Articles | Volume 18, issue 22
https://doi.org/10.5194/amt-18-6705-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-6705-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimation of nighttime aerosol optical depths using the ground-based microwave radiometer
Guanyu Liu
Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
Sheng Yue
Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
Lulu Zhang
Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
Chongzhao Zhang
Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
Related authors
Guanyu Liu, Jing Li, and Tong Ying
Atmos. Chem. Phys., 23, 9217–9228, https://doi.org/10.5194/acp-23-9217-2023, https://doi.org/10.5194/acp-23-9217-2023, 2023
Short summary
Short summary
Fires in Australia are positively correlated with the El Niño–Southern Oscillation (ENSO). However, the correlation between ENSO and the Australian Fire Weather Index (FWI) increases from 0.17 to 0.70 when the Atlantic Multidecadal Oscillation (AMO) shifts from a negative to positive phase. This is explained by the teleconnection effect through which the warmer AMO generates Rossby wave trains and results in high pressures and a weather condition conducive to wildfires.
Chong Li, Oleg Dubovik, Jing Li, David Fuertes, Anton Lopatin, Pavel Litvinov, Tatsiana Lapyonok, Lukas Bindreiter, Christian Matar, Yiqi Chu, and Wangshu Tan
Atmos. Meas. Tech., 18, 6609–6643, https://doi.org/10.5194/amt-18-6609-2025, https://doi.org/10.5194/amt-18-6609-2025, 2025
Short summary
Short summary
Using observational data from Japan's geostationary satellite – Himawari-8 , this study improved how we track air pollution (aerosols) across East Asia and the Western Pacific. By applying an advanced aerosol retrieval algorithm called GRASP, we were able to more accurately observe both atmospheric and ground conditions and their dynamics over time. The results closely matched ground-based measurements and showed potential for even better monitoring when combined with ground-based lidar data.
Qiurui Li, Zhongxia Sun, Meijing Liu, Huizheng Che, Yu Zheng, and Jing Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-4936, https://doi.org/10.5194/egusphere-2025-4936, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We present a fast, interpretable machine learning method to retrieve key aerosol parameters from ground-based Sun-sky photometer measurements. Trained on simulated data covering diverse aerosol and atmospheric conditions, ensuring robustness and physical consistency. Applied to real observations, it agrees well with AERONET products and reduces computation time by orders of magnitude, offering a practical tool for monitoring aerosols and their effects on air quality and climate.
Yueming Dong, Jing Li, Zhenyu Zhang, Chongzhao Zhang, and Qiurui Li
Earth Syst. Sci. Data, 17, 3873–3892, https://doi.org/10.5194/essd-17-3873-2025, https://doi.org/10.5194/essd-17-3873-2025, 2025
Short summary
Short summary
This study develops two merged global land aerosol single-scattering albedo (SSA) datasets by combining AERONET ground observations and two satellite datasets using an ensemble Kalman filter data synergy method. The merged datasets exhibit significantly improved accuracy compared to the original satellite data. These results can provide more reliable estimates of aerosol scattering and absorption properties, essential for improving climate modeling and assessing aerosol climate effects.
Zhenyu Zhang, Jing Li, Huizheng Che, Yueming Dong, Oleg Dubovik, Thomas Eck, Pawan Gupta, Brent Holben, Jhoon Kim, Elena Lind, Trailokya Saud, Sachchida Nand Tripathi, and Tong Ying
Atmos. Chem. Phys., 25, 4617–4637, https://doi.org/10.5194/acp-25-4617-2025, https://doi.org/10.5194/acp-25-4617-2025, 2025
Short summary
Short summary
We used ground-based remote sensing data from the Aerosol Robotic Network to examine long-term trends in aerosol characteristics. We found aerosol loadings generally decreased globally, and aerosols became more scattering. These changes are closely related to variations in aerosol compositions, such as decreased anthropogenic emissions over East Asia, Europe, and North America; increased anthropogenic sources over northern India; and increased dust activity over the Arabian Peninsula.
