Articles | Volume 17, issue 7
https://doi.org/10.5194/amt-17-2055-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-17-2055-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Two new 222Rn emanation sources – a comparison study
Tanita J. Ballé
CORRESPONDING AUTHOR
Ionizing Radiation Department, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
Stefan Röttger
Ionizing Radiation Department, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
Florian Mertes
Ionizing Radiation Department, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
Anja Honig
Ionizing Radiation Department, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
Petr Kovar
Regional Branch Prague, Czech Metrology Institute (CMI), Radiová 1288/1a, 102 00 Prague, Czech Republic
Petr P. S. Otáhal
Nuclear Protection Department, National Institute for Nuclear, Biological and Chemical Protection (SUJCHBO, v.v.i), 262 31 Milín, Czech Republic
Annette Röttger
Ionizing Radiation Department, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
Related authors
No articles found.
Scott D. Chambers, Ute Karstens, Alan D. Griffiths, Stefan Röttger, Arnoud Frumau, Christopher T. Roulston, Peter Sperlich, Felix Vogel, Agnieszka Podstawczyńska, Dafina Kikaj, Maksym Gachkivskyi, Michel Ramonet, Blagoj Mitrevski, Janja Vaupotič, Xuemeng Chen, and Annette Röttger
EGUsphere, https://doi.org/10.5194/egusphere-2025-5042, https://doi.org/10.5194/egusphere-2025-5042, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The Radon Tracer Method (RTM) is a top-down approach to estimate greenhouse gas emissions. While simple in principle, incorrect use can complicate interpretation of results. Based on observations from a range of contrasting sites, this article reviews the underlying assumptions and key considerations for applying the RTM. It also introduces the concept of coupling RTM analyses with nocturnal stability classification, to reduce uncertainty of fetch estimates and improve interpretation of results.
Roger Curcoll, Claudia Grossi, Stefan Röttger, and Arturo Vargas
Atmos. Meas. Tech., 17, 3047–3065, https://doi.org/10.5194/amt-17-3047-2024, https://doi.org/10.5194/amt-17-3047-2024, 2024
Short summary
Short summary
This paper presents a new user-friendly version of the Atmospheric Radon MONitor (ARMON). The efficiency of the instrument is of 0.0057 s-1, obtained using different techniques at Spanish and German chambers. The total calculated uncertainty of the ARMON for hourly radon concentrations above 5 Bq m-3 is lower than 10 % (k = 1). Results confirm that the ARMON is suitable to measure low-level radon activity concentrations and to be used as a transfer standard to calibrate in situ radon monitors.
Claudia Grossi, Daniel Rabago, Scott Chambers, Carlos Sáinz, Roger Curcoll, Peter P. S. Otáhal, Eliška Fialová, Luis Quindos, and Arturo Vargas
Atmos. Meas. Tech., 16, 2655–2672, https://doi.org/10.5194/amt-16-2655-2023, https://doi.org/10.5194/amt-16-2655-2023, 2023
Short summary
Short summary
The automatic and low-maintenance radon flux system Autoflux, completed with environmental soil and atmosphere sensors, has been theoretically and experimentally characterized and calibrated under laboratory conditions to be used as transfer standard for in situ measurements. It will offer for the first time long-term measurements to validate radon flux maps used by the climate and the radiation protection communities for assessing the radon gas emissions in the atmosphere.
Florian Mertes, Stefan Röttger, and Annette Röttger
J. Sens. Sens. Syst., 12, 147–161, https://doi.org/10.5194/jsss-12-147-2023, https://doi.org/10.5194/jsss-12-147-2023, 2023
Short summary
Short summary
In this work, a novel approach to deduce the release of the natural radioactive noble gas 222Rn from solid sources containing the isotope 226Ra is presented. Therein, supporting radioactivity measurements of the source are used in conjunction with a theoretical description of the dynamics. For radiation protection and environmental research, reliable and comparable 222Rn measurements, and therefore reference atmospheres of 222Rn, are needed. This work improves their realization.
