Articles | Volume 17, issue 16
https://doi.org/10.5194/amt-17-4843-2024
https://doi.org/10.5194/amt-17-4843-2024
Research article
 | 
23 Aug 2024
Research article |  | 23 Aug 2024

Partition between supercooled liquid droplets and ice crystals in mixed-phase clouds based on airborne in situ observations

Flor Vanessa Maciel, Minghui Diao, and Ching An Yang

Related authors

Aerosol Indirect Effects on Cirrus Clouds Based on Global-Scale Airborne Observations and Machine Learning Models
Derek Ngo, Minghui Diao, Ryan J. Patnaude, Sarah Woods, and Glenn Diskin
EGUsphere, https://doi.org/10.5194/egusphere-2024-2122,https://doi.org/10.5194/egusphere-2024-2122, 2024
Short summary
Examination of aerosol indirect effects during cirrus cloud evolution
Flor Vanessa Maciel, Minghui Diao, and Ryan Patnaude
Atmos. Chem. Phys., 23, 1103–1129, https://doi.org/10.5194/acp-23-1103-2023,https://doi.org/10.5194/acp-23-1103-2023, 2023
Short summary
The University of Washington Ice–Liquid Discriminator (UWILD) improves single-particle phase classifications of hydrometeors within Southern Ocean clouds using machine learning
Rachel Atlas, Johannes Mohrmann, Joseph Finlon, Jeremy Lu, Ian Hsiao, Robert Wood, and Minghui Diao
Atmos. Meas. Tech., 14, 7079–7101, https://doi.org/10.5194/amt-14-7079-2021,https://doi.org/10.5194/amt-14-7079-2021, 2021
Short summary
Effects of thermodynamics, dynamics and aerosols on cirrus clouds based on in situ observations and NCAR CAM6
Ryan Patnaude, Minghui Diao, Xiaohong Liu, and Suqian Chu
Atmos. Chem. Phys., 21, 1835–1859, https://doi.org/10.5194/acp-21-1835-2021,https://doi.org/10.5194/acp-21-1835-2021, 2021
Short summary
Direct comparisons of ice cloud macro- and microphysical properties simulated by the Community Atmosphere Model version 5 with HIPPO aircraft observations
Chenglai Wu, Xiaohong Liu, Minghui Diao, Kai Zhang, Andrew Gettelman, Zheng Lu, Joyce E. Penner, and Zhaohui Lin
Atmos. Chem. Phys., 17, 4731–4749, https://doi.org/10.5194/acp-17-4731-2017,https://doi.org/10.5194/acp-17-4731-2017, 2017
Short summary

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
In situ observations of supercooled liquid water clouds over Dome C, Antarctica, by balloon-borne sondes
Philippe Ricaud, Pierre Durand, Paolo Grigioni, Massimo Del Guasta, Giuseppe Camporeale, Axel Roy, Jean-Luc Attié, and John Bognar
Atmos. Meas. Tech., 17, 5071–5089, https://doi.org/10.5194/amt-17-5071-2024,https://doi.org/10.5194/amt-17-5071-2024, 2024
Short summary
Innovative cloud quantification: deep learning classification and finite-sector clustering for ground-based all-sky imaging
Jingxuan Luo, Yubing Pan, Debin Su, Jinhua Zhong, Lingxiao Wu, Wei Zhao, Xiaoru Hu, Zhengchao Qi, Daren Lu, and Yinan Wang
Atmos. Meas. Tech., 17, 3765–3781, https://doi.org/10.5194/amt-17-3765-2024,https://doi.org/10.5194/amt-17-3765-2024, 2024
Short summary
Revealing halos concealed by cirrus clouds
Yuji Ayatsuka
Atmos. Meas. Tech., 17, 3739–3750, https://doi.org/10.5194/amt-17-3739-2024,https://doi.org/10.5194/amt-17-3739-2024, 2024
Short summary
Distribution characteristics of summer precipitation raindrop spectrum in Qinghai−Tibet Plateau
Fuzeng Wang, Yao Huo, Yaxi Cao, Qiusong Wang, Tong Zhang, Junqing Liu, and Guangmin Cao
EGUsphere, https://doi.org/10.5194/egusphere-2024-764,https://doi.org/10.5194/egusphere-2024-764, 2024
Short summary
Quantifying riming from airborne data during the HALO-(AC)3 campaign
Nina Maherndl, Manuel Moser, Johannes Lucke, Mario Mech, Nils Risse, Imke Schirmacher, and Maximilian Maahn
Atmos. Meas. Tech., 17, 1475–1495, https://doi.org/10.5194/amt-17-1475-2024,https://doi.org/10.5194/amt-17-1475-2024, 2024
Short summary

Cited articles

American Meteorological Society: Generating cell Glossary of Meteorology, http://glossary.ametsoc.org/wiki/generating_cell (last access: 10 August 2024), 2024. 
Atlas, R., Mohrmann, J., Finlon, J., Lu, J., Hsiao, I., Wood, R., and Diao, M.: The University of Washington Ice–Liquid Discriminator (UWILD) improves single-particle phase classifications of hydrometeors within Southern Ocean clouds using machine learning, Atmos. Meas. Tech., 14, 7079–7101, https://doi.org/10.5194/amt-14-7079-2021, 2021. 
Avramov, A., Ackerman, A. S., Fridlind, A. M., Van Diedenhoven, B., Botta, G., Aydin, K., Verlinde, J., Korolev, A. V., Strapp, J. W., McFarquhar, G. M., Jackson, R., Brooks, S. D., Glen, A., and Wolde, M.: Toward ice formation closure in Arctic mixed-phase boundary layer clouds during ISDAC, J. Geophys. Res.-Atmos., 116, D00T08, https://doi.org/10.1029/2011JD015910, 2011. 
Barone, T., Diao, M., Shi, Y., Zhao, X., Liu, X., and Silber, I.: Impacts of synoptic‐scale dynamics on clouds and radiation in high southern latitudes, J. Geophys. Res.-Atmos., 129, e2023JD040329, https://doi.org/10.1029/2023JD040329, 2024. 
Baumgardner, D., Abel, S. J., Axisa, D., Cotton, R., Crosier, J., Field, P., Gurganus, C., Heymsfield, A., Korolev, A., Krämer, M., Lawson, P., McFarquhar, G., Ulanowski, Z., and Um, J.: Cloud Ice Properties: In Situ Measurement Challenges, Meteor. Mon., 58, 9.1–9.23, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0011.1, 2017. 
Download
Short summary
The partition between supercooled liquid water and ice crystals in mixed-phase clouds is investigated using aircraft-based in situ observations over the Southern Ocean. A novel method is developed to define four phases of mixed-phase clouds. Relationships between cloud macrophysical and microphysical properties are quantified. Effects of aerosols and thermodynamic and dynamical conditions on ice nucleation and phase partitioning are examined.