Articles | Volume 18, issue 14
https://doi.org/10.5194/amt-18-3585-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-3585-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Atmospheric Sounder Spectrometer by Infrared Spectral Technology (ASSIST): instrument design and signal processing
Vincent Michaud-Belleau
LR Tech, Inc., Lévis, QC, Canada
Michel Gaudreau
LR Tech, Inc., Lévis, QC, Canada
Jean Lacoursière
consultant, Québec, QC, Canada
Éric Boisvert
LR Tech, Inc., Lévis, QC, Canada
Lalaina Ravelomanantsoa
LR Tech, Inc., Lévis, QC, Canada
David D. Turner
NOAA Global Systems Laboratory, Boulder, CO, USA
Luc Rochette
CORRESPONDING AUTHOR
LR Tech, Inc., Lévis, QC, Canada
Related authors
No articles found.
Linus von Klitzing, David D. Turner, Diego Lange, and Volker Wulfmeyer
EGUsphere, https://doi.org/10.5194/egusphere-2025-2101, https://doi.org/10.5194/egusphere-2025-2101, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Many atmospheric science endeavors require temporally resolved profiles of temperature, humidity, and winds. Radiosondes are considered the gold standard for measuring these profiles, but the temporal resolution is frequently too coarse for many applications within the atmospheric boundary layer. This study proposes a new method using a normalized height grid in the temporal interpolation process that yields more accurate profiles in the convective boundary layer.
Jonah K. Shaw, Dustin J. Swales, Sergio DeSouza-Machado, David D. Turner, Jennifer E. Kay, and David P. Schneider
Geosci. Model Dev., 18, 4935–4950, https://doi.org/10.5194/gmd-18-4935-2025, https://doi.org/10.5194/gmd-18-4935-2025, 2025
Short summary
Short summary
Satellites have observed Earth's emissions of infrared radiation since the 1970s. Because infrared wavelengths interact with the atmosphere in distinct ways, these observations contain information about Earth and the atmosphere. We present a tool that runs within Earth system models and produces output that can be directly compared with satellite measurements of infrared radiation. We then use this tool for climate model evaluation, climate change detection, and satellite mission design.
David D. Turner, Maria P. Cadeddu, Julia M. Simonson, and Timothy J. Wagner
Atmos. Meas. Tech., 18, 3533–3546, https://doi.org/10.5194/amt-18-3533-2025, https://doi.org/10.5194/amt-18-3533-2025, 2025
Short summary
Short summary
When deriving a geophysical variable from remote sensors, the uncertainty and information content are critical. The latter quantify specifies what fraction of a real perturbation would be observed in the derived variable. This paper outlines, for the first time, a methodology for propagating the information content from multiple remote sensors into a derived product using horizontal advection as an example.
Laura Bianco, Reagan Mendeke, Jake Lindblom, Irina V. Djalalova, David D. Turner, and James M. Wilczak
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-133, https://doi.org/10.5194/wes-2024-133, 2024
Revised manuscript accepted for WES
Short summary
Short summary
Including more renewable energy into the electric grid is a critical part of the strategy to mitigate climate change. Reliable numerical weather prediction (NWP) models need to be able to predict the intrinsic nature of weather-dependent resources, such as wind ramp events, as wind energy could quickly be available in abundance or temporarily cease to exist. We assess the ability of the operational High Resolution Rapid Refresh NWP model to forecast wind ramp events in two most recent versions.
Bianca Adler, David D. Turner, Laura Bianco, Irina V. Djalalova, Timothy Myers, and James M. Wilczak
Atmos. Meas. Tech., 17, 6603–6624, https://doi.org/10.5194/amt-17-6603-2024, https://doi.org/10.5194/amt-17-6603-2024, 2024
Short summary
Short summary
Continuous profile observations of temperature and humidity in the lowest part of the atmosphere are essential for the evaluation of numerical weather prediction models and data assimilation for better weather forecasts. Such profiles can be retrieved from passive ground-based remote sensing instruments like infrared spectrometers and microwave radiometers. In this study, we describe three recent modifications to the retrieval framework TROPoe for improved temperature and humidity profiles.
Tessa E. Rosenberger, David D. Turner, Thijs Heus, Girish N. Raghunathan, Timothy J. Wagner, and Julia Simonson
Atmos. Meas. Tech., 17, 6595–6602, https://doi.org/10.5194/amt-17-6595-2024, https://doi.org/10.5194/amt-17-6595-2024, 2024
Short summary
Short summary
This work used model output to show that considering the changes in boundary layer depth over time in the calculations of variables such as fluxes and variance yields more accurate results than cases where calculations were done at a constant height. This work was done to improve future observations of these variables at the top of the boundary layer.