Hongfei Hao, Kaicun Wang, Guocan Wu, Jianbao Liu, and Jing Li
Earth Syst. Sci. Data, 16, 4051–4076, https://doi.org/10.5194/essd-16-4051-2024, https://doi.org/10.5194/essd-16-4051-2024, 2024
Short summary
Short summary
In this study, daily PM2.5 concentrations are estimated from 1959 to 2022 using a machine learning method at more than 5000 terrestrial sites in the Northern Hemisphere based on hourly atmospheric visibility data, which are extracted from the Meteorological Terminal Aviation Routine Weather Report (METAR).
Hongfei Hao, Kaicun Wang, Chuanfeng Zhao, Guocan Wu, and Jing Li
Earth Syst. Sci. Data, 16, 3233–3260, https://doi.org/10.5194/essd-16-3233-2024, https://doi.org/10.5194/essd-16-3233-2024, 2024
Short summary
Short summary
In this study, we employed a machine learning technique to derive daily aerosol optical depth from hourly visibility observations collected at more than 5000 airports worldwide from 1959 to 2021 combined with reanalysis meteorological parameters.
Liang Chang, Jing Li, Jingjing Ren, Changrui Xiong, and Lu Zhang
Atmos. Meas. Tech., 17, 2637–2648, https://doi.org/10.5194/amt-17-2637-2024, https://doi.org/10.5194/amt-17-2637-2024, 2024
Short summary
Short summary
We described a modified lidar inversion algorithm to retrieve aerosol extinction and size distribution simultaneously from two-wavelength elastic lidar measurements. Its major advantage is that the lidar ratio of each layer is determined iteratively by a lidar ratio–Ångström exponent lookup table. The algorithm was applied to the Raman lidar and CALIOP measurements. The retrieved results by our method are in good agreement with those achieved by Raman method.
Guanyu Liu, Jing Li, and Tong Ying
Atmos. Chem. Phys., 23, 9217–9228, https://doi.org/10.5194/acp-23-9217-2023, https://doi.org/10.5194/acp-23-9217-2023, 2023
Short summary
Short summary
Fires in Australia are positively correlated with the El Niño–Southern Oscillation (ENSO). However, the correlation between ENSO and the Australian Fire Weather Index (FWI) increases from 0.17 to 0.70 when the Atlantic Multidecadal Oscillation (AMO) shifts from a negative to positive phase. This is explained by the teleconnection effect through which the warmer AMO generates Rossby wave trains and results in high pressures and a weather condition conducive to wildfires.
Zhongjing Jiang and Jing Li
Atmos. Chem. Phys., 22, 7273–7285, https://doi.org/10.5194/acp-22-7273-2022, https://doi.org/10.5194/acp-22-7273-2022, 2022
Short summary
Short summary
This study investigates the changes of tropospheric ozone in China associated with EP and CP El Niño, using satellite observations and the GEOS-Chem model. We found that El Niño generally leads to lower tropospheric ozone (LTO) decrease over most parts of China; La Niña acts the opposite. The difference between LTO changes during EP and CP El Niño primarily lies in southern China. Regional transport and chemical processes play the leading and secondary roles in driving the LTO changes.
Liangying Zeng, Yang Yang, Hailong Wang, Jing Wang, Jing Li, Lili Ren, Huimin Li, Yang Zhou, Pinya Wang, and Hong Liao
Atmos. Chem. Phys., 21, 10745–10761, https://doi.org/10.5194/acp-21-10745-2021, https://doi.org/10.5194/acp-21-10745-2021, 2021
Short summary
Short summary
Using an aerosol–climate model, the impacts of El Niño with different durations on aerosols in China are examined. The modulation on aerosol concentrations and haze days by short-duration El Niño events is 2–3 times more than that by long-duration El Niño events in China. The frequency of short-duration El Niño has been increasing significantly in recent decades, suggesting that El Niño events have exerted increasingly intense modulation on aerosol pollution in China over the past few decades.
