Articles | Volume 18, issue 12
https://doi.org/10.5194/amt-18-2607-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-2607-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Simple water vapor sampling for stable isotope analysis using affordable valves and bags
Isotope Biogeochemistry and Gas Fluxes, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
Institute of Earth and Environmental Sciences, University of Potsdam, 14476 Potsdam, Germany
John D. Marshall
Department of Earth Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden
David Dubbert
Isotope Biogeochemistry and Gas Fluxes, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
Mathias Hoffmann
Isotope Biogeochemistry and Gas Fluxes, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
Maren Dubbert
Isotope Biogeochemistry and Gas Fluxes, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
Related authors
Adrian Dahlmann, Mathias Hoffmann, Gernot Verch, Marten Schmidt, Michael Sommer, Jürgen Augustin, and Maren Dubbert
Hydrol. Earth Syst. Sci., 27, 3851–3873, https://doi.org/10.5194/hess-27-3851-2023, https://doi.org/10.5194/hess-27-3851-2023, 2023
Short summary
Short summary
Evapotranspiration (ET) plays a pivotal role in terrestrial water cycling, returning up to 90 % of precipitation to the atmosphere. We studied impacts of soil type and management on an agroecosystem using an automated system with modern modeling approaches. We modeled ET at high spatial and temporal resolution to highlight differences in heterogeneous soils on an hourly basis. Our results show significant differences in yield and smaller differences in ET overall, impacting water use efficiency.
John Marshall, Jose Gutierrez-Lopez, Daniel Metcalfe, Nataliia Kozii, and Hjalmar Laudon
EGUsphere, https://doi.org/10.5194/egusphere-2025-3328, https://doi.org/10.5194/egusphere-2025-3328, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The "two water-worlds hypothesis" has attracted significant public attention because it is an accessible way to describe the partitioning of water sources within catchments. This manuscript adds a new degree of complexity to that idea by recognizing that co-occurring tree species, which root at different depths, also use different water sources. So it leads to at least three water worlds.
Mélissa Laurent, Mackenzie R. Baysinger, Jörg Schaller, Matthias Lück, Mathias Hoffmann, Torben Windirsch, Ruth H. Ellerbrock, Jens Strauss, and Claire C. Treat
EGUsphere, https://doi.org/10.5194/egusphere-2025-1792, https://doi.org/10.5194/egusphere-2025-1792, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Palsas are peat permafrost mounds underlain by ice-rich permafrost. Due to climate change, they could disappeare by the end of the century. When palsas thaw, changes occur in hydrological conditions affecting the carbon (C) cycle. In our study, we simulated permafrost thaw under different water treatments using 1-meter soil columns from a palsa. We measured CH4 and CO2 emissions for 3-month incubation. Our results show that following thaw, flooding the cores leads to increased CO2 emissions.
Wael Al Hamwi, Maren Dubbert, Jörg Schaller, Matthias Lück, Marten Schmidt, and Mathias Hoffmann
Biogeosciences, 21, 5639–5651, https://doi.org/10.5194/bg-21-5639-2024, https://doi.org/10.5194/bg-21-5639-2024, 2024
Short summary
Short summary
We present a fully automatic, low-cost soil–plant enclosure system to monitor CO2 and evapotranspiration fluxes within greenhouse experiments. It operates in two modes: independent, using low-cost sensors, and dependent, where multiple chambers connect to a single gas analyzer via a low-cost multiplexer. This system provides precise, accurate measurements and high temporal resolution, enabling comprehensive monitoring of plant–soil responses to various treatments and conditions.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Preprint under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Reena Macagga, Michael Asante, Geoffroy Sossa, Danica Antonijević, Maren Dubbert, and Mathias Hoffmann
Atmos. Meas. Tech., 17, 1317–1332, https://doi.org/10.5194/amt-17-1317-2024, https://doi.org/10.5194/amt-17-1317-2024, 2024
Short summary
Short summary
Using only low-cost microcontrollers and sensors, we constructed a measurement device to accurately and precisely obtain atmospheric carbon dioxide and water fluxes. The device was tested against known concentration increases and high-cost, commercial sensors during a laboratory and field experiment. We additionally tested the device over a longer period in a field study in Ghana during which the net ecosystem carbon balance and water use efficiency of maize cultivation were studied.
Adrian Dahlmann, Mathias Hoffmann, Gernot Verch, Marten Schmidt, Michael Sommer, Jürgen Augustin, and Maren Dubbert
Hydrol. Earth Syst. Sci., 27, 3851–3873, https://doi.org/10.5194/hess-27-3851-2023, https://doi.org/10.5194/hess-27-3851-2023, 2023
Short summary
Short summary
Evapotranspiration (ET) plays a pivotal role in terrestrial water cycling, returning up to 90 % of precipitation to the atmosphere. We studied impacts of soil type and management on an agroecosystem using an automated system with modern modeling approaches. We modeled ET at high spatial and temporal resolution to highlight differences in heterogeneous soils on an hourly basis. Our results show significant differences in yield and smaller differences in ET overall, impacting water use efficiency.