Tessa E. Rosenberger, Thijs Heus, Girish N. Raghunathan, David D. Turner, Timothy J. Wagner, and Julia M. Simonson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2894, https://doi.org/10.5194/egusphere-2024-2894, 2024
Short summary
Short summary
Entrainment is key in understanding temperature and moisture changes within the boundary layer, but it is difficult to observe using ground-based observations. This work used simulations to verify an assumption that simplifies entrainment estimations from ground-based observational data, recognizing that entrainment is the combination of the transfer of heat and moisture from above the boundary layer into it and the change in concentration of heat and moisture as boundary layer depth changes.
Laura Bianco, Bianca Adler, Ludovic Bariteau, Irina V. Djalalova, Timothy Myers, Sergio Pezoa, David D. Turner, and James M. Wilczak
Atmos. Meas. Tech., 17, 3933–3948, https://doi.org/10.5194/amt-17-3933-2024, https://doi.org/10.5194/amt-17-3933-2024, 2024
Short summary
Short summary
The Tropospheric Remotely Observed Profiling via Optimal Estimation physical retrieval is used to retrieve temperature and humidity profiles from various combinations of passive and active remote sensing instruments, surface platforms, and numerical weather prediction models. The retrieved profiles are assessed against collocated radiosonde in non-cloudy conditions to assess the sensitivity of the retrievals to different input combinations. Case studies with cloudy conditions are also inspected.
Volker Wulfmeyer, Christoph Senff, Florian Späth, Andreas Behrendt, Diego Lange, Robert M. Banta, W. Alan Brewer, Andreas Wieser, and David D. Turner
Atmos. Meas. Tech., 17, 1175–1196, https://doi.org/10.5194/amt-17-1175-2024, https://doi.org/10.5194/amt-17-1175-2024, 2024
Short summary
Short summary
A simultaneous deployment of Doppler, temperature, and water-vapor lidar systems is used to provide profiles of molecular destruction rates and turbulent kinetic energy (TKE) dissipation in the convective boundary layer (CBL). The results can be used for the parameterization of turbulent variables, TKE budget analyses, and the verification of weather forecast and climate models.
Sunil Baidar, Timothy J. Wagner, David D. Turner, and W. Alan Brewer
Atmos. Meas. Tech., 16, 3715–3726, https://doi.org/10.5194/amt-16-3715-2023, https://doi.org/10.5194/amt-16-3715-2023, 2023
Short summary
Short summary
This paper provides a new method to retrieve wind profiles from coherent Doppler lidar (CDL) measurements. It takes advantage of layer-to-layer correlation in wind profiles to provide continuous profiles of up to 3 km by filling in the gaps where the CDL signal is too small to retrieve reliable results by itself. Comparison with the current method and collocated radiosonde wind measurements showed excellent agreement with no degradation in results where the current method gives valid results.
Maria P. Cadeddu, Virendra P. Ghate, David D. Turner, and Thomas E. Surleta
Atmos. Chem. Phys., 23, 3453–3470, https://doi.org/10.5194/acp-23-3453-2023, https://doi.org/10.5194/acp-23-3453-2023, 2023
Short summary
Short summary
We analyze the variability in marine boundary layer moisture at the Eastern North Atlantic site on a monthly and daily temporal scale and examine its fundamental role in the control of boundary layer cloudiness and precipitation. The study also highlights the complex interaction between large-scale and local processes controlling the boundary layer moisture and the importance of the mesoscale spatial distribution of vapor to support convection and precipitation.
Bianca Adler, James M. Wilczak, Jaymes Kenyon, Laura Bianco, Irina V. Djalalova, Joseph B. Olson, and David D. Turner
Geosci. Model Dev., 16, 597–619, https://doi.org/10.5194/gmd-16-597-2023, https://doi.org/10.5194/gmd-16-597-2023, 2023
Short summary
Short summary
Rapid changes in wind speed make the integration of wind energy produced during persistent orographic cold-air pools difficult to integrate into the electrical grid. By evaluating three versions of NOAA’s High-Resolution Rapid Refresh model, we demonstrate how model developments targeted during the second Wind Forecast Improvement Project improve the forecast of a persistent cold-air pool event.