Zhongjing Jiang, Jing Li, Xiao Lu, Cheng Gong, Lin Zhang, and Hong Liao
Atmos. Chem. Phys., 21, 2601–2613, https://doi.org/10.5194/acp-21-2601-2021, https://doi.org/10.5194/acp-21-2601-2021, 2021
Short summary
Short summary
This study demonstrates that the intensity of the western Pacific subtropical high (WPSH), a major synoptic pattern in the northern Pacific during summer, can induce a dipole change in surface ozone pollution over eastern China. Ozone concentration increases in the north and decreases in the south during the strong WPSH phase, and vice versa. The change in chemical processes associated with the WPSH change plays a decisive role, whereas the natural emission of ozone precursors accounts for ~ 30 %.
Cited articles
Adebiyi, A., Kok, J. F., Murray, B. J., Ryder, C. L., Stuut, J. B. W., Kahn, R. A., Knippertz, P., Formenti, P., Mahowald, N. M., Garcia-Pando, C. P., Klose, M., Ansmann, A., Samset, B. H., Ito, A., Balkanski, Y., Di Biagio, C., Romanias, M. N., Huang, Y., and Meng, J.: A review of coarse mineral dust in the Earth system, Aeolian Research, 60, https://doi.org/10.1016/j.aeolia.2022.100849, 2023.
Arola, A., Eck, T. F., Huttunen, J., Lehtinen, K. E. J., Lindfors, A. V., Myhre, G., Smirnov, A., Tripathi, S. N., and Yu, H.: Influence of observed diurnal cycles of aerosol optical depth on aerosol direct radiative effect, Atmos. Chem. Phys., 13, 7895–7901, https://doi.org/10.5194/acp-13-7895-2013, 2013.
Balmes, K. A., Fu, Q., and Thorsen, T. J.: The Diurnal Variation of the Aerosol Optical Depth at the ARM SGP Site, Earth and Space Science, 8, https://doi.org/10.1029/2021EA001852, 2021.
Barreto, A., Cuevas, E., Damiri, B., Guirado, C., Berkoff, T., Berjón, A. J., Hernández, Y., Almansa, F., and Gil, M.: A new method for nocturnal aerosol measurements with a lunar photometer prototype, Atmos. Meas. Tech., 6, 585–598, https://doi.org/10.5194/amt-6-585-2013, 2013.
Barreto, Á., Cuevas, E., Granados-Muñoz, M.-J., Alados-Arboledas, L., Romero, P. M., Gröbner, J., Kouremeti, N., Almansa, A. F., Stone, T., Toledano, C., Román, R., Sorokin, M., Holben, B., Canini, M., and Yela, M.: The new sun-sky-lunar Cimel CE318-T multiband photometer – a comprehensive performance evaluation, Atmos. Meas. Tech., 9, 631–654, https://doi.org/10.5194/amt-9-631-2016, 2016.
Barreto, Á., Román, R., Cuevas, E., Berjón, A. J., Almansa, A. F., Toledano, C., González, R., Hernández, Y., Blarel, L., Goloub, P., Guirado, C., and Yela, M.: Assessment of nocturnal aerosol optical depth from lunar photometry at the Izaña high mountain observatory, Atmos. Meas. Tech., 10, 3007–3019, https://doi.org/10.5194/amt-10-3007-2017, 2017.
Berkoff, T. A., Sorokin, M., Stone, T., Eck, T. F., Hoff, R., Welton, E., and Holben, B.: Nocturnal Aerosol Optical Depth Measurements with a Small-Aperture Automated Photometer Using the Moon as a Light Source, Journal of Atmospheric and Oceanic Technology, 28, 1297–1306, https://doi.org/10.1175/JTECH-D-10-05036.1, 2011.
