Articles | Volume 17, issue 11
https://doi.org/10.5194/amt-17-3377-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-17-3377-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dual adaptive differential threshold method for automated detection of faint and strong echo features in radar observations of winter storms
Center for Geospatial Analytics, North Carolina State University, Raleigh, NC 27695, USA
Sandra E. Yuter
Center for Geospatial Analytics, North Carolina State University, Raleigh, NC 27695, USA
Department of Marine, Earth and Atmospheric Science, North Carolina State University, Raleigh, NC 27695, USA
Matthew A. Miller
Department of Marine, Earth and Atmospheric Science, North Carolina State University, Raleigh, NC 27695, USA
Related authors
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, Mariko Oue, and Charles N. Helms
Atmos. Chem. Phys., 25, 9999–10026, https://doi.org/10.5194/acp-25-9999-2025, https://doi.org/10.5194/acp-25-9999-2025, 2025
Short summary
Short summary
This study investigates how radar-detected snow bands relate to snowfall rates during winter storms in the northeastern United States. Using over a decade of data, we found that snow bands are not consistently linked to heavy snowfall at the surface, as snow particles are often dispersed by wind before reaching the ground. These findings highlight limitations of using radar reflectivity for predicting snow rates and suggest focusing on radar echo duration to better understand snowfall patterns.
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
Atmos. Chem. Phys., 25, 1765–1790, https://doi.org/10.5194/acp-25-1765-2025, https://doi.org/10.5194/acp-25-1765-2025, 2025
Short summary
Short summary
Atmospheric gravity waves (GWs) are air oscillations in which buoyancy is the restoring force, and they may enhance precipitation under certain conditions. We used 3+ seasons of pressure data to identify GWs with wavelengths ≤ 170 km in the Toronto and New York metropolitan areas in the context of snow storms. We found only six GW events during snow storms, suggesting that GWs on those scales are uncommon at the two locations during snow storms and, thus, do not often enhance snowfall.
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
Atmos. Meas. Tech., 17, 113–134, https://doi.org/10.5194/amt-17-113-2024, https://doi.org/10.5194/amt-17-113-2024, 2024
Short summary
Short summary
We present a data set of high-precision surface air pressure observations and a method for detecting wave signals from the time series of pressure. A wavelet-based method is used to find wave signals at specific times and wave periods. From networks of pressure sensors spaced tens of kilometers apart, the wave phase speed and direction are estimated. Examples of wave events and their meteorological context are shown using radar data, weather balloon data, and other surface weather observations.
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, and Luke R. Allen
Atmos. Meas. Tech., 15, 5515–5525, https://doi.org/10.5194/amt-15-5515-2022, https://doi.org/10.5194/amt-15-5515-2022, 2022
Short summary
Short summary
Locally higher radar reflectivity values in winter storms can mean more snowfall or a transition from snow to mixtures of snow, partially melted snow, and/or rain. We use the correlation coefficient to de-emphasize regions of mixed precipitation. Visual muting is valuable for analyzing and monitoring evolving weather conditions during winter storm events.
Matthew A. Miller, Sandra E. Yuter, Nicole P. Hoban, Laura M. Tomkins, and Brian A. Colle
Atmos. Meas. Tech., 15, 1689–1702, https://doi.org/10.5194/amt-15-1689-2022, https://doi.org/10.5194/amt-15-1689-2022, 2022
Short summary
Short summary
Apparent waves in the atmosphere and similar features in storm winds can be detected by taking the difference between successive Doppler weather radar scans measuring radar-relative storm air motions. Applying image filtering to the difference data better isolates the detected signal. This technique is a useful tool in weather research and forecasting since such waves can trigger or enhance precipitation.
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, Mariko Oue, and Charles N. Helms
Atmos. Chem. Phys., 25, 9999–10026, https://doi.org/10.5194/acp-25-9999-2025, https://doi.org/10.5194/acp-25-9999-2025, 2025
Short summary
Short summary
This study investigates how radar-detected snow bands relate to snowfall rates during winter storms in the northeastern United States. Using over a decade of data, we found that snow bands are not consistently linked to heavy snowfall at the surface, as snow particles are often dispersed by wind before reaching the ground. These findings highlight limitations of using radar reflectivity for predicting snow rates and suggest focusing on radar echo duration to better understand snowfall patterns.