Gianluca Di Natale, David D. Turner, Giovanni Bianchini, Massimo Del Guasta, Luca Palchetti, Alessandro Bracci, Luca Baldini, Tiziano Maestri, William Cossich, Michele Martinazzo, and Luca Facheris
Atmos. Meas. Tech., 15, 7235–7258, https://doi.org/10.5194/amt-15-7235-2022, https://doi.org/10.5194/amt-15-7235-2022, 2022
Short summary
Short summary
In this paper, we describe a new approach to test the consistency of the precipitating ice cloud optical and microphysical properties in Antarctica, Dome C, retrieved from hyperspectral measurements in the far-infrared, with the reflectivity detected by a co-located micro rain radar operating at 24 GHz. The retrieved ice crystal sizes were found in accordance with the direct measurements of an optical imager, also installed at Dome C, which can collect the falling ice particles.
William J. Shaw, Larry K. Berg, Mithu Debnath, Georgios Deskos, Caroline Draxl, Virendra P. Ghate, Charlotte B. Hasager, Rao Kotamarthi, Jeffrey D. Mirocha, Paytsar Muradyan, William J. Pringle, David D. Turner, and James M. Wilczak
Wind Energ. Sci., 7, 2307–2334, https://doi.org/10.5194/wes-7-2307-2022, https://doi.org/10.5194/wes-7-2307-2022, 2022
Short summary
Short summary
This paper provides a review of prominent scientific challenges to characterizing the offshore wind resource using as examples phenomena that occur in the rapidly developing wind energy areas off the United States. The paper also describes the current state of modeling and observations in the marine atmospheric boundary layer and provides specific recommendations for filling key current knowledge gaps.
Heather Guy, David D. Turner, Von P. Walden, Ian M. Brooks, and Ryan R. Neely
Atmos. Meas. Tech., 15, 5095–5115, https://doi.org/10.5194/amt-15-5095-2022, https://doi.org/10.5194/amt-15-5095-2022, 2022
Short summary
Short summary
Fog formation is highly sensitive to near-surface temperatures and humidity profiles. Passive remote sensing instruments can provide continuous measurements of the vertical temperature and humidity profiles and liquid water content, which can improve fog forecasts. Here we compare the performance of collocated infrared and microwave remote sensing instruments and demonstrate that the infrared instrument is especially sensitive to the onset of thin radiation fog.
James B. Duncan Jr., Laura Bianco, Bianca Adler, Tyler Bell, Irina V. Djalalova, Laura Riihimaki, Joseph Sedlar, Elizabeth N. Smith, David D. Turner, Timothy J. Wagner, and James M. Wilczak
Atmos. Meas. Tech., 15, 2479–2502, https://doi.org/10.5194/amt-15-2479-2022, https://doi.org/10.5194/amt-15-2479-2022, 2022
Short summary
Short summary
In this study, several ground-based remote sensing instruments are used to estimate the height of the convective planetary boundary layer, and their performance is compared against independent boundary layer depth estimates obtained from radiosondes launched as part of the CHEESEHEAD19 field campaign. The impact of clouds (particularly boundary layer clouds) on the estimation of the boundary layer depth is also investigated.
Irina V. Djalalova, David D. Turner, Laura Bianco, James M. Wilczak, James Duncan, Bianca Adler, and Daniel Gottas
Atmos. Meas. Tech., 15, 521–537, https://doi.org/10.5194/amt-15-521-2022, https://doi.org/10.5194/amt-15-521-2022, 2022
Short summary
Short summary
In this paper we investigate the synergy obtained by combining active (radio acoustic sounding system – RASS) and passive (microwave radiometer) remote sensing observations to obtain temperature vertical profiles through a radiative transfer model. Inclusion of the RASS observations leads to more accurate temperature profiles from the surface to 5 km above ground, well above the maximum height of the RASS observations themselves (2000 m), when compared to the microwave radiometer used alone.
Heather Guy, Ian M. Brooks, Ken S. Carslaw, Benjamin J. Murray, Von P. Walden, Matthew D. Shupe, Claire Pettersen, David D. Turner, Christopher J. Cox, William D. Neff, Ralf Bennartz, and Ryan R. Neely III
Atmos. Chem. Phys., 21, 15351–15374, https://doi.org/10.5194/acp-21-15351-2021, https://doi.org/10.5194/acp-21-15351-2021, 2021
Short summary
Short summary
We present the first full year of surface aerosol number concentration measurements from the central Greenland Ice Sheet. Aerosol concentrations here have a distinct seasonal cycle from those at lower-altitude Arctic sites, which is driven by large-scale atmospheric circulation. Our results can be used to help understand the role aerosols might play in Greenland surface melt through the modification of cloud properties. This is crucial in a rapidly changing region where observations are sparse.