Bianco, L., Cimini, D., Marzano, F. S., and Ware, R.: Combining microwave radiometer and wind profiler radar measurements for high-resolution atmospheric humidity profiling, Journal of Atmospheric and Oceanic Technology, 22, 949–965, https://doi.org/10.1175/JTECH1771.1, 2005.
Brock, C. A., Wagner, N. L., Anderson, B. E., Beyersdorf, A., Campuzano-Jost, P., Day, D. A., Diskin, G. S., Gordon, T. D., Jimenez, J. L., Lack, D. A., Liao, J., Markovic, M. Z., Middlebrook, A. M., Perring, A. E., Richardson, M. S., Schwarz, J. P., Welti, A., Ziemba, L. D., and Murphy, D. M.: Aerosol optical properties in the southeastern United States in summer – Part 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters, Atmos. Chem. Phys., 16, 5009–5019, https://doi.org/10.5194/acp-16-5009-2016, 2016.
Cachorro, V. E., Romero, P. M., Toledano, C., Cuevas, E., and de Frutos, A. M.: The fictitious diurnal cycle of aerosol optical depth: A new approach for ”in situ” calibration and correction of AOD data series, Geophysical Research Letters, 31, https://doi.org/10.1029/2004GL019651, 2004.
Cachorro, V. E., Toledano, C., Berjón, A., de Frutos, A. M., Torres, B., Sorribas, M., and Laulainen, N. S.: An ”in situ” calibration correction procedure (KCICLO) based on AOD diurnal cycle:: Application to AERONET -: El Arenosillo (Spain) AOD data series, Journal of Geophysical Research-Atmospheres, 113, https://doi.org/10.1029/2007JD009673, 2008.
Che, H. Z., Xia, X. G., Zhao, H. J., Li, L., Gui, K., Zheng, Y., Song, J. J., Qi, B., Zhu, J., Miao, Y. C., Wang, Y. Q., Wang, Z. L., Wang, H., Dubovik, O., Holben, B., Chen, H. B., Shi, G. Y., and Zhang, X. Y.: Aerosol optical and radiative properties and their environmental effects in China: A review, Earth-Science Reviews, 248, https://doi.org/10.1016/j.earscirev.2023.104634, 2024.
Chen, A., Yang, J., He, Y., Yuan, Q., Li, Z., and Zhu, L.: High spatiotemporal resolution estimation of AOD from Himawari-8 using an ensemble machine learning gap-filling method, Science of the Total Environment, 857, https://doi.org/10.1016/j.scitotenv.2022.159673, 2023a.
Chen, A. N. and Zhao, C. F.: Progress of aerosol direct radiative forcing, Chinese Science Bulletin-Chinese, 69, 30–44, https://doi.org/10.1360/TB-2023-0375, 2024.
Chen, H., Cheng, T., Gu, X., Li, Z., and Wu, Y.: Characteristics of aerosols over Beijing and Kanpur derived from the AERONET dataset, Atmospheric Pollution Research, 7, 162–169, https://doi.org/10.1016/j.apr.2015.08.008, 2016.
Chen, J., Shen, Y., Chi, X., and Zhu, S.: Factors influencing the hygroscopicity of aerosols and the effects of hygroscopicity on aerosol optical properties, Journal of Environmental Engineering Technology, 13, 2081–2091, 2023b.
Chen, Y., Chen, S. Y., Zhou, J., Zhao, D., Bi, H. R., Zhang, Y., Alam, K., Yu, H. P., Yang, Y. X., and Chen, J. Y.: A super dust storm enhanced by radiative feedback, npj Climate and Atmospheric Science, 6, https://doi.org/10.1038/s41612-023-00418-y, 2023c.
Cimini, D., Hewison, T. J., Martin, L., Güldner, J., Gaffard, C., and Marzano, F. S.: Temperature and humidity profile retrievals from ground-based microwave radiometers during TUC, Meteorologische Zeitschrift, 15, 45–56, https://doi.org/10.1127/0941-2948/2006/0099, 2006.