Ruth-Kristina Magh, Benjamin Gralher, Barbara Herbstritt, Angelika Kübert, Hyungwoo Lim, Tomas Lundmark, and John Marshall
Hydrol. Earth Syst. Sci., 26, 3573–3587, https://doi.org/10.5194/hess-26-3573-2022, https://doi.org/10.5194/hess-26-3573-2022, 2022
Short summary
Short summary
We developed a method of sampling and storing water vapour for isotope analysis, allowing us to infer plant water uptake depth. Measurements can be made at high temporal and spatial resolution even in remote areas. We ensured that all necessary components are easily available, making this method cost efficient and simple to implement. We found our method to perform well in the lab and in the field, enabling it to become a tool for everyone aiming to resolve questions regarding the water cycle.
Aaron Smith, Doerthe Tetzlaff, Jessica Landgraf, Maren Dubbert, and Chris Soulsby
Biogeosciences, 19, 2465–2485, https://doi.org/10.5194/bg-19-2465-2022, https://doi.org/10.5194/bg-19-2465-2022, 2022
Short summary
Short summary
This research utilizes high-spatiotemporal-resolution soil and vegetation measurements, including water stable isotopes, within an ecohydrological model to partition water flux dynamics and identify flow paths and durations. Results showed high vegetation water use and high spatiotemporal dynamics of vegetation water source and vegetation isotopes. The evaluation of these dynamics further revealed relatively fast flow paths through both shallow soil and vegetation.
Jessica Landgraf, Dörthe Tetzlaff, Maren Dubbert, David Dubbert, Aaron Smith, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 2073–2092, https://doi.org/10.5194/hess-26-2073-2022, https://doi.org/10.5194/hess-26-2073-2022, 2022
Short summary
Short summary
Using water stable isotopes, we studied from which water source (lake water, stream water, groundwater, or soil water) two willows were taking their water. We monitored the environmental conditions (e.g. air temperature and soil moisture) and the behaviour of the trees (water flow in the stem). We found that the most likely water sources of the willows were the upper soil layers but that there were seasonal dynamics.
Youri Rothfuss, Maria Quade, Nicolas Brüggemann, Alexander Graf, Harry Vereecken, and Maren Dubbert
Biogeosciences, 18, 3701–3732, https://doi.org/10.5194/bg-18-3701-2021, https://doi.org/10.5194/bg-18-3701-2021, 2021
Short summary
Short summary
The partitioning of evapotranspiration into evaporation from soil and transpiration from plants is crucial for a wide range of parties, from farmers to policymakers. In this work, we focus on a particular partitioning method, based on the stable isotopic analysis of water. In particular, we aim at highlighting the challenges that this method is currently facing and, in light of recent methodological developments, propose ways forward for the isotopic-partitioning community.
Hannes P. T. De Deurwaerder, Marco D. Visser, Matteo Detto, Pascal Boeckx, Félicien Meunier, Kathrin Kuehnhammer, Ruth-Kristina Magh, John D. Marshall, Lixin Wang, Liangju Zhao, and Hans Verbeeck
Biogeosciences, 17, 4853–4870, https://doi.org/10.5194/bg-17-4853-2020, https://doi.org/10.5194/bg-17-4853-2020, 2020
Short summary
Short summary
The depths at which plants take up water is challenging to observe directly. To do so, scientists have relied on measuring the isotopic composition of xylem water as this provides information on the water’s source. Our work shows that this isotopic composition changes throughout the day, which complicates the interpretation of the water’s source and has been currently overlooked. We build a model to help understand the origin of these composition changes and their consequences for science.
Matthias Beyer, Kathrin Kühnhammer, and Maren Dubbert
Hydrol. Earth Syst. Sci., 24, 4413–4440, https://doi.org/10.5194/hess-24-4413-2020, https://doi.org/10.5194/hess-24-4413-2020, 2020
Short summary
Short summary
Water isotopes are a scientific tool that can be used to identify sources of water and answer questions such as
From which soil depths do plants take up water?, which are highly relevant under changing climatic conditions. In the past, the measurement of water isotopes required tremendous effort. In the last decade methods have advanced and can now be applied in the field. Herein, we review the current status of direct field measurements of water isotopes and discuss future applications.