Raghavendra Krishnamurthy, Rob K. Newsom, Larry K. Berg, Heng Xiao, Po-Lun Ma, and David D. Turner
Atmos. Meas. Tech., 14, 4403–4424, https://doi.org/10.5194/amt-14-4403-2021, https://doi.org/10.5194/amt-14-4403-2021, 2021
Short summary
Short summary
Planetary boundary layer (PBL) height is a critical parameter in atmospheric models. Continuous PBL height measurements from remote sensing measurements are important to understand various boundary layer mechanisms, especially during daytime and evening transition periods. Due to several limitations in existing methodologies to detect PBL height from a Doppler lidar, in this study, a machine learning (ML) approach is tested. The ML model is observed to improve the accuracy by over 50 %.
David D. Turner and Ulrich Löhnert
Atmos. Meas. Tech., 14, 3033–3048, https://doi.org/10.5194/amt-14-3033-2021, https://doi.org/10.5194/amt-14-3033-2021, 2021
Short summary
Short summary
Temperature and humidity profiles in the lowest couple of kilometers near the surface are very important for many applications. Passive spectral radiometers are commercially available, and observations from these instruments have been used to get these profiles. However, new active lidar systems are able to measure partial profiles of water vapor. This paper investigates how the derived profiles of water vapor and temperature are improved when the active and passive observations are combined.
Cited articles
Adler, B., Wilczak, J. M., Bianco, L., Bariteau, L., Cox, C. J., de Boer, G., Djalalova, I. V., Gallagher, M. R., Intrieri, J. M., Meyers, T. P., Myers, T. A., Olson, J. B., Pezoa, S., Sedlar, J., Smith, E., Turner, D. D., and White, A. B.: Impact of Seasonal Snow-Cover Change on the Observed and Simulated State of the Atmospheric Boundary Layer in a High-Altitude Mountain Valley, Geophys. Res.-Atmos., 128, e2023JD038497, https://doi.org/10.1029/2023JD038497, 2023. a
Adler, B., Turner, D. D., Bianco, L., Djalalova, I. V., Myers, T., and Wilczak, J. M.: Improving solution availability and temporal consistency of an optimal-estimation physical retrieval for ground-based thermodynamic boundary layer profiling, Atmos. Meas. Tech., 17, 6603–6624, https://doi.org/10.5194/amt-17-6603-2024, 2024. a
Babar, S. and Weaver, J. H.: Optical constants of Cu, Ag, and Au revisited, Appl. Optics, 54, 477–481, https://doi.org/10.1364/AO.54.000477, 2015. a
Bianco, L., Adler, B., Bariteau, L., Djalalova, I. V., Myers, T., Pezoa, S., Turner, D. D., and Wilczak, J. M.: Sensitivity of thermodynamic profiles retrieved from ground-based microwave and infrared observations to additional input data from active remote sensing instruments and numerical weather prediction models, Atmos. Meas. Tech., 17, 3933–3948, https://doi.org/10.5194/amt-17-3933-2024, 2024. a
Burkert, P.: Two-beam interferometer for Fourier spectroscopy with rigid pendulum, US43283762A, 1983. a
Choi, H. and Seo, J.: Measurement of Downwelling Radiance Using a Low-Cost Compact Fourier-Transform Infrared System for Monitoring Atmospheric Conditions, Remote Sens., 16, 1136, https://doi.org/10.3390/rs16071136, 2024. a
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: A summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005. a
Connes, J.: Domaine d'utilisation de la méthode par transformée de Fourier, J. Phys. Radium, 19, 197–208, https://doi.org/10.1051/jphysrad:01958001903019700, 1958 (in French with English abstract). a