Clarisse, L., Clerbaux, C., Franco, B., Hadji-Lazaro, J., Whitburn, S., Kopp, A. K., Hurtmans, D., and Coheur, P. F.: A Decadal Data Set of Global Atmospheric Dust Retrieved From IASI Satellite Measurements, Journal of Geophysical Research-Atmospheres, 124, 1618–1647, https://doi.org/10.1029/2018JD029701, 2019.
Clough, S. A., Shephard, M. W., Mlawer, E., Delamere, J. S., Iacono, M., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, Journal of Quantitative Spectroscopy & Radiative Transfer, 91, 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005.
Colarco, P. R., Nowottnick, E. P., Randles, C. A., Yi, B. Q., Yang, P., Kim, K. M., Smith, J. A., and Bardeen, C. G.: Impact of radiatively interactive dust aerosols in the NASA GEOS-5 climate model: Sensitivity to dust particle shape and refractive index, Journal of Geophysical Research-Atmospheres, 119, 753–786, https://doi.org/10.1002/2013JD020046, 2014.
Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne, J. A., Monni, S., Doering, U., Olivier, J. G. J., Pagliari, V., and Janssens-Maenhout, G.: Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2, Earth Syst. Sci. Data, 10, 1987–2013, https://doi.org/10.5194/essd-10-1987-2018, 2018.
DeSouza-Machado, S. G., Strow, L. L., Imbiriba, B., McCann, K., Hoff, R. M., Hannon, S. E., Martins, J. V., Tanré, D., Deuzé, J. L., Ducos, F., and Torres, O.: Infrared retrievals of dust using AIRS: Comparisons of optical depths and heights derived for a North African dust storm to other collocated EOS A-Train and surface observations, Journal of Geophysical Research-Atmospheres, 115, https://doi.org/10.1029/2009JD012842, 2010.
Ding, H., Zheng, Z., and Liu, W.: Warming Trend and Seasonal Variation in Beijing During 1951–2008, Advances in Climate Change Research, 6, 187–191, 2010.
Dufresne, J. L., Gautier, C., Ricchiazzi, P., and Fouquart, Y.: Longwave scattering effects of mineral aerosols, Journal of the Atmospheric Sciences, 59, 1959–1966, https://doi.org/10.1175/1520-0469(2002)059<1959:LSEOMA>2.0.CO;2, 2002.
Ebr, J., Karpov, S., Eliásek, J., Blazek, J., Cunniffe, R., Ebrová, I., Janecek, P., Jelínek, M., Jurysek, J., Mandát, D., Masek, M., Pech, M., Prouza, M., and Trávnícek, P.: A New Method for Aerosol Measurement Using Wide-field Photometry, Astronomical Journal, 162, https://doi.org/10.3847/1538-3881/abf7b1, 2021.
Fan, J. W., Wang, Y., Rosenfeld, D., and Liu, X. H.: Review of Aerosol-Cloud Interactions: Mechanisms, Significance, and Challenges, Journal of the Atmospheric Sciences, 73, 4221–4252, https://doi.org/10.1175/JAS-D-16-0037.1, 2016.
Feng, T., Fu, Z.-T., and Mao, J.-Y.: The multi-fractal characteristics of climate variables in Beijing, Chinese Journal of Geophysics-Chinese Edition, 53, 2037–2044, https://doi.org/10.3969/j.issn.0001-5733.2010.09.004, 2010.
Feng, Y., Wang, H., Rasch, P. J., Zhang, K., Lin, W., Tang, Q., Xie, S., Hamilton, D. S., Mahowald, N., and Yu, H.: Global Dust Cycle and Direct Radiative Effect in E3SM Version 1: Impact of Increasing Model Resolution, Journal of Advances in Modeling Earth Systems, 14, https://doi.org/10.1029/2021MS002909, 2022.