Cited articles
Craig, H.: Standard for Reporting Concentrations of Deuterium and Oxygen-18 in Natural Waters, Science, 133, 1833–1834, https://doi.org/10.1126/science.133.3467.1833, 1961.
Dahlmann, A., Hoffmann, M., Verch, G., Schmidt, M., Sommer, M., Augustin, J., and Dubbert, M.: Benefits of a robotic chamber system for determining evapotranspiration in an erosion-affected, heterogeneous cropland, Hydrol. Earth Syst. Sci., 27, 3851–3873, https://doi.org/10.5194/hess-27-3851-2023, 2023.
Dahlmann, A., Marshall, J. D., Dubbert, D., Hoffmann, M., and Dubbert, M.: Presentation and explanation of the experiments for simple water vapor sampling for stable isotope analysis using affordable valves and bags, BonaRes Data Centre [data set], https://doi.org/10.4228/ZALF-37KW-R966, 2025.
Dubbert, M. and Werner, C.: Water fluxes mediated by vegetation: emerging isotopic insights at the soil and atmosphere interfaces, New Phytol., 221, 1754–1763, https://doi.org/10.1111/nph.15547, 2018.
Ehleringer, J. R., Bowen, G. J., Chesson, L. A., West, A. G., Podlesak, D. W., and Cerling, T. E.: Hydrogen and oxygen isotope ratios in human hair are related to geography, P. Natl. Acad. Sci.-Biol, 105, 2788–279, https://doi.org/10.1073/pnas.0712228105, 2008.
Gat, J. R.: Oxygen and hydrogen isotopes in the hydrologic cycle, Annu. Rev. Earth Pl. Sc., 24, 225–262, https://doi.org/10.1146/annurev.earth.24.1.225, 1996.
Havranek, R. E., Snell, K. E., Davidheiser-Kroll, B., Bowen, G. J., and Vaughn, B.: The Soil Water Isotope Storage System (SWISS): An integrated soil water vapor sampling and multiport storage system for stable isotope geochemistry, Rapid Commun. Mass. Sp., 34, e8783, https://doi.org/10.1002/rcm.8783, 2020.
Havranek, R. E., Snell, K., Kopf, S., Davidheiser-Kroll, B., Morris, V., and Vaughn, B.: Technical note: Lessons from and best practices for the deployment of the Soil Water Isotope Storage System, Hydrol. Earth Syst. Sci., 27, 2951–2971, https://doi.org/10.5194/hess-27-2951-2023, 2023.
Herbstritt, B., Gralher, B., Seeger, S., Rinderer, M., and Weiler, M.: Technical note: Discrete in situ vapor sampling for subsequent lab-based water stable isotope analysis, Hydrol. Earth Syst. Sci., 27, 3701–3718, https://doi.org/10.5194/hess-27-3701-2023, 2023.
Hobson, K. A.: Tracing origins and migration of wildlife using stable isotopes: a review, Oecologia, 120, 314–326, https://doi.org/10.1007/s004420050865, 1999.
Horita, J. and Wesolowski, D. J.: Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature, Geochim. Cosmochim. Ac., 58, 3425–3437, https://doi.org/10.1016/0016-7037(94)90096-5, 1994.
Kübert, A., Paulus, S., Dahlmann, A., Werner, C., Rothfuss, Y., Orlowski, N., and Dubbert, M.: Water stable isotopes in ecohydrological field research: comparison between in situ and destructive monitoring methods to determine soil water isotopic signatures, Front. Plant. Sci., 11, 497124, https://doi.org/10.3389/fpls.2020.00387, 2020.
Kühnhammer, K., Dahlmann, A., Iraheta, A., Gerchow, M., Birkel, C., Marshall, J. D., and Beyer, M.: Continuous in situ measurements of water stable isotopes in soils, tree trunk and root xylem: Field approval, Rapid Commun. Mass. Sp., 36, e9232, https://doi.org/10.1002/rcm.9232, 2021.
Kühnhammer, K., van Haren, J., Kübert, A., Bailey, K., Dubbert, M., Hu, J., Ladd, N. S., Meridith, L. K., Werner, C., and Beyer, M.: Deep roots mitigate drought impacts on tropical trees despite limited quantitative contribution to transpiration, Sci. Total Environ., 893, 164763, https://doi.org/10.1016/j.scitotenv.2023.164763, 2023.
Landgraf, J., Tetzlaff, D., Dubbert, M., Dubbert, D., Smith, A., and Soulsby, C.: Xylem water in riparian willow trees (Salix alba) reveals shallow sources of root water uptake by in situ monitoring of stable water isotopes, Hydrol. Earth Syst. Sci., 26, 2073–2092, https://doi.org/10.5194/hess-26-2073-2022, 2022.