Luke R. Allen, Sandra E. Yuter, Declan M. Crowe, Matthew A. Miller, and K. Lee Thornhill
Atmos. Chem. Phys., 25, 6679–6701, https://doi.org/10.5194/acp-25-6679-2025, https://doi.org/10.5194/acp-25-6679-2025, 2025
Short summary
Short summary
We analyzed in-cloud characteristics using in situ measurements from 42 research flights across two field campaigns into non-orographic, non-lake-effect winter storms. Much of the storm volume contains weak vertical motions (a few centimeters per second), and most updrafts ≥ 0.5 m s-1 are small (< 1 km). Within 2 km of cloud radar echo top, stronger vertical motions and conditions for ice particle growth are more common. Overturning air motions near cloud top appear important for the production of snow particles.
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
Atmos. Chem. Phys., 25, 1765–1790, https://doi.org/10.5194/acp-25-1765-2025, https://doi.org/10.5194/acp-25-1765-2025, 2025
Short summary
Short summary
Atmospheric gravity waves (GWs) are air oscillations in which buoyancy is the restoring force, and they may enhance precipitation under certain conditions. We used 3+ seasons of pressure data to identify GWs with wavelengths ≤ 170 km in the Toronto and New York metropolitan areas in the context of snow storms. We found only six GW events during snow storms, suggesting that GWs on those scales are uncommon at the two locations during snow storms and, thus, do not often enhance snowfall.
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
Atmos. Meas. Tech., 17, 113–134, https://doi.org/10.5194/amt-17-113-2024, https://doi.org/10.5194/amt-17-113-2024, 2024
Short summary
Short summary
We present a data set of high-precision surface air pressure observations and a method for detecting wave signals from the time series of pressure. A wavelet-based method is used to find wave signals at specific times and wave periods. From networks of pressure sensors spaced tens of kilometers apart, the wave phase speed and direction are estimated. Examples of wave events and their meteorological context are shown using radar data, weather balloon data, and other surface weather observations.
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, and Luke R. Allen
Atmos. Meas. Tech., 15, 5515–5525, https://doi.org/10.5194/amt-15-5515-2022, https://doi.org/10.5194/amt-15-5515-2022, 2022
Short summary
Short summary
Locally higher radar reflectivity values in winter storms can mean more snowfall or a transition from snow to mixtures of snow, partially melted snow, and/or rain. We use the correlation coefficient to de-emphasize regions of mixed precipitation. Visual muting is valuable for analyzing and monitoring evolving weather conditions during winter storm events.
Matthew A. Miller, Sandra E. Yuter, Nicole P. Hoban, Laura M. Tomkins, and Brian A. Colle
Atmos. Meas. Tech., 15, 1689–1702, https://doi.org/10.5194/amt-15-1689-2022, https://doi.org/10.5194/amt-15-1689-2022, 2022
Short summary
Short summary
Apparent waves in the atmosphere and similar features in storm winds can be detected by taking the difference between successive Doppler weather radar scans measuring radar-relative storm air motions. Applying image filtering to the difference data better isolates the detected signal. This technique is a useful tool in weather research and forecasting since such waves can trigger or enhance precipitation.
Cited articles
Ansari, S., Greco, S. D., Kearns, E., Brown, O., Wilkins, S., Ramamurthy, M., Weber, J., May, R., Sundwall, J., Layton, J., Gold, A., Pasch, A., and Lakshmanan, V.: Unlocking the Potential of NEXRAD Data through NOAA's Big Data Partnership, B. Am. Meteorol. Soc., 99, 189–204, https://doi.org/10.1175/BAMS-D-16-0021.1, 2018. a
Arkin, P. A. and Meisner, B. N.: The Relationship between Large-Scale Convective Rainfall and Cold Cloud over the Western Hemisphere during 1982–84, Mon. Weather Rev., 115, 51–74, https://doi.org/10.1175/1520-0493(1987)115<0051:TRBLSC>2.0.CO;2, 1987. a
Amazon Web Services (AWS): Next Generation Weather Radar (NEXRAD), https://registry.opendata.aws/noaa-nexrad, last access: 7 November 2023. a
