Articles | Volume 16, issue 21
https://doi.org/10.5194/amt-16-5403-2023
https://doi.org/10.5194/amt-16-5403-2023
Research article
 | 
13 Nov 2023
Research article |  | 13 Nov 2023

Estimation of 24 h continuous cloud cover using a ground-based imager with a convolutional neural network

Bu-Yo Kim, Joo Wan Cha, and Yong Hee Lee

Related authors

Twenty-four-hour cloud cover calculation using a ground-based imager with machine learning
Bu-Yo Kim, Joo Wan Cha, and Ki-Ho Chang
Atmos. Meas. Tech., 14, 6695–6710, https://doi.org/10.5194/amt-14-6695-2021,https://doi.org/10.5194/amt-14-6695-2021, 2021
Short summary

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
In situ observations of supercooled liquid water clouds over Dome C, Antarctica, by balloon-borne sondes
Philippe Ricaud, Pierre Durand, Paolo Grigioni, Massimo Del Guasta, Giuseppe Camporeale, Axel Roy, Jean-Luc Attié, and John Bognar
Atmos. Meas. Tech., 17, 5071–5089, https://doi.org/10.5194/amt-17-5071-2024,https://doi.org/10.5194/amt-17-5071-2024, 2024
Short summary
Partition between supercooled liquid droplets and ice crystals in mixed-phase clouds based on airborne in situ observations
Flor Vanessa Maciel, Minghui Diao, and Ching An Yang
Atmos. Meas. Tech., 17, 4843–4861, https://doi.org/10.5194/amt-17-4843-2024,https://doi.org/10.5194/amt-17-4843-2024, 2024
Short summary
Innovative cloud quantification: deep learning classification and finite-sector clustering for ground-based all-sky imaging
Jingxuan Luo, Yubing Pan, Debin Su, Jinhua Zhong, Lingxiao Wu, Wei Zhao, Xiaoru Hu, Zhengchao Qi, Daren Lu, and Yinan Wang
Atmos. Meas. Tech., 17, 3765–3781, https://doi.org/10.5194/amt-17-3765-2024,https://doi.org/10.5194/amt-17-3765-2024, 2024
Short summary
Revealing halos concealed by cirrus clouds
Yuji Ayatsuka
Atmos. Meas. Tech., 17, 3739–3750, https://doi.org/10.5194/amt-17-3739-2024,https://doi.org/10.5194/amt-17-3739-2024, 2024
Short summary
Distribution characteristics of summer precipitation raindrop spectrum in Qinghai−Tibet Plateau
Fuzeng Wang, Yao Huo, Yaxi Cao, Qiusong Wang, Tong Zhang, Junqing Liu, and Guangmin Cao
EGUsphere, https://doi.org/10.5194/egusphere-2024-764,https://doi.org/10.5194/egusphere-2024-764, 2024
Short summary

Cited articles

Al-Lahham, A., Theeb, O., Elalem, K., Alshawi, A. T., and Alshebeili, S. A.: Sky imager-based forecast of solar irradiance using machine learning, Electronics, 9, 1700, https://doi.org/10.3390/electronics9101700, 2020. 
Alonso-Montesinos, J.: Real-time automatic cloud detection using a low-cost sky camera, Remote Sens., 12, 1382, https://doi.org/10.3390/rs12091382, 2020. 
Fa, T., Xie, W., Wang, Y., and Xia, Y.: Development of an all-sky imaging system for cloud cover assessment, Appl. Opt., 58, 5516–5524, https://doi.org/10.1364/AO.58.005516, 2019. 
Geng, Y. A., Li, Q., Lin, T., Yao, W., Xu, L., Zheng, D., Zhou, X., Zheng, L., Lyu, W., and Zhang, Y.: A deep learning framework for lightning forecasting with multi-source spatiotemporal data, Q. J. Roy. Meteor. Soc., 147, 4048–4062, https://doi.org/10.1002/qj.4167, 2021. 
Geng, Z., Zhang, Y., Li, C., Han, Y., Cui, Y., and Yu, B.: Energy optimization and prediction modeling of petrochemical industries: An improved convolutional neural network based on cross-feature, Energy, 194, 116851, https://doi.org/10.1016/j.energy.2019.116851, 2020. 
Download
Short summary
A camera-based imager and convolutional neural network (CNN) were used to estimate ground cloud cover. Image data from 2019 were used for training and validation, and those from 2020 were used for testing. The CNN model exhibited high performance, with an accuracy of 0.92, RMSE of 1.40 tenths, and 93% agreement with observed cloud cover within ±2 tenths' difference. It also outperformed satellites and ceilometers and proved to be the most suitable for ground-based cloud cover estimation.