Articles | Volume 18, issue 1
https://doi.org/10.5194/amt-18-57-2025
https://doi.org/10.5194/amt-18-57-2025
Research article
 | 
07 Jan 2025
Research article |  | 07 Jan 2025

Global Navigation Satellite System (GNSS) radio occultation climatologies mapped by machine learning and Bayesian interpolation

Endrit Shehaj, Stephen Leroy, Kerri Cahoy, Alain Geiger, Laura Crocetti, Gregor Moeller, Benedikt Soja, and Markus Rothacher

Related authors

A feasibility study to Reconstruct Atmospheric Rivers using space- and ground-based GNSS observations
Endrit Shehaj, Stephen Leroy, Kerri Cahoy, Juliana Chew, and Benedikt Soja
EGUsphere, https://doi.org/10.5194/egusphere-2025-1516,https://doi.org/10.5194/egusphere-2025-1516, 2025
Short summary
Tropospheric water vapor: a comprehensive high-resolution data collection for the transnational Upper Rhine Graben region
Benjamin Fersch, Andreas Wagner, Bettina Kamm, Endrit Shehaj, Andreas Schenk, Peng Yuan, Alain Geiger, Gregor Moeller, Bernhard Heck, Stefan Hinz, Hansjörg Kutterer, and Harald Kunstmann
Earth Syst. Sci. Data, 14, 5287–5307, https://doi.org/10.5194/essd-14-5287-2022,https://doi.org/10.5194/essd-14-5287-2022, 2022
Short summary

Cited articles

Aichinger-Rosenberger, M., Brockmann, E., Crocetti, L., Soja, B., and Moeller, G.: Machine learning-based prediction of Alpine foehn events using GNSS troposphere products: first results for Altdorf, Switzerland, Atmos. Meas. Tech., 15, 5821–5839, https://doi.org/10.5194/amt-15-5821-2022, 2022. 
Crocetti, L., Schartner, M., and Soja, B.: Discontinuity Detection in GNSS Station Coordinate Time Series Using Machine Learning, Remote Sens., 13, 3906, https://doi.org/10.3390/rs13193906, 2021. 
Crocetti, L., Schartner, M., Zus, F., Zhang, W., Moeller, G., Navarro, V., See, L., Schindler, K., and Soja, B.: Global, spatially explicit modelling of zenith wet delay with XGBoost, J. Geod., 98, 23, https://doi.org/10.1007/s00190-024-01829-2, 2024. 
ECMWF: IFS documentation, https://www.ecmwf.int/en/publications/ifs-documentation (last access: 31 July 2023), 2023. 
Foelsche, U., Borsche, M., Steiner, A., Gobiet, A., Pirscher, B., Kirchengast, G., Wickert, J., and Schmidt, T.: Observing upper troposphere–lower stratosphere climate with radio occultation data from the CHAMP satellite, Clim. Dynam., 31, 49–65, https://doi.org/10.1007/s00382-007-0337-7, 2008. 
Download
Short summary
This work investigates whether machine learning (ML) can offer an alternative to existing methods to map radio occultation (RO) products, allowing the extraction of information not visible in direct observations. ML can further improve the results of Bayesian interpolation, a state-of-the-art method to map RO observations. The results display improvements in horizontal and temporal domains, at heights ranging from the planetary boundary layer up to the lower stratosphere, and for all seasons.
Share