Ge, J., Huang, J., Weng, F., and Sun, W.: Effects of dust storms on microwave radiation based on satellite observation and model simulation over the Taklamakan desert, Atmos. Chem. Phys., 8, 4903–4909, https://doi.org/10.5194/acp-8-4903-2008, 2008.
Ghan, S., Wang, M. H., Zhang, S. P., Ferrachat, S., Gettelman, A., Griesfeller, J., Kipling, Z., Lohmann, U., Morrison, H., Neubauer, D., Partridge, D. G., Stier, P., Takemura, T., Wang, H. L., and Zhang, K.: Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability, Proceedings of the National Academy of Sciences of the United States of America, 113, 5804–5811, https://doi.org/10.1073/pnas.1514036113, 2016.
Graßl, S., Ritter, C., Wilsch, J., Herrmann, R., Doppler, L., and Román, R.: From polar day to polar night: a comprehensive sun and star photometer study of trends in Arctic aerosol properties in Ny-Ålesund, Svalbard, Remote Sensing, 16, 3725, https://doi.org/10.3390/rs16193725, 2024.
Greenwald, T. J., Bennartz, R., Lebsock, M., and Teixeira, J.: An Uncertainty Data Set for Passive Microwave Satellite Observations of Warm Cloud Liquid Water Path, Journal of Geophysical Research-Atmospheres, 123, 3668–3687, https://doi.org/10.1002/2017JD027638, 2018.
Gueymard, C. A.: Temporal variability in direct and global irradiance at various time scales as affected by aerosols, Solar Energy, 86, 3544–3553, https://doi.org/10.1016/j.solener.2012.01.013, 2012.
Guo, J. P., Xia, F., Zhang, Y., Liu, H., Li, J., Lou, M. Y., He, J., Yan, Y., Wang, F., Min, M., and Zhai, P. M.: Impact of diurnal variability and meteorological factors on the PM2.5 – AOD relationship: Implications for PM2.5 remote sensing, Environmental Pollution, 221, 94–104, https://doi.org/10.1016/j.envpol.2016.11.043, 2017.
Hao, R., Wang, W., and Hao, J.: Classification of climate types and dynamic change in Beijing-Tianjin-Hebei region, Journal of Anhui Agricultural University, 44, 670–676, 2017.
Herber, A., Thomason, L. W., Gernandt, H., Leiterer, U., Nagel, D., Schulz, K. H., Kaptur, J., Albrecht, T., and Notholt, J.: Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999, Journal of Geophysical Research-Atmospheres, 107, https://doi.org/10.1029/2001JD000536, 2002.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2023.
Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET – A federated instrument network and data archive for aerosol characterization, Remote Sensing of Environment, 66, 1–16, https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Hong, G., Yang, P., Weng, F. Z., and Liu, Q. H.: Microwave scattering properties of sand particles: Application to the simulation of microwave radiances over sandstorms, Journal of Quantitative Spectroscopy & Radiative Transfer, 109, 684–702, https://doi.org/10.1016/j.jqsrt.2007.08.018, 2008.
Huang, J. P., Ge, J. M., and Weng, F. Z.: Detection of Asia dust storms using multisensor satellite measurements, Remote Sensing of Environment, 110, 186–191, https://doi.org/10.1016/j.rse.2007.02.022, 2007.
Huang, J. P., Wang, T. H., Wang, W. C., Li, Z. Q., and Yan, H. R.: Climate effects of dust aerosols over East Asian arid and semiarid regions, Journal of Geophysical Research-Atmospheres, 119, 11398–11416, https://doi.org/10.1002/2014JD021796, 2014.
Huang, X., Zhang, X., Leng, L., Li, F., and Fan, Y.: Study on retrieval methods with MonoRTM for microwave radiometer measurements, Scientia Meteorologlca Sinica, 33, 138–145, 2013.
IPCC: Short-Lived Climate Forcers, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, United Kingdom and New York, https://doi.org/10.1017/9781009157896.008, 2021.
