Articles | Volume 18, issue 22
https://doi.org/10.5194/amt-18-6659-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-6659-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A feasibility study to reconstruct atmospheric rivers using space- and ground-based GNSS observations
STAR lab, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Stephen Leroy
Atmospheric and Environmental Research (AER), JANUS Research Group, Lexington, MA 02421, USA
Kerri Cahoy
STAR lab, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Juliana Chew
STAR lab, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Benedikt Soja
Institute of Geodesy and Photogrammetry, ETH Zurich, Zurich, 8093 Zurich, Switzerland
Related authors
Endrit Shehaj, Stephen Leroy, Kerri Cahoy, Alain Geiger, Laura Crocetti, Gregor Moeller, Benedikt Soja, and Markus Rothacher
Atmos. Meas. Tech., 18, 57–72, https://doi.org/10.5194/amt-18-57-2025, https://doi.org/10.5194/amt-18-57-2025, 2025
Short summary
Short summary
This work investigates whether machine learning (ML) can offer an alternative to existing methods to map radio occultation (RO) products, allowing the extraction of information not visible in direct observations. ML can further improve the results of Bayesian interpolation, a state-of-the-art method to map RO observations. The results display improvements in horizontal and temporal domains, at heights ranging from the planetary boundary layer up to the lower stratosphere, and for all seasons.
Benjamin Fersch, Andreas Wagner, Bettina Kamm, Endrit Shehaj, Andreas Schenk, Peng Yuan, Alain Geiger, Gregor Moeller, Bernhard Heck, Stefan Hinz, Hansjörg Kutterer, and Harald Kunstmann
Earth Syst. Sci. Data, 14, 5287–5307, https://doi.org/10.5194/essd-14-5287-2022, https://doi.org/10.5194/essd-14-5287-2022, 2022
Short summary
Short summary
In this study, a comprehensive multi-disciplinary dataset for tropospheric water vapor was developed. Geodetic, photogrammetric, and atmospheric modeling and data fusion techniques were used to obtain maps of water vapor in a high spatial and temporal resolution. It could be shown that regional weather simulations for different seasons benefit from assimilating these maps and that the combination of the different observation techniques led to positive synergies.
Endrit Shehaj, Stephen Leroy, Kerri Cahoy, Alain Geiger, Laura Crocetti, Gregor Moeller, Benedikt Soja, and Markus Rothacher
Atmos. Meas. Tech., 18, 57–72, https://doi.org/10.5194/amt-18-57-2025, https://doi.org/10.5194/amt-18-57-2025, 2025
Short summary
Short summary
This work investigates whether machine learning (ML) can offer an alternative to existing methods to map radio occultation (RO) products, allowing the extraction of information not visible in direct observations. ML can further improve the results of Bayesian interpolation, a state-of-the-art method to map RO observations. The results display improvements in horizontal and temporal domains, at heights ranging from the planetary boundary layer up to the lower stratosphere, and for all seasons.
Yuanxin Pan, Grzegorz Kłopotek, Laura Crocetti, Rudi Weinacker, Tobias Sturn, Linda See, Galina Dick, Gregor Möller, Markus Rothacher, Ian McCallum, Vicente Navarro, and Benedikt Soja
Atmos. Meas. Tech., 17, 4303–4316, https://doi.org/10.5194/amt-17-4303-2024, https://doi.org/10.5194/amt-17-4303-2024, 2024
Short summary
Short summary
Crowdsourced smartphone GNSS data were processed with a dedicated data processing pipeline and could produce millimeter-level accurate estimates of zenith total delay (ZTD) – a critical atmospheric variable. This breakthrough not only demonstrates the feasibility of using ubiquitous devices for high-precision atmospheric monitoring but also underscores the potential for a global, cost-effective tropospheric monitoring network.
Nicholas Belsten, Mary Knapp, Rebecca Masterson, Cadence Payne, Kristen Ammons, Frank D. Lind, and Kerri Cahoy
Geosci. Instrum. Method. Data Syst., 12, 201–213, https://doi.org/10.5194/gi-12-201-2023, https://doi.org/10.5194/gi-12-201-2023, 2023
Short summary
Short summary
AERO and VISTA spacecraft will use commercial magnetometers to measure space weather events near Earth’s aurora. The small size of AERO and VISTA necessitate the use of magnetometers with small size, weight, and power. The magnetometers selected exhibit good precision, but additional calibration is needed to achieve good accuracy. This work evaluates a method for calibration by regression which has reduced the magnetic observed error by a factor of ca. 50, meeting mission requirements.