de Boer, G., White, A., Cifelli, R., Intrieri, J., Abel, M. R., Mahoney, K., Meyers, T., Lantz, K., Hamilton, J., Currier, W., Sedlar, J., Cox, C., Hulm, E., Riihimaki, L. D., Adler, B., Bianco, L., Morales, A., Wilczak, J., Elston, J., Stachura, M., Jackson, D., Morris, S., Chandrasekar, V., Biswas, S., Schmatz, B., Junyent, F., Reithel, J., Smith, E., Schloesser, K., Kochendorfer, J., Meyers, M., Gallagher, M., Longenecker, J., Olheiser, C., Bytheway, J., Moore, B., Calmer, R., Shupe, M. D., Butterworth, B., Heflin, S., Palladino, R., Feldman, D., Williams, K., Pinto, J., Osborn, J., Costa, D., Hall, E., Herrera, C., Hodges, G., Soldo, L., Stierle, S., and Webb, R. S.: Supporting advancement in weather and water prediction in the upper Colorado River basin: The SPLASH campaign, B. Am. Meteorol. Soc., 104, E1853–E1874, https://doi.org/10.1175/BAMS-D-22-0147.1, 2023. a
Desbiens, R., Genest, J., and Tremblay, P.: Radiometry in line-shape modeling of Fourier-transform spectrometers, Appl. Optics, 41, 1424–1432, https://doi.org/10.1364/AO.41.001424, 2002. a
Desbiens, R., Genest, J., Tremblay, P., and Bouchard, J.-P.: Correction of instrument line shape in Fourier transform spectrometry using matrix inversion, Appl. Optics, 45, 5270–5280, https://doi.org/10.1364/AO.45.005270, 2006a. a, b
Desbiens, R., Tremblay, P., Genest, J., and Bouchard, J.-P.: Matrix form for the instrument line shape of Fourier-transform spectrometers yielding a fast integration algorithm to theoretical spectra, Appl. Optics, 45, 546–557, https://doi.org/10.1364/AO.45.000546, 2006b. a, b
Edlén, B.: The refractive index of air, Metrologia, 2, 71, https://doi.org/10.1088/0026-1394/2/2/002, 1966. a
Eppeldauer, G. and Novak, L.: Linear HgCdTe radiometer, in: Imaging Infrared: Scene Simulation, Modeling, and Real Image Tracking, SPIE, 1110, 267–273, https://doi.org/10.1117/12.960756, 1989. a
Feldman, D. R., Collins, W. D., Gero, P. J., Torn, M. S., Mlawer, E. J., and Shippert, T. R.: Observational determination of surface radiative forcing by CO2 from 2000 to 2010, Nature, 519, 339–343, https://doi.org/10.1038/nature14240, 2015. a
Feldman, D. R., Collins, W. D., Biraud, S. C., Risser, M. D., Turner, D. D., Gero, P. J., Tadić, J., Helmig, D., Xie, S., Mlawer, E. J., Shippert, T. R., and Torn, M. S.: Observationally derived rise in methane surface forcing mediated by water vapour trends, Nat. Geosci., 11, 238–243, https://doi.org/10.1038/s41561-018-0085-9, 2018. a
Feltz, W. F., Smith, W. L., Knuteson, R. O., Revercomb, H. E., Woolf, H. M., and Howell, H. B.: Meteorological applications of temperature and water vapor retrievals from the ground-based Atmospheric Emitted Radiance Interferometer (AERI), J. Appl. Meteorol., 37, 857–875, https://doi.org/10.1175/1520-0450(1998)037<0857:MAOTAW>2.0.CO;2, 1998. a
Genest, J. and Tremblay, P.: Instrument line shape of Fourier transform spectrometers: analytic solutions for nonuniformly illuminated off-axis detectors, Appl. Optics, 38, 5438–5446, https://doi.org/10.1364/AO.38.005438, 1999. a, b
Gero, P. J. and Turner, D. D.: Long-term trends in downwelling spectral infrared radiance over the US Southern Great Plains, J. Climate, 24, 4831–4843, https://doi.org/10.1175/2011JCLI4210.1, 2011. a
Goodman, J. W.: Statistical optics, John Wiley & Sons, ISBN 9781119009450, 2015. a
Han, Y., Shaw, J. A., Churnside, J. H., Brown, P. D., and Clough, S. A.: Infrared spectral radiance measurements in the tropical Pacific atmosphere, J. Geophys. Res., 102, 4353–4356, https://doi.org/10.1029/96JD03717, 1997. a
Harris, F. J.: On the use of windows for harmonic analysis with the discrete Fourier transform, P. IEEE, 66, 51–83, https://doi.org/10.1109/PROC.1978.10837, 1978. a
Kleinert, A. and Trieschmann, O.: Phase determination for a Fourier transform infrared spectrometer in emission mode, Appl. Optics, 46, 2307–2319, https://doi.org/10.1364/AO.46.002307, 2007. a