Magh, R.-K., Gralher, B., Herbstritt, B., Kübert, A., Lim, H., Lundmark, T., and Marshall, J.: Technical note: Conservative storage of water vapour – practical in situ sampling of stable isotopes in tree stems, Hydrol. Earth Syst. Sci., 26, 3573–3587, https://doi.org/10.5194/hess-26-3573-2022, 2022.
Majoube, M.: Fractionnement en oxygene 18 et en deuterium entre l'eau et sa vapeur, J. Chim. Phys., 68, 1423–1436, https://doi.org/10.1051/jcp/1971681423, 1971.
Mook, W. G. (Eds.): Environmental isotopes in the hydrological cycle: principles and applications. UNESCO/IAEA, Volume 1, Centre for Isotope Research, Groningen, Netherlands, 280 pp., https://www.hydrology.nl/images/docs/ihp/Mook_III.pdf (last access: 12 March 2024), 2000.
Orlowski, N., Pratt, D. L., and McDonnell, J. J.: Intercomparison of soil pore water extraction methods for stable isotope analysis, Hydrol. Process., 30, 3434–3449, https://doi.org/10.1002/hyp.10870, 2016a.
Orlowski, N., Breuer, L., and Mcdonnell, J. J.: Critical issues with cryogenic extraction of soil water for stable isotope analysis, Ecohydrology, 9, 3–10, https://doi.org/10.1002/eco.1722, 2016b.
Rothfuss, Y., Biron, P., Braud, I., Canale, L., Durand, J. L., Gaudet, J. P., Richard, P., Vauclin, M., and Bariac, T.: Partitioning evapotranspiration fluxes into soil evaporation and plant transpiration using water stable isotopes under controlled conditions, Hydrol. Process., 24, 3177–3194, https://doi.org/10.1002/hyp.7743, 2010.
Rothfuss, Y., Vereecken, H., and Brüggemann, N.: Monitoring water stable isotopic composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy, Water Resour. Res., 49, 3747–3755, https://doi.org/10.1002/wrcr.20311, 2013.
Séraphin, P., Vallet-Coulomb, C., and Gonçalvès, J.: Partitioning groundwater recharge between rainfall infiltration and irrigation return flow using stable isotopes: The Crau aquifer, J. Hydrol., 542, 241–253, https://doi.org/10.1016/j.jhydrol.2016.09.005, 2016.
Sodemann, H. (Eds.): Tropospheric transport of water vapour: Lagrangian and Eulerian perspectives, Swiss, ETH Zurich, No. 16623, 225 pp., ISBN 978-3832513849, 2006.
Sprenger, M., Herbstritt, B., and Weiler, M.: Established methods and new opportunities for pore water stable isotope analysis, Hydrol. Process., 29, 5174–5192, https://doi.org/10.1002/hyp.10643, 2015.
Sprenger, M., Leistert, H., Gimbel, K., and Weiler, M.: Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes, Rev. Geophys., 54, 674–704, https://doi.org/10.1002/2015RG000515, 2016.
Volkmann, T. H., Haberer, K., Gessler, A., and Weiler, M.: High-resolution isotope measurements resolve rapid ecohydrological dynamics at the soil–plant interface, New Phytol., 210, 839–849, https://doi.org/10.1111/nph.13868, 2016.
Volkmann, T. H. M. and Weiler, M.: Continual in situ monitoring of pore water stable isotopes in the subsurface, Hydrol. Earth Syst. Sci., 18, 1819–1833, https://doi.org/10.5194/hess-18-1819-2014, 2014.
Wassenaar, L. I., Ahmad, M., Aggarwal, P., Van Duren, M., Pöltenstein, L., Araguas, L., and Kurttas, T.: Worldwide proficiency test for routine analysis of δ2H and δ18O in water by isotope-ratio mass spectrometry and laser absorption spectroscopy, Rapid Commun. Mass Sp., 26, 1641–1648, https://doi.org/10.1002/rcm.6270, 2012.
West, A. G., Patrickson, S. J., and Ehleringer, J. R.: Water extraction times for plant and soil materials used in stable isotope analysis, Rapid Commun. Mass Sp., 20, 1317–1321, https://doi.org/10.1002/rcm.2456, 2006.
Short summary
Water-stable isotopes are commonly used in hydrological and ecological research. Until now, measurements have been obtained either destructively or directly in the field. Here, we present a novel, affordable, and easy-to-use approach to measure the stable isotope signatures of soil water. Our gas bag approach demonstrates a high accuracy and extends usability by allowing water vapor samples to be collected and stored in the field without the need for an instrument or a permanent power supply.
Water-stable isotopes are commonly used in hydrological and ecological research. Until now,...