Alex Meredith, Stephen Leroy, Lucy Halperin, and Kerri Cahoy
Atmos. Meas. Tech., 16, 3345–3361, https://doi.org/10.5194/amt-16-3345-2023, https://doi.org/10.5194/amt-16-3345-2023, 2023
Short summary
Short summary
We developed a new efficient algorithm leveraging orbital dynamics to collocate radio occultation soundings with microwave radiance soundings. This new algorithm is 99 % accurate and is much faster than traditional collocation-finding approaches. Speeding up collocation finding is useful for calibrating and validating microwave radiometers and for data assimilation into numerical weather prediction models. Our algorithm can also be used to predict collocation yield for new satellite missions.
Benjamin Fersch, Andreas Wagner, Bettina Kamm, Endrit Shehaj, Andreas Schenk, Peng Yuan, Alain Geiger, Gregor Moeller, Bernhard Heck, Stefan Hinz, Hansjörg Kutterer, and Harald Kunstmann
Earth Syst. Sci. Data, 14, 5287–5307, https://doi.org/10.5194/essd-14-5287-2022, https://doi.org/10.5194/essd-14-5287-2022, 2022
Short summary
Short summary
In this study, a comprehensive multi-disciplinary dataset for tropospheric water vapor was developed. Geodetic, photogrammetric, and atmospheric modeling and data fusion techniques were used to obtain maps of water vapor in a high spatial and temporal resolution. It could be shown that regional weather simulations for different seasons benefit from assimilating these maps and that the combination of the different observation techniques led to positive synergies.
Cited articles
agupubs: Geophysical Research Letters: Atmospheric Rivers, https://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1944-8007.ATMOS_RIVERS1?page=1 (last access: July 2025), 2019.
agupubs: JGR Atmosphere: Atmospheric Rivers: Intersection of Weather and Climate, https://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)2169-8996.ARTMIP?page=1 (last access: July 2025), 2024.
Ahmad, B. and Tyler, G.: The two-dimensional resolution kernel associated with retrieval of ionospheric and atmospheric refractivity profiles by Abelian inversion of radio occultation phase data, Radio Sci., 33, 129–142, https://doi.org/10.1029/97RS02762, 1998.
Ahmad, B. and Tyler, G.: Systematic errors in atmospheric profiles obtained from Abelian inversion of radio occultation data: Effects of large-scale horizontal gradients, J. Geophys. Res., 104, 3971–3992, https://doi.org/10.1029/1998JD200102, 1999.
Altarabichi, M. G., Nowaczyk, S., Pashami, S., Mashhadi, P. S., and Handl, J.: Rolling the dice for better deep learning performance: A study of randomness techniques in deep neural networks, Information Sciences, 667, 0020–0255, https://doi.org/10.1016/j.ins.2024.120500, 2024.
Ao, C.: Effect of ducting on radio occultation measurements: An assessment based on high-resolution radiosonde soundings, Radio Sci., 42, RS2008, https://doi.org/10.1029/2006RS003485, 2007.
Blewitt, G., Hammond, W., and Kreemer, C.: Harnessing the GPS data explosion for interdisciplinary science, Eos, 99, https://doi.org/10.1029/2018EO104623, 2018.
Bonafoni, S., Biondi, R., Brenot, H., and Anthes, R.: Radio occultation and ground-based GNSS products for observing, understanding and predicting extreme events: A review, Atmospheric Research, 230, https://doi.org/10.1016/j.atmosres.2019.104624, 2019.
Cao, B., Haase, J. S., Murphy Jr., M. J., and Wilson, A. M.: Observing atmospheric rivers using multi-GNSS airborne radio occultation: system description and data evaluation, Atmos. Meas. Tech., 18, 3361–3392, https://doi.org/10.5194/amt-18-3361-2025, 2025.
CelesTrak: https://celestrak.org/NORAD/elements/ (last access: December 2024), 2024.
Chen, X., Leung, L. R., Gao, Y., Liu, Y., Wigmosta, M., and Richmond, M.: Predictability of Extreme Precipitation in Western U.S. Watersheds Based on Atmospheric River Occurrence, Intensity, and Duration, Geophysical Research Letters, 45, 11693–11701, https://doi.org/10.1029/2018GL079831, 2018.