Scott D. Chambers, Alan D. Griffiths, Alastair G. Williams, Ot Sisoutham, Viacheslav Morosh, Stefan Röttger, Florian Mertes, and Annette Röttger
Adv. Geosci., 57, 63–80, https://doi.org/10.5194/adgeo-57-63-2022, https://doi.org/10.5194/adgeo-57-63-2022, 2022
Short summary
Short summary
There is a growing need in health and climate research for high-quality radon observations. A variety of radon monitors, with different uncertainties, operate across global networks. Better compatibility between the measurements is required. Here we describe a novel, portable two-filter radon monitor with a calibration traceable to the International System of Units, and demonstrate the transfer of a traceable calibration from this instrument to a separate monitor under field conditions.
Stefan Röttger, Annette Röttger, Claudia Grossi, Arturo Vargas, Ute Karstens, Giorgia Cinelli, Edward Chung, Dafina Kikaj, Chris Rennick, Florian Mertes, and Ileana Radulescu
Adv. Geosci., 57, 37–47, https://doi.org/10.5194/adgeo-57-37-2022, https://doi.org/10.5194/adgeo-57-37-2022, 2022
Short summary
Short summary
Radon gas is the largest source of public exposure to naturally occurring radioactivity. Radon can also be used, as a tracer to improve indirectly the estimates of greenhouse gases important for supporting successful GHG mitigation strategies.
Both climate and radiation protection research communities need improved traceable low-level atmospheric radon measurements. The EMPIR project 19ENV01 traceRadon started to provide the necessary measurement infrastructure and transfer standards.
Annette Röttger, Attila Veres, Vladimir Sochor, Massimo Pinto, Michal Derlacinski, Mihail-Razvan Ioan, Amra Sabeta, Robert Bernat, Christelle Adam-Guillermin, João Henrique Gracia Alves, Denis Glavič-Cindro, Steven Bell, Britt Wens, Linda Persson, Miloš Živanović, and Reetta Nylund
Adv. Geosci., 57, 1–7, https://doi.org/10.5194/adgeo-57-1-2021, https://doi.org/10.5194/adgeo-57-1-2021, 2021
Short summary
Short summary
The goal of the EMN is a harmonized, sustainable, coordinated and intelligently specialized infrastructure to support the needs expressed in the European Radiation Protection Ordinance. Such an EMN under the umbrella of EURAMET is in the founding phase and is being prepared in parallel by the EMPIR project 19NET03 supportBSS with five technical work packages. EURAMET is the Regional Metrology Organisation (RMO) of Europe. The EMN was established by signature on 16 September 2021.
Cited articles
Čeliković, I., Pantelić, G., Vukanac, I., Nikolić, J. K., Živanović, M., Cinelli, G., Gruber, V., Baumann, S., Poncela, L. S. Q., and Rabago, D.: Outdoor Radon as a Tool to Estimate Radon Priority Areas – A Literature Overview, Int. J. Environ. Res. Pub. He., 19, 662, https://doi.org/10.3390/ijerph19020662, 2022.
Cinelli, G., Tollefsen, T., Bossew, P., Gruber, V., Bogucarskis, K., De Felice, L., and De Cort, M.: Digital version of the European Atlas of natural radiation, J. Environ. Radioact., 196, 240–252, https://doi.org/10.1016/j.jenvrad.2018.02.008, 2018.
Fialova, E., Otahal, P. P. S., Vosahlik, J., and Mazanova, M.: Equipment for testing measuring devices at a low-level radon activity concentration, Int. J. Environ. Res. Pub. He., 17, 1904, https://doi.org/10.3390/ijerph17061904, 2020.
Grexová, K., Sosnová, D., and Sochor, V.: CMI's Certificate No. 882/21 of the radionuclide Ra-226 standard No. 221121-221455, 2021.
Grossi, C., Vogel, F. R., Curcoll, R., Àgueda, A., Vargas, A., Rodó, X., and Morguí, J.-A.: Study of the daily and seasonal atmospheric CH4 mixing ratio variability in a rural Spanish region using 222Rn tracer, Atmos. Chem. Phys., 18, 5847–5860, https://doi.org/10.5194/acp-18-5847-2018, 2018.
Grossi, C., Chambers, S. D., Llido, O., Vogel, F. R., Kazan, V., Capuana, A., Werczynski, S., Curcoll, R., Delmotte, M., Vargas, A., Morguí, J.-A., Levin, I., and Ramonet, M.: Intercomparison study of atmospheric 222Rn and 222Rn progeny monitors, Atmos. Meas. Tech., 13, 2241–2255, https://doi.org/10.5194/amt-13-2241-2020, 2020.