Baxter, M. A. and Schumacher, P. N.: Distribution of Single-Banded Snowfall in Central U. S. Cyclones, Weather Forecast., 32, 533–554, https://doi.org/10.1175/WAF-D-16-0154.1, 2017. a, b, c
Bullock, R. G., Brown, B. G., and Fowler, T. L.: Method for Object-Based Diagnostic Evaluation, NCAR Technical Note, https://doi.org/10.5065/D61V5CBS, 2016. a
Churchill, D. D. and Houze, R. A.: Development and Structure of Winter Monsoon Cloud Clusters on 10 December 1978, J. Atmos. Sci., 41, 933–960, https://doi.org/10.1175/1520-0469(1984)041<0933:DASOWM>2.0.CO;2, 1984. a
Colle, B. A., Yeh, P., Finlon, J. A., McMurdie, L., McDonald, V., and DeLaFrance, A.: An Investigation of a Northeast U.S. Cyclone Event Without Well-Defined Snow Banding During IMPACTS, Mon. Weather Rev., 151, 2465–2484, https://doi.org/10.1175/MWR-D-22-0296.1, 2023. a, b, c
Ferraro, R. R., Peters-Lidard, C. D., Hernandez, C., Turk, F. J., Aires, F., Prigent, C., Lin, X., Boukabara, S.-A., Furuzawa, F. A., Gopalan, K., Harrison, K. W., Karbou, F., Li, L., Liu, C., Masunaga, H., Moy, L., Ringerud, S., Skofronick-Jackson, G. M., Tian, Y., and Wang, N.-Y.: An Evaluation of Microwave Land Surface Emissivities Over the Continental United States to Benefit GPM-Era Precipitation Algorithms, IEEE T. Geosci. Remote, 51, 378–398, https://doi.org/10.1109/TGRS.2012.2199121, 2013. a
Fujiyoshi, Y., Endoh, T., Yamada, T., Tsuboki, K., Tachibana, Y., and Wakahama, G.: Determination of a Z-R Relationship for Snowfall Using a Radar and High Sensitivity Snow Gauges, J. Appl. Meteorol. Clim., 29, 147–152, https://doi.org/10.1175/1520-0450(1990)029<0147:DOARFS>2.0.CO;2, 1990. a
Helmus, J. J. and Collis, S. M.: The Python ARM Radar Toolkit (Py-ART), a Library for Working with Weather Radar Data in the Python Programming Language, Journal of Open Research Software, 4, e25, https://doi.org/10.5334/jors.119, 2016 (code available at: https://arm-doe.github.io/pyart/API/generated/pyart.retrieve.feature_detection.html, last access: 27 November 2023). a, b, c
Jamil, N., Sembok, T. M. T., and Bakar, Z. A.: Noise Removal and Enhancement of Binary Images Using Morphological Operations, in: 2008 International Symposium on Information Technology, Kuala Lumpur, Malaysia, 26–28 August 2008, IEEE, 4, 1–6, https://doi.org/10.1109/ITSIM.2008.4631954, 2008. a
Kenyon, J. S., Keyser, D., Bosart, L. F., and Evans, M. S.: The Motion of Mesoscale Snowbands in Northeast U.S. Winter Storms, Weather Forecast., 35, 83–105, https://doi.org/10.1175/WAF-D-19-0038.1, 2020. a, b, c
Lackmann, G. M. and Thompson, G.: Hydrometeor Lofting and Mesoscale Snowbands, Mon. Weather Rev., 147, 3879–3899, https://doi.org/10.1175/MWR-D-19-0036.1, 2019. a
Machado, L. A. T. and Rossow, W. B.: Structural Characteristics and Radiative Properties of Tropical Cloud Clusters, Mon. Weather Rev., 121, 3234–3260, https://doi.org/10.1175/1520-0493(1993)121<3234:SCARPO>2.0.CO;2, 1993. a
Matrosov, S. Y., Clark, K. A., and Kingsmill, D. E.: A Polarimetric Radar Approach to Identify Rain, Melting-Layer, and Snow Regions for Applying Corrections to Vertical Profiles of Reflectivity, J. Appl. Meteorol. Clim., 46, 154–166, https://doi.org/10.1175/JAM2508.1, 2007. a
McMurdie, L. A., Heymsfield, G. M., Yorks, J. E., Braun, S. A., Skofronick-Jackson, G., Rauber, R. M., Yuter, S., Colle, B., McFarquhar, G. M., Poellot, M., Novak, D. R., Lang, T. J., Kroodsma, R., McLinden, M., Oue, M., Kollias, P., Kumjian, M. R., Greybush, S. J., Heymsfield, A. J., Finlon, J. A., McDonald, V. L., and Nicholls, S.: Chasing Snowstorms: The Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) Campaign, B. Am. Meteorol. Soc., 103, E1243–E1269, https://doi.org/10.1175/BAMS-D-20-0246.1, 2022. a
Novak, D. R., Bosart, L. F., Keyser, D., and Waldstreicher, J. S.: An Observational Study of Cold Season–Banded Precipitation in Northeast U.S. Cyclones, Weather Forecast., 19, 993–1010, https://doi.org/10.1175/815.1, 2004. a, b, c
