich hochaufgelöste Beobachtung des OH-Leuchtens aus der
Mesopausenregion, PhD thesis, University of Augsburg, ISSN 1434-8454,
https://elib.dlr.de/108415/ (last access: 22 September 2023), 2016.
Schmidt, C., Höppner, K., and Bittner, M.: A ground-based spectrometer
equipped with an InGaAs array for routine observations of OH(3-1) rotational
temperatures in the mesopause region. J. Atmos. Sol.-Terr. Phy., 102,
125–139, https://doi.org/10.1016/j.jastp.2013.05.001, 2013.
Schmidt, C., Küchelbacher, L., Wüst, S., and Bittner, M.: Nocturnal means of OH(3-1) airglow rotational temperatures (version 1.0) from the mesopause region obtained at the Environmental Research Station “Schneefernerhaus” between 2009 and 2020, Germany, WDC-RSAT [data set], https://doi.org/10.26042/WDCRSAT.XZB5TZQG, 2023a.
Schmidt, C., Küchelbacher, L., Wüst, S., and Bittner, M.: Nocturnal means of OH(3-1) airglow rotational temperatures (version 1.0A) from the mesopause region obtained at the Environmental Research Station “Schneefernerhaus” between 2009 and 2020, Germany WDC-RSAT [data set], https://doi.org/10.26042/WDCRSAT.Y0AOE0PZ, 2023b.
Semenov, A. I.: Long Term Temperature Trends for Different Seasons by
Hydroxyl Emission, Phys. Chem. Earth Pt. B, 25, 525–529, https://doi.org/10.1016/S1464-1909(00)00058-7, 2000.
Shepherd, T. G., Koshyk, J. N., and Ngan, K.: On the nature of large-scale
mixing in the stratosphere and mesosphere, J. Geophys. Res.-Atmos., 105,
12433–12446, https://doi.org/10.1029/2000JD900133, 2000.
Turnbull, D. N. and Lowe, R. P.: New hydroxyl transition probabilities and their importance in airglow studies, Planet. Space Sci., 37, 723–738, https://doi.org/10.1016/0032-0633(89)90042-1, 1989.
van der Loo, M. P. and Groenenboom, G. C.: Theoretical transition
probabilities for the OH Meinel system, J. Chem. Phys., 126, 114314,
https://doi.org/10.1063/1.2646859, 2007.
van der Loo, M. P. and Groenenboom, G. C.: Erratum: “Theoretical transition
probabilities for the OH Meinel system” [J. Chem. Phys., 126, 114314 (2007)], J. Chem. Phys., 128, 159902, https://doi.org/10.1063/1.2899016, 2008.
von Savigny, C., McDade, I. C., Eichmann, K.-U., and Burrows, J. P.: On the dependence of the OH* Meinel emission altitude on vibrational level: SCIAMACHY observations and model simulations, Atmos. Chem. Phys., 12, 8813–8828, https://doi.org/10.5194/acp-12-8813-2012, 2012.
Wendt, V., Wüst, S., Mlynczak, M. G., Russell III, J. M. Yee, J.-H., and
Bittner, M.: Impact of atmospheric variability on validation of
satellite-based temperature measurements, J. Atmos. Sol.-Terr. Phy., 102,
252–260, https://doi.org/10.1016/j.jastp.2013.05.022, 2013.
Wüst, S. and Bittner, M.: Non-linear resonant wave–wave interaction
(triad): Case studies based on rocket data and first application to
satellite data, J. Atmos. Sol.-Terr. Phy., 68, 959–976,
https://doi.org/10.1016/j.jastp.2005.11.011, 2006.
Wüst, S., Wendt, V., Schmidt, C., Lichtenstern, S., Bittner, M., Yee,
J. H., Mlynczak, M. G., and Russell III, J .M.: Derivation of gravity wave
potential energy density from NDMC measurements, J. Atmos. Sol.-Terr. Phy.,
138–139, 32–46, https://doi.org/10.1016/j.jastp.2015.12.003, 2016.
Wüst, S., Bittner, M., Yee, J.-H., Mlynczak, M. G., and Russell III, J. M.: Variability of the Brunt–Väisälä frequency at the OH* layer height, Atmos. Meas. Tech., 10, 4895–4903, https://doi.org/10.5194/amt-10-4895-2017,
2017.
Wüst, S., Bittner, M., Yee, J.-H., Mlynczak, M. G., and Russell III, J. M.: Variability of the Brunt–Väisälä frequency at the OH∗-airglow layer height at low and midlatitudes, Atmos. Meas. Tech., 13, 6067–6093, https://doi.org/10.5194/amt-13-6067-2020, 2020.
Xu, J., Smith, A. K., Liu, H. L., Yuan, W., Wu, Q., Jiang, G., Mlynczak, M.
G., Russel III, J. M., and Franke, S. J.: Seasonal and quasi-biennial
variations in the migrating diurnal tide observed by Thermosphere,
Ionosphere, Mesosphere, Energetics and Dynamics (TIMED), J. Geophys.
Res.-Atmos., 114, D13107, https://doi.org/10.1029/2008JD011298, 2009.
Short summary
Two identical instruments in a parallel setup were used to observe the mesospheric OH airglow for more than 10 years (2009–2020) at 47.42°N, 10.98°E. This allows unique analyses of data quality aspects and their impact on the obtained results. During solar cycle 24 the influence of the sun was strong (∼6 K per 100 sfu). A quasi-2-year oscillation (QBO) of ±1 K is observed mainly during the maximum of the solar cycle. Unlike the stratospheric QBO the variation has a period of or below 24 months.
Two identical instruments in a parallel setup were used to observe the mesospheric OH airglow...