Chu, X., Bai, W., Sun, Y., Li, W., Liu, C., and Song, H.: A Machine Learning-Based Method for Wind Fields Forecasting Utilizing GNSS Radio Occultation Data, IEEE Access, 10, 30258–30273, https://doi.org/10.1109/ACCESS.2022.3159231, 2022.
Connor, T., Mascio, J., Leroy, S. S., d'Entremont, R. P., and Kursinski, E. R.: Using Machine Learning to Detect Cloud Signatures in COSMIC-2 Radio Occultations, Virtual conference, https://cpaess.ucar.edu/sites/default/files/meetings/2021-irowg-8/posters/Connor_Using_Machine_Learning.pdf (last access: February 2025), 2021.
Curry, C., Islam, S., Zwiers, F., and Déry, S.: Atmospheric Rivers Increase Future Flood Risk in Western Canada's Largest Pacific River, Geophysical Research Letters, 46, 1651–1661, https://doi.org/10.1029/2018GL080720, 2019.
Dettinger, M.: Atmospheric Rivers as Drought Busters on the U.S. West Coast, Journal of Hydrometeorology, 14, 1721–1732, https://doi.org/10.1175/JHM-D-13-02.1, 2013.
Earth Radio Occultation: https://registry.opendata.aws/gnss-ro-opendata (last access: 9 December 2024), 2024.
ECMWF: IFS documentation, https://www.ecmwf.int/en/publications/ifs-documentation (last access: February 2025), 2024.
eoPortal: KOMPSAT-5 (Korea Multi-Purpose Satellite-5)/Arirang-5, https://www.eoportal.org/satellite-missions/kompsat-5#launch (last access: February 2025), 2024.
EUMETSAT: Metop Second Generation – Instruments, https://www.eumetsat.int/metop-sg-instruments (last access: February 2025), 2025.
GFZ: GPS radio occultation with TerraSAR-X | TerraSAR-X RO, https://www.gfz.de/en/section/space-geodetic-techniques/projects/terrasar-x-ro (last access: February 2025), 2025.
Gorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D., and Van Lipzig, N. P. M.: The role of atmospheric rivers in anomalous snow accumulation in East Antarctica, Geophysical Research Letters, 41, 6199–6206, https://doi.org/10.1002/2014GL060881, 2014.
Guan, B., Molotch, N. P., Waliser, D. E., Fetzer, E. J., and Neiman, P. J.: Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements, Geophysical Research Letters, 37, L20401, https://doi.org/10.1029/2010GL044696, 2010.
Guan, B., Waliser, D. E., Ralph, F. M., Fetzer, E. J., and Neiman, P. J.: Hydrometeorological characteristics of rain-on-snow events associated with atmospheric rivers, Geophysical Research Letters, 43, 2964–2973, https://doi.org/10.1002/2016GL067978, 2016.
Haase, J. S., Murphy, M. J., Cao, B., Ralph, F. M., Zheng, M., and Delle Monache, D.: Multi-GNSS Airborne Radio Occultation Observations as a Complement to Dropsondes in Atmospheric River Reconnaissance, Journal of Geophysical Research: Atmospheres, 126, e2021JD034865, https://doi.org/10.1029/2021JD034865, 2021.
Hammouti, M., Gencarelli, C., Sterlacchini, S., and Biondi, R.: Volcanic clouds detection applying machine learning techniques to GNSS radio occultations, GPS Solutions, 28, 116, https://doi.org/10.1007/s10291-024-01656-0, 2024.
Haykin, S.: Neural Networks and Learning Machines, Pearson, ISBN: 9780131471399, 2009.
Hooda, S., Gupta, M., Singh, R., and Ojha, S.: Retrieval of Atmospheric Water Vapor Profiles From COSMIC-2 Radio Occultation Constellation Using Machine Learning, IEEE Transactions on Geoscience and Remote Sensing, 61, 4107907, https://doi.org/10.1109/TGRS.2023.3331187, 2023.
Huning, L., Guan, B., Waliser, D., and Lettenmaier, D.: Sensitivity of Seasonal Snowfall Attribution to Atmospheric Rivers and Their Reanalysis-Based Detection, Geophysical Research Letters, 46, 794–803, https://doi.org/10.1029/2018GL080783, 2019.
