Articles | Volume 16, issue 3
https://doi.org/10.5194/amt-16-695-2023
https://doi.org/10.5194/amt-16-695-2023
Research article
 | 
07 Feb 2023
Research article |  | 07 Feb 2023

Automating the analysis of hailstone layers

Joshua S. Soderholm and Matthew R. Kumjian

Related authors

Radar and environment-based hail damage estimates using machine learning
Luis Ackermann, Joshua Soderholm, Alain Protat, Rhys Whitley, Lisa Ye, and Nina Ridder
Atmos. Meas. Tech., 17, 407–422, https://doi.org/10.5194/amt-17-407-2024,https://doi.org/10.5194/amt-17-407-2024, 2024
Short summary
Segmentation of polarimetric radar imagery using statistical texture
Adrien Guyot, Jordan P. Brook, Alain Protat, Kathryn Turner, Joshua Soderholm, Nicholas F. McCarthy, and Hamish McGowan
Atmos. Meas. Tech., 16, 4571–4588, https://doi.org/10.5194/amt-16-4571-2023,https://doi.org/10.5194/amt-16-4571-2023, 2023
Short summary
Three-way calibration checks using ground-based, ship-based, and spaceborne radars
Alain Protat, Valentin Louf, Joshua Soderholm, Jordan Brook, and William Ponsonby
Atmos. Meas. Tech., 15, 915–926, https://doi.org/10.5194/amt-15-915-2022,https://doi.org/10.5194/amt-15-915-2022, 2022
Short summary
Quantifying hail size distributions from the sky – application of drone aerial photogrammetry
Joshua S. Soderholm, Matthew R. Kumjian, Nicholas McCarthy, Paula Maldonado, and Minzheng Wang
Atmos. Meas. Tech., 13, 747–754, https://doi.org/10.5194/amt-13-747-2020,https://doi.org/10.5194/amt-13-747-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Laboratory Measurement | Topic: Data Processing and Information Retrieval
Water vapor estimation based on 1-year data of E-band millimeter wave link in North China
Siming Zheng, Juan Huo, Wenbing Cai, Yinhui Zhang, Peng Li, Gaoyuan Zhang, Baofeng Ji, Jiafeng Zhou, and Congzheng Han
Atmos. Meas. Tech., 15, 1675–1687, https://doi.org/10.5194/amt-15-1675-2022,https://doi.org/10.5194/amt-15-1675-2022, 2022
Short summary
Calculating uncertainty for the RICE ice core continuous flow analysis water isotope record
Elizabeth D. Keller, W. Troy Baisden, Nancy A. N. Bertler, B. Daniel Emanuelsson, Silvia Canessa, and Andy Phillips
Atmos. Meas. Tech., 11, 4725–4736, https://doi.org/10.5194/amt-11-4725-2018,https://doi.org/10.5194/amt-11-4725-2018, 2018
Short summary

Cited articles

Adams-Selin, R. D.: Examination of common hail growth pathways in left- and right-moving supercells through the use of a newly developed trajectory clustering algorithm, Am. Meteorol. Soc., https://ams.confex.com/ams/102ANNUAL/meetingapp.cgi/Paper/399996 (last access: 27 January 2023), 2022. a
Brook, J. P., Protat, A., Soderholm, J., Carlin, J. T., McGowan, H., and Warren, R. A.: HailTrack—improving radar-based hailfall estimates by modeling hail trajectories, J. Appl. Meteorol. Clim., 60, 237–254, https://doi.org/10.1175/JAMC-D-20-0087.1, 2021. a
Browning, K. A.: The lobe structure of giant hailstones, Q. J. Roy. Meteor. Soc., 93, 556–556​​​​​​​, https://doi.org/10.1002/qj.49709339820, 1967. a, b
Browning, K. A. and Beimers, J. G. D.: The Oblateness of Large Hailstones, J. Appl. Meteorol., 6, 1075–1081, https://doi.org/10.1175/1520-0450(1967)006<1075:toolh>2.0.co;2, 1967. a, b
Carras, J. and Macklin, W.: Air bubbles in accreted ice, Q. J. Roy. Meteor. Soc., 101, 127–146, https://doi.org/10.1256/smsqj.42710, 1975. a, b, c
Download
Short summary
Hailstones often exhibit opaque and clear ice layers that have an onion-like appearance. These layers are record of the conditions during growth and can be simulated by hail growth models. A new technique for automating the measurement of these layers from hail cross sections is demonstrated. This technique is applied to a collection of hailstones from Melbourne, Australia, to understand their growth evolution, and a first look at evaluating a hail growth model is demonstrated.