Kleinert, A., Friedl-Vallon, F., Guggenmoser, T., Höpfner, M., Neubert, T., Ribalda, R., Sha, M. K., Ungermann, J., Blank, J., Ebersoldt, A., Kretschmer, E., Latzko, T., Oelhaf, H., Olschewski, F., and Preusse, P.: Level 0 to 1 processing of the imaging Fourier transform spectrometer GLORIA: generation of radiometrically and spectrally calibrated spectra, Atmos. Meas. Tech., 7, 4167–4184, https://doi.org/10.5194/amt-7-4167-2014, 2014. a
Knuteson, R. O., Revercomb, H. E., Best, F. A., Ciganovich, N. C., Dedecker, R. G., Dirkx, T. P., Ellington, S. C., Feltz, W. F., Garcia, R. K., Howell, H. B., Smith, W. L., Short, J. F., and Tobin, D. C.: Atmospheric emitted radiance interferometer. Part I: Instrument design, J. Atmos. Ocean. Tech., 21, 1763–1776, https://doi.org/10.1175/JTECH-1662.1, 2004a. a, b, c, d, e
Knuteson, R. O., Revercomb, H. E., Best, F. A., Ciganovich, N. C., Dedecker, R. G., Dirkx, T. P., Ellington, S. C., Feltz, W. F., Garcia, R. K., Howell, H. B., Smith, W. L., Short, J. F., and Tobin, D. C.: Atmospheric emitted radiance interferometer. Part II: Instrument performance, J. Atmos. Ocean. Tech., 21, 1777–1789, https://doi.org/10.1175/JTECH-1663.1, 2004b. a, b, c, d, e, f
Kosiba, K. A., Lyza, A. W., Trapp, R. J., Rasmussen, E. N., Parker, M., Biggerstaff, M. I., Nesbitt, S. W., Weiss, C. C., Wurman, J., Knupp, K. R., Coffer, B., Chmielewski, V. C., Dawson, D. T., Bruning, E., Bell, T. M., Coniglio, M. C., Murphy, T. A., French, M., Blind-Doskocil, L., Reinhart, A. E., Wolff, E., Schneider, M. E., Silcott, M., Smith, E., Aikins, J., Wagner, M., Robinson, P., Wilczak, J. M., White, T., Diedrichsen, M. R., Bodine, D., Kumjian, M. R., Waugh, S. M., Alford, A. A., Elmore, K., Kollias, P., and Turner, D. D.: The Propagation, Evolution, and Rotation in Linear Storms (PERiLS) Project, B. Am. Meteorol. Soc., 105, E1768–E1799, https://doi.org/10.1175/BAMS-D-22-0064.1, 2024. a
Lachance, R. L. and Rochette, L.: Non-linearity correction of FTIR instruments, in: Fifth Workshop of Infrared Emission Measurements by FTIR, ABB Bomem, Québec City, Canada, 9–11 February 2000. a
Li, H. H.: Refractive index of alkali halides and its wavelength and temperature derivatives, J. Phys. Chem. Ref. Data, 5, 329–528, https://doi.org/10.1063/1.555536, 1976. a
Liu, G., Guo, L., Liu, C., and Wu, Q.: Evaluation of different calibration equations for NTC thermistor applied to high-precision temperature measurement, Measurement, 120, 21–27, https://doi.org/10.1016/j.measurement.2018.02.007, 2018. a
Maahn, M., Turner, D. D., Löhnert, U., Posselt, D. J., Ebell, K., Mace, G. G., and Comstock, J. M.: Optimal estimation retrievals and their uncertainties: What every atmospheric scientist should know, B. Am. Meteorol. Soc., 101, E1512–E1523, https://doi.org/10.1175/BAMS-D-19-0027.1, 2020. a
Mace, G. G., Ackerman, T. P., Minnis, P., and Young, D. F.: Cirrus layer microphysical properties derived from surface-based millimeter radar and infrared interferometer data, J. Geophys. Res., 103, 23207–23216, https://doi.org/10.1029/98JD02117, 1998. a
Mariani, Z., Strong, K., Wolff, M., Rowe, P., Walden, V., Fogal, P. F., Duck, T., Lesins, G., Turner, D. S., Cox, C., Eloranta, E., Drummond, J. R., Roy, C., Turner, D. D., Hudak, D., and Lindenmaier, I. A.: Infrared measurements in the Arctic using two Atmospheric Emitted Radiance Interferometers, Atmos. Meas. Tech., 5, 329–344, https://doi.org/10.5194/amt-5-329-2012, 2012. a
Mariani, Z., Strong, K., Palm, M., Lindenmaier, R., Adams, C., Zhao, X., Savastiouk, V., McElroy, C. T., Goutail, F., and Drummond, J. R.: Year-round retrievals of trace gases in the Arctic using the Extended-range Atmospheric Emitted Radiance Interferometer, Atmos. Meas. Tech., 6, 1549–1565, https://doi.org/10.5194/amt-6-1549-2013, 2013. a