Ji, G., Jin, R., Zhen, W., and Yang, H.: Automatic GNSS Ionospheric Scintillation Detection with Radio Occultation Data Using Machine Learning Algorithm, Appl. Sci., 14, 97, https://doi.org/10.3390/app14010097, 2024.
Khouakhi, A. and Villarini, G.: On the relationship between atmospheric rivers and high sea water levels along the U.S. West Coast, Geophysical Research Letters, 43, 8815–8822, https://doi.org/10.1002/2016GL070086, 2016.
Konrad, C. and Dettinger, M.: Flood Runoff in Relation to Water Vapor Transport by Atmospheric Rivers Over the Western United States, 1949–2015, Geophysical Research Letters, 44, 11456–11462, https://doi.org/10.1002/2017GL075399, 2017.
Kursinski, E., Hajj, G., Leroy, S., and Herman, B.: The GPS radio occultation technique, Terr. Atmos. Ocean. Sci., 1, 53–114, https://doi.org/10.3319/TAO.2000.11.1.53(COSMIC), 2000.
Kursinski, E., Hajj, G., Schofield, J., Linfield, R., and Hardy, K.: Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System, J. Geophys. Res., 102, 23429–23465, https://doi.org/10.1029/97JD01569, 1997.
Lamjiri, M., Dettinger, M., Ralph, F., and Guan, B.: Hourly storm characteristics along the U.S. West Coast: Role of atmospheric rivers in extreme precipitation, Geophysical Research Letters, 44, 7020–7028, https://doi.org/10.1002/2017GL074193, 2017.
Lasota, E.: Comparison of different machine learning approaches for tropospheric profiling based on COSMIC-2 data, Earth Planets Space, 73, 221, https://doi.org/10.1186/s40623-021-01548-4, 2021.
Lavers, D. A., Allan, R. P., Wood, E. F., Villarini, G., Brayshaw, D. J., and Wade, A. J.: Winter floods in Britain are connected to atmospheric rivers, Geophysical Research Letters, 38, L23803, https://doi.org/10.1029/2011GL049783, 2011.
Lavers, D. and Villarini, G.: The nexus between atmospheric rivers and extreme precipitation across Europe, Geophysical Research Letters, 40, 3259–3264, https://doi.org/10.1002/grl.50636, 2013.
Leroy, S., Ao, C., and Verkhoglyadova, O.: Mapping GPS Radio Occultation Data by Bayesian Interpolation, J. Atm. Oce. Tech., 29, 1062–1074, https://doi.org/10.1175/JTECH-D-11-00179.1, 2012.
Leroy, S., McVey, A. E., Leidner, S. M., Zhang, H., and Gleisner, H.: GNSS radio occultation data in the AWS cloud, Earth and Space Science, 11, e2023EA003021, https://doi.org/10.1029/2023EA003021, 2024.
Leung, L. and Qian, Y.: Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model, Geophysical Research Letters, 36, L03820, https://doi.org/10.1029/2008GL036445, 2009.
Mannucci, A., Ao, C., and Williamson, W.: GNSS Radio Occultation, In: Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications, Volume 1, First Edition, edited by: Morton, J. Y., van Diggelen, F., and Spilker Jr., J. J., Parkinson BW, John Wiley & Sons, 1168 pp., https://doi.org/10.1002/9781119458449.ch33, 2021.
Ma, Z., Kuo, Y. H., Ralph, F. M., Neiman, P. J., Wick, G. A., Sukovich, E., and Wang, B.: Assimilation of GPS Radio Occultation Data for an Intense Atmospheric River with the NCEP Regional GSI System, Mon. Wea. Rev., 2170–2183, https://doi.org/10.1175/2011MWR3342.1, 2011.
Melbourne, W.: Radio Occultations Using Earth Satellites: A Wave Theory Treatment, Deep Space Communications and Navigation Series, Monograph 6, Jet Proupulison Laboratory, California Institute of Technology, https://descanso.jpl.nasa.gov/monograph/series6_chapter.html (last access: February 2025), 2004.
