Articles | Volume 18, issue 22
https://doi.org/10.5194/amt-18-6659-2025
https://doi.org/10.5194/amt-18-6659-2025
Research article
 | 
18 Nov 2025
Research article |  | 18 Nov 2025

A feasibility study to reconstruct atmospheric rivers using space- and ground-based GNSS observations

Endrit Shehaj, Stephen Leroy, Kerri Cahoy, Juliana Chew, and Benedikt Soja

Related authors

Global Navigation Satellite System (GNSS) radio occultation climatologies mapped by machine learning and Bayesian interpolation
Endrit Shehaj, Stephen Leroy, Kerri Cahoy, Alain Geiger, Laura Crocetti, Gregor Moeller, Benedikt Soja, and Markus Rothacher
Atmos. Meas. Tech., 18, 57–72, https://doi.org/10.5194/amt-18-57-2025,https://doi.org/10.5194/amt-18-57-2025, 2025
Short summary
Tropospheric water vapor: a comprehensive high-resolution data collection for the transnational Upper Rhine Graben region
Benjamin Fersch, Andreas Wagner, Bettina Kamm, Endrit Shehaj, Andreas Schenk, Peng Yuan, Alain Geiger, Gregor Moeller, Bernhard Heck, Stefan Hinz, Hansjörg Kutterer, and Harald Kunstmann
Earth Syst. Sci. Data, 14, 5287–5307, https://doi.org/10.5194/essd-14-5287-2022,https://doi.org/10.5194/essd-14-5287-2022, 2022
Short summary

Cited articles

agupubs: Geophysical Research Letters: Atmospheric Rivers, https://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1944-8007.ATMOS_RIVERS1?page=1 (last access: July 2025), 2019. 
agupubs: JGR Atmosphere: Atmospheric Rivers: Intersection of Weather and Climate, https://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)2169-8996.ARTMIP?page=1 (last access: July 2025), 2024. 
Ahmad, B. and Tyler, G.: The two-dimensional resolution kernel associated with retrieval of ionospheric and atmospheric refractivity profiles by Abelian inversion of radio occultation phase data, Radio Sci., 33, 129–142, https://doi.org/10.1029/97RS02762, 1998. 
Ahmad, B. and Tyler, G.: Systematic errors in atmospheric profiles obtained from Abelian inversion of radio occultation data: Effects of large-scale horizontal gradients, J. Geophys. Res., 104, 3971–3992, https://doi.org/10.1029/1998JD200102, 1999. 
Altarabichi, M. G., Nowaczyk, S., Pashami, S., Mashhadi, P. S., and Handl, J.: Rolling the dice for better deep learning performance: A study of randomness techniques in deep neural networks, Information Sciences, 667, 0020–0255, https://doi.org/10.1016/j.ins.2024.120500, 2024. 
Download
Short summary
We investigate the capability of machine learning models, trained with space and ground Global Navigation Satellite Systems (GNSS) observations, to produce fields of refractivity and water vapor that describe the spatiotemporal morphology of atmospheric rivers (ARs) and quantify moisture associated with them to a degree sufficient for atmospheric studies. The reconstructed fields can be used to monitor ARs. It studies what low-Earth orbit (LEO) radio occultation (RO) constellation is appropriate to quantify the structure, location and timing of ARs.
Share