Mather, J. H. and Voyles, J. W.: The ARM Climate Research Facility: A review of structure and capabilities, B. Am. Meteorol. Soc., 94, 377–392, https://doi.org/10.1175/BAMS-D-11-00218.1, 2013. a
Minnett, P. J., Knuteson, R. O., Best, F. A., Osborne, B. J., Hanafin, J. A., and Brown, O. B.: The marine-atmospheric emitted radiance interferometer: A high-accuracy, seagoing infrared spectroradiometer, J. Atmos. Ocean. Tech., 18, 994–1013, https://doi.org/10.1175/1520-0426(2001)018<0994:TMAERI>2.0.CO;2, 2001. a, b
Mlawer, E. J. and Turner, D. D.: Spectral radiation measurements and analysis in the ARM Program, Meteorol. Monogr, 57, 14–1, https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0027.1, 2016. a
Peck, E. R.: Theory of the corner-cube interferometer, J. Opt. Soc. Am. A, 38, 1015–1024, https://doi.org/10.1364/JOSA.38.001015, 1948. a
Rathke, C., Neshyba, S., Shupe, M. D., Rowe, P., and Rivers, A.: Radiative and microphysical properties of Arctic stratus clouds from multiangle downwelling infrared radiances, J. Geophys. Res., 107, AAC 12-1–AAC 12-13, https://doi.org/10.1029/2001JD001545, 2002. a
Revercomb, H. E., Buijs, H., Howell, H. B., LaPorte, D. D., Smith, W. L., and Sromovsky, L. A.: Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the High-Resolution Interferometer Sounder, Appl. Optics, 27, 3210–3218, https://doi.org/10.1364/AO.27.003210, 1988. a
Rowe, P. M., Neshyba, S. P., Cox, C. J., and Walden, V. P.: A responsivity-based criterion for accurate calibration of FTIR emission spectra: identification of in-band low-responsivity wavenumbers, Opt. Express, 19, 5930–5941, https://doi.org/10.1364/OE.19.005930, 2011a. a, b, c
Rowe, P. M., Neshyba, S. P., and Walden, V. P.: Responsivity-based criterion for accurate calibration of FTIR emission spectra: theoretical development and bandwidth estimation, Opt. Express, 19, 5451–5463, https://doi.org/10.1364/OE.19.005451, 2011b. a, b
Runge, E., Langille, J., Schentag, C., Bourassa, A., Letros, D., Loewen, P., Lloyd, N., Degenstein, D., and Grandmont, F.: A balloon-borne imaging Fourier transform spectrometer for atmospheric trace gas profiling, Rev. Sci. Instrum., 92, 094502, https://doi.org/10.1063/5.0060125, 2021. a
Sapritsky, V. and Prokhorov, A.: Blackbody Radiometry: Volume 1: Fundamentals, Springer Nature, ISBN 9783030577896, 2020. a
Seo, J., Choi, H., and Oh, Y.: Potential of AOD retrieval using atmospheric emitted radiance interferometer (AERI), Remote Sens., 14, 407, https://doi.org/10.3390/rs14020407, 2022. a
Shams, S. B., Walden, V. P., Hannigan, J. W., and Turner, D. D.: Retrievals of Ozone in the Troposphere and Lower Stratosphere Using FTIR Observations Over Greenland, IEEE T. Geosci. Remote, 60, 1–12, https://doi.org/10.1109/TGRS.2022.3180626, 2022. a
Shaw, J. A., Snider, J. B., Churnside, J. H., and Jacobson, M. D.: Comparison of infrared atmospheric brightness temperatures measured by a Fourier transform spectrometer and a filter radiometer, J. Atmos. Ocean. Tech., 12, 1124–1128, https://doi.org/10.1175/1520-0426(1995)012<1124:COIABT>2.0.CO;2, 1995. a
Smith, W. L., Feltz, W. F., Knuteson, R. O., Revercomb, H. E., Woolf, H. M., and Howell, H. B.: The retrieval of planetary boundary layer structure using ground-based infrared spectral radiance measurements, J. Atmos. Ocean. Tech., 16, 323–333, https://doi.org/10.1175/1520-0426(1999)016<0323:TROPBL>2.0.CO;2, 1999. a
Sromovsky, L. A.: Radiometric errors in complex Fourier transform spectrometry, Appl. Optics, 42, 1779–1787, https://doi.org/10.1364/AO.42.001779, 2003. a, b