Miotti, L., Shehaj, E., Geiger, A., D'Aronco, S., Wegner, J. D., Moeller, G., and Rothacher, M.: Tropospheric delays derived from ground meteorological parameters: comparison between machine learning and empirical model approaches, 2020 European Navigation Conference (ENC), Dresden, Germany, 1–10, https://doi.org/10.23919/ENC48637.2020.9317442, 2020.
Murphy, M. and Haase, J.: Evaluation of GNSS Radio Occultation Profiles in the Vicinity of Atmospheric Rivers, Atmosphere, 13, 1495, https://doi.org/10.3390/atmos13091495, 2022.
Newell, R., Newell, N., Zhu, Y., and Scott, C.: Tropospheric rivers? – A pilot study, Geophysical Research Letters, 12, 2401–2404, https://doi.org/10.1029/92GL02916, 1992.
Newell, R. and Zhu, Y.: Tropospheric rivers: A one-year record and a possible application to ice core data, Geophysical Research Letters, 21, 113–116, https://doi.org/10.1029/93GL03113, 1994.
NOAA: Atmospheric River Brings Historic Rainfall to the Bay Area, https://www.weather.gov/mtr/AtmosphericRiver_10_24-25_2021 (last Access: 9 December 2024), 2021.
NOAA: What are atmospheric rivers?, https://www.noaa.gov/stories/what-are-atmospheric-rivers (last access: 9 December 2024), 2023.
Nwankpa, C., Ijomah, W., Gachagan, A., and Marshall, S.: Activation Functions: Comparison of Trends in Practice and Research for Deep Learning, arXiv [preprint], https://doi.org/10.48550/arXiv.1811.03378, 2018.
Pham, V. and Juang, J.: A neural network based error correction method for radio occultation electron density retrieval, Journal of Atmospheric and Solar-Terrestrial Physics, 135, 77–84, https://doi.org/10.1016/j.jastp.2015.10.013, 2015.
Rahimi, B. and Foelsche, U.: The potential of observing atmospheric rivers with Global Navigation Satellite System (GNSS) radio occultation, Atmos. Meas. Tech., 18, 2481–2507, https://doi.org/10.5194/amt-18-2481-2025, 2025.
Ralph, F., Neiman, P., and Wick, G.: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern 860 North Pacific Ocean during the winter of 1997/98, Mon. Wea. Rev., 132, 1721–1745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2, 2004.
Ralph, F. M., Neiman, P. J., Wick, G. A., Gutman, S. I., Dettinger, M. D., Cayan, D. R., and White, A. B.: Flooding on California's Russian River: Role of atmospheric rivers, Geophysical Research Letters, 33, L13801, https://doi.org/10.1029/2006GL026689, 2006.
rohp-PAZ: https://paz.ice.csic.es/ (last access: February 2025), 2025.
Rueger, J.: Refractive index formulae for radio waves, Washington, D.C. USA, JS28, 12 pp., https://www.fig.net/resources/proceedings/fig_proceedings/fig_2002/Js28/JS28_rueger.pdf (last access: February 2025), 2002.
Saastamoinen, J.: Contributions to the theory of atmospheric refraction: Part II. Refraction corrections in satellite geodesy, Bull. Geodesique, 107, 13–34, https://doi.org/10.1007/BF02522083, 1973.
SGP4: https://pypi.org/project/sgp4/ (last access: December 2024), 2024.
Shehaj, E.: Space Geodetic Techniques for Retrieval of High-Resolution Atmospheric Water Vapor Fields, PhD thesis, ETH Zurich, https://doi.org/10.3929/ethz-b-000618346, 2023.
Shehaj, E., Miotti, L., Geiger, A., D'Aronco, S., Wegner, J. D., Moeller, G., Soja, B., and Rothacher, M.: High-Resolution Tropospheric Refractivity Fields by Combining Machine Learning and Collocation Methods to Correct Earth Observation Data, Acta Astronautica, 204, 591–598, https://doi.org/10.1016/j.actaastro.2022.10.007, 2023.
Shehaj, E., Leroy, S., Cahoy, K., Geiger, A., Crocetti, L., Moeller, G., Soja, B., and Rothacher, M.: Global Navigation Satellite System (GNSS) radio occultation climatologies mapped by machine learning and Bayesian interpolation, Atmos. Meas. Tech., 18, 57–72, https://doi.org/10.5194/amt-18-57-2025, 2025.
Sokolovskiy, S.: Effect of superrefraction on inversions of radio occultation signals in the lower troposphere, Radio Sci., 38, 1058, https://doi.org/10.1029/2002RS002728, 2003.