Jacobi, W.: The history of the radon problem in mines and homes, Ann. ICRP, 23, 39–45, https://doi.org/10.1016/0146-6453(93)90012-W, 1993.
Kalman, R. E.: A New Approach to Linear Filtering and Prediction Problems, J. Basic Eng., 82, 35–45, https://doi.org/10.1115/1.3662552, 1960.
Levin, I., Glatzel-Mattheier, H., Marik, T., Cuntz, M., Schmidt, M., and Worthy, D. E.: Verification of German methane emission inventories and their recent changes based on atmospheric observations, J. Geophys. Res., 104, 3447–3456, 1999.
Martin-Gisbert, L., Ruano-Ravina, A., Varela-Lema, L., Penabad, M., Giraldo-Osorio, A., Candal-Pedreira, C., Rey-Brandariz, J., Mourino, N., and Pérez-Ríos, M.: Lung cancer mortality attributable to residential radon: a systematic scoping review, J. Expo. Sci. Environ. Epidemiol., 33, 368–376, https://doi.org/10.1038/s41370-022-00506-w, 2023.
Mertes, F.: FlorianMertes/RadonDeconvolution: Version 1.0 (Release), Zenodo [data set], https://doi.org/10.5281/zenodo.7798459, 2023.
Mertes, F., Röttger, S., and Röttger, A.: Development of 222Rn Emanation Sources with Integrated Quasi 2π Active Monitoring, Int. J. Environ. Res. Pub. He., 19, 110093, https://doi.org/10.3390/ijerph19020840, 2022a.
Mertes, F., Röttger, S., and Röttger, A.: IRSD raw alpha spectrum data for Rn-222 emanation determination, Physikalisch-Technische Bundesanstalt (PTB) [data set], https://doi.org/10.7795/720.20220921, 2022b.
Radulescu, I., Calin, M. R., Luca, A., Röttger, A., Grossi, C., Done, L., and Ioan, M. R.: Inter-comparison of commercial continuous radon monitors responses, Nucl. Instrum. Meth. A, 1021, 165927, https://doi.org/10.1016/j.nima.2021.165927, 2022.
Rauch, H. E., Tung, F., and Striebel, C. T.: Maximum Likelihood Estimates of Linear Dynamic Systems, Am. Inst. Aeronaut. Astronaut. J., 3, 1445–1450, https://doi.org/10.2514/3.3166, 1965.
Röttger, A., Röttger, S., Grossi, C., Vargas, A., Curcoll, R., Otáhal, P., Hernández-Ceballos, M. Á., Cinelli, G., Chambers, S., Barbosa, S. A., Ioan, M.-R., Radulescu, I., Kikaj, D., Chung, E., Arnold, T., Yver-Kwok, C., Fuente, M., Mertes, F., and Morosh, V.: New metrology for radon at the environmental level, Meas. Sci. Technol., 32, 124008, https://doi.org/10.1088/1361-6501/ac298d, 2021.
Särkkä, S.: Bayesian Filtering and Smoothing, Cambridge University Press, https://doi.org/10.1017/CBO9781139344203, 2013.
Särkkä, S. and Solin, A.: Applied Stochastic Differential Equations, Cambridge University Press, ISBN 9781108186735, https://doi.org/10.1017/9781108186735, 2019.
Schmithüsen, D., Chambers, S., Fischer, B., Gilge, S., Hatakka, J., Kazan, V., Neubert, R., Paatero, J., Ramonet, M., Schlosser, C., Schmid, S., Vermeulen, A., and Levin, I.: A European-wide 222radon and 222radon progeny comparison study, Atmos. Meas. Tech., 10, 1299–1312, https://doi.org/10.5194/amt-10-1299-2017, 2017.
Short summary
Over 50 % of naturally occurring radiation exposure is due to 222Rn (progenies), but traceability of measurements to the International System of Units (SI) is lacking. To address this, two new 222Rn sources were developed to be used as calibration standards for reference instruments. These sources were investigated by comparing their estimated calibration factors for one instrument. Despite the small differences derived, all uncertainties are well within the intended target uncertainty of 10 %.
Over 50 % of naturally occurring radiation exposure is due to 222Rn (progenies), but...