Taylor, J.: Achieving 0.1 K absolute calibration accuracy for high spectral resolution infrared and far infrared climate benchmark measurements, PhD thesis, Université Laval Québec City, QC, Canada, https://corpus.ulaval.ca/handle/20.500.11794/79977, 2014. a
Taylor, J. K., Revercomb, H. E., Best, F. A., Tobin, D. C., and Gero, P. J.: The infrared absolute radiance interferometer (ARI) for CLARREO, Remote Sens., 12, 1915, https://doi.org/10.3390/rs12121915, 2020. a
Theocharous, E., Ishii, J., and Fox, N. P.: Absolute linearity measurements on HgCdTe detectors in the infrared region, Appl. Optics, 43, 4182–4188, https://doi.org/10.1364/AO.43.004182, 2004. a
Turner, D. D.: Arctic mixed-phase cloud properties from AERI lidar observations: Algorithm and results from SHEBA, J. Appl. Meteorol., 44, 427–444, https://doi.org/10.1175/JAM2208.1, 2005. a
Turner, D. D.: Ground-based infrared retrievals of optical depth, effective radius, and composition of airborne mineral dust above the Sahel, J. Geophys. Res., 113, D00E03, https://doi.org/10.1029/2008JD010054, 2008. a
Turner, D. D. and Blumberg, W. G.: Improvements to the AERIoe thermodynamic profile retrieval algorithm, IEEE J. Sel. Top. Appl., 12, 1339–1354, https://doi.org/10.1109/JSTARS.2018.2874968, 2018. a, b
Turner, D. D. and Eloranta, E. W.: Validating mixed-phase cloud optical depth retrieved from infrared observations with high spectral resolution lidar, IEEE Geosci. Remote S., 5, 285–288, https://doi.org/10.1109/LGRS.2008.915940, 2008. a
Turner, D. D. and Löhnert, U.: Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI), J. Appl. Meteorol. Clim., 53, 752–771, https://doi.org/10.1175/JAMC-D-13-0126.1, 2014. a, b
Turner, D. D., Ackerman, S. A., Baum, B. A., Revercomb, H. E., and Yang, P.: Cloud phase determination using ground-based AERI observations at SHEBA, J. Appl. Meteorol., 42, 701–715, https://doi.org/10.1175/1520-0450(2003)042<0701:CPDUGA>2.0.CO;2, 2003. a
Turner, D. D., Tobin, D. C., Clough, S. A., Brown, P. D., Ellingson, R. G., Mlawer, E. J., Knuteson, R. O., Revercomb, H. E., Shippert, T. R., Smith, W. L., and Shephard, M. W.: The QME AERI LBLRTM: A closure experiment for downwelling high spectral resolution infrared radiance, J. Atmos. Sci., 61, 2657–2675, https://doi.org/10.1175/JAS3300.1, 2004. a
Vanasse, G. A. and Sakai, H.: VII Fourier Spectroscopy, in: Prog. Optics, Elsevier, 6, 259–330, 1967. a
Wagner, T. J., Turner, D. D., Heus, T., and Blumberg, W. G.: Observing profiles of derived kinematic field quantities using a network of profiling sites, J. Atmos. Ocean. Tech., 39, 335–351, https://doi.org/10.1175/JTECH-D-21-0061.1, 2022. a
Yurganov, L., McMillan, W., Wilson, C., Fischer, M., Biraud, S., and Sweeney, C.: Carbon monoxide mixing ratios over Oklahoma between 2002 and 2009 retrieved from Atmospheric Emitted Radiance Interferometer spectra, Atmos. Meas. Tech., 3, 1319–1331, https://doi.org/10.5194/amt-3-1319-2010, 2010. a
Short summary
The Atmospheric Sounder Spectrometer by Infrared Spectral Technology (ASSIST) is a commercially available ground-based infrared spectroradiometer. It is designed for automated and passive measurement of the thermal radiation emitted by the atmosphere, providing information about the vertical distribution of temperature and humidity, trace gases, clouds, and aerosols in the boundary layer. In this paper, we outline the key characteristics of the ASSIST hardware and signal processing algorithm that yields downwelling radiance spectra in near real-time.
The Atmospheric Sounder Spectrometer by Infrared Spectral Technology (ASSIST) is a commercially...