Spire: Decoding Radio Occultation, the cornerstone of accurate weather forecasting, https://spire.com/blog/weather-climate/decoding-radio-occultation-the-cornerstone-of-accurate-weather-forecasting/ (last access: 28 February 2025), 2024.
UCAR: Constellation Observing System for Meteorology, Ionosphere and Climate, https://www.cosmic.ucar.edu/global-navigation-satellite-system-gnss-background/cosmic-2 (last access: February 2025), 2025.
Wang, K., Ao, C., and de la Torre Juárez, M.: GNSS-RO Refractivity Bias Correction Under Ducting Layer Using Surface-Reflection Signal, Remote Sens., 12, 359, https://doi.org/10.3390/rs12030359, 2020.
Wang, K.-N., Ao, C. O., Morris, M. G., Hajj, G. A., Kurowski, M. J., Turk, F. J., and Moore, A. W.: Joint 1DVar retrievals of tropospheric temperature and water vapor from Global Navigation Satellite System radio occultation (GNSS-RO) and microwave radiometer observations, Atmos. Meas. Tech., 17, 583–599, https://doi.org/10.5194/amt-17-583-2024, 2024.
Wang, M., Wang, J., Bock, Y., Liang, H., Dong, D., and Fang, P.: Dynamic Mapping of the Movement of Landfalling Atmospheric Rivers Over Southern California With GPS Data, Geophysical Research Letters, https://doi.org/10.1029/2018GL081318, 2019.
Xie, F., Syndergaard, S., Kursinski, E., and Herman, B.: An Approach for Retrieving Marine Boundary Layer Refractivity from GPS Occultation Data in the Presence of Superrefraction, J. Atmos. Ocea. Tech., 23, 1629–1644, https://doi.org/10.1175/JTECH1996.1, 2006.
Xie, F., Wu, D. L., Ao, C. O., Kursinski, E. R., Mannucci, A. J., and Syndergaard, S.: Super-refraction effects on GPS radio occultation refractivity in marine boundary layers, Geophys. Res. Lett., 37, L11805, https://doi.org/10.1029/2010GL043299, 2010.
Yuan, P., Blewitt, G., Kreemer, C., Hammond, W. C., Argus, D., Yin, X., Van Malderen, R., Mayer, M., Jiang, W., Awange, J., and Kutterer, H.: An enhanced integrated water vapour dataset from more than 10 000 global ground-based GPS stations in 2020, Earth Syst. Sci. Data, 15, 723–743, https://doi.org/10.5194/essd-15-723-2023, 2023.
Zhang, Z., Ralph, F., and Zheng, M.: The Relationship Between Extratropical Cyclone Strength and Atmospheric River Intensity and Position, Geophysical Research Letters, 46, 1814–1823, https://doi.org/10.1029/2018GL079071, 2018.
Zheng, M., Delle Monache, L., Cornuelle, B. D., Ralph, F. M., Tallapragada, V. S., Subramanian, A., Haase, J. S., Zhang, Z., Wu, X., Murphy, M. J., Higgins, T. B., and De Haan, L.: Improved Forecast Skill Through the Assimilation of Dropsonde Observations From the Atmospheric River Reconnaissance Program, Journal of Geophysical Research: Atmospheres, 126, e2021JD034967, https://doi.org/10.1029/2021JD034967, 2021.
Zhu, Y. and Newell, R.: Atmospheric rivers and bombs, Geophysical Research Letters, 21, 1999–2002, https://doi.org/10.1029/94GL01710, 1994.
Zhu, Y. and Newell, R.: A proposed algorithm for moisture fluxes from atmospheric rivers, Mon. Wea. Rev., 126, 725– 735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2, 1998.
Short summary
We investigate the capability of machine learning models, trained with space and ground Global Navigation Satellite Systems (GNSS) observations, to produce fields of refractivity and water vapor that describe the spatiotemporal morphology of atmospheric rivers (ARs) and quantify moisture associated with them to a degree sufficient for atmospheric studies. The reconstructed fields can be used to monitor ARs. It studies what low-Earth orbit (LEO) radio occultation (RO) constellation is appropriate to quantify the structure, location and timing of ARs.
We investigate the capability of machine learning models, trained with space and ground Global...