Picca, J. C., Schultz, D. M., Colle, B. A., Ganetis, S., Novak, D. R., and Sienkiewicz, M. J.: The Value of Dual-Polarization Radar in Diagnosing the Complex Microphysical Evolution of an Intense Snowband, B. Am. Meteorol. Soc., 95, 1825–1834, https://doi.org/10.1175/BAMS-D-13-00258.1, 2014. a, b
Powell, S. W., Houze, R. A., and Brodzik, S. R.: Rainfall-Type Categorization of Radar Echoes Using Polar Coordinate Reflectivity Data, J. Atmos. Ocean. Tech., 33, 523–538, https://doi.org/10.1175/JTECH-D-15-0135.1, 2016. a
Radford, J. T., Lackmann, G. M., and Baxter, M. A.: An Evaluation of Snowband Predictability in the High-Resolution Rapid Refresh, Weather Forecast., 34, 1477–1494, https://doi.org/10.1175/WAF-D-19-0089.1, 2019. a
Rasmussen, R., Dixon, M., Vasiloff, S., Hage, F., Knight, S., Vivekanandan, J., and Xu, M.: Snow Nowcasting Using a Real-Time Correlation of Radar Reflectivity with Snow Gauge Accumulation, J. Appl. Meteorol. Clim., 42, 20–36, https://doi.org/10.1175/1520-0450(2003)042<0020:SNUART>2.0.CO;2, 2003. a, b, c, d, e
Rinehart, R. E.: Radar for Meteorologists, 4th edn., Rinehart, Columbia, Mo, ISBN-10: 0965800210, ISBN-13: 978-0965800211, 2004. a
Saltikoff, E., Huuskonen, A., Hohti, H., Koistinen, J., and Järvinen, H.: Quality Assurance in the FMI Doppler Weather Radar Network, Boreal Environ. Res., 15, 579–594, 2010. a
Schiffer, R. A. and Rossow, W. B.: The International Satellite Cloud Climatology Project (ISCCP): The First Project of the World Climate Research Programme, B. Am. Meteorol. Soc., 64, 779–784, https://doi.org/10.1175/1520-0477-64.7.779, 1983. a
Steiner, M., Houze, R. A., and Yuter, S. E.: Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data, J. Appl. Meteorol. Clim., 34, 1978–2007, https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2, 1995. a, b, c, d
Tomkins, L.: 07 February 2021 feature detection example, TIB AV-Portal [video], https://doi.org/10.5446/63170, 2023a. a
Tomkins, L.: 17 December 2019 feature detection example, TIB AV-Portal [video], https://doi.org/10.5446/63172, 2023b. a
Tomkins, L.: 17 December 2020 feature detection example, TIB AV-Portal [video], https://doi.org/10.5446/63171, 2023c. a
Tomkins, L.: 7 February 2020 feature detection example, TIB AV-Portal [video], https://doi.org/10.5446/63168, 2023d. a
Tomkins, L.: Supplemental videos for the paper “Dual adaptive differential threshold method for automated detection of faint and strong echo features in radar observations of winter storms”, TIB AV-Portal, https://av.tib.eu/series/1524/ (last access: 1 December 2023), 2023e. a
Tomkins, L., Yuter, S., Miller, M., Corbin, N., and Hoban, N.: Northeast US Regional NEXRAD Radar Mosaics of Winter Storms from 1996–2023, Part 1, Dryad [data set], https://doi.org/10.5061/dryad.zcrjdfnk6, 2023a. a
Tomkins, L., Yuter, S., Miller, M., Corbin, N., and Hoban, N.: Northeast US Regional NEXRAD Radar Mosaics of Winter Storms from 1996–2023, Part 2, Dryad [data set], https://doi.org/10.5061/dryad.rbnzs7hj9, 2023b. a, b
Woodman, M.: Yourdon Dataflow Diagrams: A Tool for Disciplined Requirements Analysis, Inform. Software Tech., 30, 515–533, https://doi.org/10.1016/0950-5849(88)90131-0, 1988. a
Yuter, S. E. and Houze, R. A.: Measurements of Raindrop Size Distributions over the Pacific Warm Pool and Implications for Z–R Relations, J. Appl. Meteorol. Clim., 36, 847–867, https://doi.org/10.1175/1520-0450(1997)036<0847:MORSDO>2.0.CO;2, 1997. a, b
Yuter, S. E., Houze, R. A., Smith, E. A., Wilheit, T. T., and Zipser, E.: Physical Characterization of Tropical Oceanic Convection Observed in KWAJEX, J. Appl. Meteorol. Clim., 44, 385–415, https://doi.org/10.1175/JAM2206.1, 2005. a, b, c, d
Short summary
We have created a new method to better identify enhanced features in radar data from winter storms. Unlike the clear-cut features seen in warm-season storms, features in winter storms are often fuzzier with softer edges. Our technique is unique because it uses two adaptive thresholds that change based on the background radar values. It can identify both strong and subtle features in the radar data and takes into account uncertainties in the detection process.
We have created a new method to better identify enhanced features in radar data from winter...