Ivănescu, L. and O'Neill, N. T.: Multi-star calibration in starphotometry, Atmos. Meas. Tech., 16, 6111–6121, https://doi.org/10.5194/amt-16-6111-2023, 2023.
Ivănescu, L., Baibakov, K., O'Neill, N. T., Blanchet, J.-P., and Schulz, K.-H.: Accuracy in starphotometry, Atmos. Meas. Tech., 14, 6561–6599, https://doi.org/10.5194/amt-14-6561-2021, 2021.
Jiang, M., Chen, L., He, Y., Hu, X., Liu, M., and Zhang, P.: Nighttime aerosol optical depth retrievals from VIIRS day/night band data, National Remote Sensing Bulletin, 26, 493–504, 2022.
Jiang, X., Wang, Y., Wang, L., Tao, M., Wang, J., Zhou, M., Bai, X., and Gui, L.: Characteristics of Daytime-And-Nighttime AOD Differences Over China: A Perspective From CALIOP Satellite Observations and GEOS-Chem Model Simulations, Journal of Geophysical Research-Atmospheres, 129, https://doi.org/10.1029/2023JD039158, 2024.
Klüser, L., Kleiber, P., Holzer-Popp, T., and Grassian, V. H.: Desert dust observation from space – Application of measured mineral component infrared extinction spectra, Atmospheric Environment, 54, 419–427, https://doi.org/10.1016/j.atmosenv.2012.02.011, 2012.
Knupp, K. R., Ware, R., Cimini, D., Vandenberghe, F., Vivekanandan, J., Westwater, E., Coleman, T., and Phillips, D.: Ground-Based Passive Microwave Profiling during Dynamic Weather Conditions, Journal of Atmospheric and Oceanic Technology, 26, 1057–1073, https://doi.org/10.1175/2008JTECHA1150.1, 2009.
Kremser, S., Thomason, L. W., von Hobe, M., Hermann, M., Deshler, T., Timmreck, C., Toohey, M., Stenke, A., Schwarz, J. P., Weigel, R., Fueglistaler, S., Prata, F. J., Vernier, J. P., Schlager, H., Barnes, J. E., Antuña-Marrero, J. C., Fairlie, D., Palm, M., Mahieu, E., Notholt, J., Rex, M., Bingen, C., Vanhellemont, F., Bourassa, A., Plane, J. M. C., Klocke, D., Carn, S. A., Clarisse, L., Trickl, T., Neely, R., James, A. D., Rieger, L., Wilson, J. C., and Meland, B.: Stratospheric aerosol-Observations, processes, and impact on climate, Reviews of Geophysics, 54, 278–335, https://doi.org/10.1002/2015RG000511, 2016.
Lei, L., Sun, J., and Wei, D.: Distinguishing the Category of the Summer Convective Weather by Sounding Data in Beijing, Meteorological Monthly, 37, 136–141, 2011.
Leiterer, U., Naebert, A., Naebert, T., and Alekseeva, G.: A new star photometer developed for spectral aerosol optical thickness measurements in Lindenberg, Contributions to Atmospheric Physics, 68, 133–141, 1995.
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989–3034, https://doi.org/10.5194/amt-6-2989-2013, 2013.
Li, J., Li, C. C., Zhao, C. S., and Su, T. N.: Changes in surface aerosol extinction trends over China during 1980-2013 inferred from quality-controlled visibility data, Geophysical Research Letters, 43, 8713–8719, https://doi.org/10.1002/2016GL070201, 2016a.
Li, J., Carlson, B. E., Yung, Y. L., Lv, D. R., Hansen, J., Penner, J. E., Liao, H., Ramaswamy, V., Kahn, R. A., Zhang, P., Dubovik, O., Ding, A. J., Lacis, A. A., Zhang, L., and Dong, Y. M.: Scattering and absorbing aerosols in the climate system, Nature Reviews Earth & Environment, 3, 363–379, https://doi.org/10.1038/s43017-022-00296-7, 2022.
Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017.
Li, W. J., Shao, L. Y., Zhang, D. Z., Ro, C. U., Hu, M., Bi, X. H., Geng, H., Matsuki, A., Niu, H. Y., and Chen, J. M.: A review of single aerosol particle studies in the atmosphere of East Asia: morphology, mixing state, source, and heterogeneous reactions, Journal of Cleaner Production, 112, 1330–1349, https://doi.org/10.1016/j.jclepro.2015.04.050, 2016b.
Li, Z. Q., Wang, Y., Guo, J. P., Zhao, C. F., Cribb, M., Dong, X. Q., Fan, J. W., Gong, D. Y., Huang, J. P., Jiang, M. J., Jiang, Y. Q., Lee, S. S., Li, H., Li, J. M., Liu, J. J., Qian, Y., Rosenfeld, D., Shan, S. Y., Sun, Y. L., Wang, H. J., Xin, J. Y., Yan, X., Yang, X., Yang, X. Q., Zhang, F., and Zheng, Y. T.: East Asian Study of Tropospheric Aerosols and their Impact on Regional Clouds, Precipitation, and Climate (EAST-AIRCPC), Journal of Geophysical Research-Atmospheres, 124, 13026–13054, https://doi.org/10.1029/2019JD030758, 2019.
Liu, C. S., Shen, X. X., and Gao, W.: Intercomparison of CALIOP, MODIS, and AERONET aerosol optical depth over China during the past decade, International Journal of Remote Sensing, 39, 7251–7275, https://doi.org/10.1080/01431161.2018.1466070, 2018.
Liu, D. W., Lv, C. C., Liu, K., Xie, Y., and Miao, J. G.: Retrieval Analysis of Atmospheric Water Vapor for K-Band Ground-Based Hyperspectral Microwave Radiometer, IEEE Geoscience and Remote Sensing Letters, 11, 1835–1839, https://doi.org/10.1109/LGRS.2014.2311833, 2014.
Liu, G. Y., Li, J., Jiang, Z. J., and Li, X. C.: Impact of sea surface temperature variability at different ocean basins on dust activities in the Gobi Desert and north China, Geophysical Research Letters, 49, e2022GL099821, https://doi.org/10.1029/2022GL099821, 2022a.
Liu, G. Y., Li, J., Li, J., Yue, S., and Zhou, R. L.: Estimation of Nighttime Aerosol Optical Depths Using Atmospheric Infrared Sounder Longwave Radiances, Geophysical Research Letters, 51, https://doi.org/10.1029/2023GL108120, 2024.
Liu, S., Yang, X. C., Duan, F. Z., and Zhao, W. J.: Changes in Air Quality and Drivers for the Heavy PM2.5 Pollution on the North China Plain Pre- to Post-COVID-19, International Journal of Environmental Research and Public Health, 19, https://doi.org/10.3390/ijerph191912904, 2022b.
Lv, M., Liu, D., Li, Z., Mao, J., Sun, Y., Wang, Z., Wang, Y., and Xie, C.: Hygroscopic growth of atmospheric aerosol particles based on lidar, radiosonde, and in situ measurements: Case studies from the Xinzhou field campaign, Journal of Quantitative Spectroscopy & Radiative Transfer, 188, 60–70, https://doi.org/10.1016/j.jqsrt.2015.12.029, 2017.
Lv, Z. F., Wang, X. T., Deng, F. Y., Ying, Q., Archibald, A. T., Jones, R. L., Ding, Y., Cheng, Y., Fu, M. L., Liu, Y., Man, H. Y., Xue, Z. G., He, K. B., Hao, J. M., and Liu, H. A.: Source-Receptor Relationship Revealed by the Halted Traffic and Aggravated Haze in Beijing during the COVID-19 Lockdown, Environmental Science & Technology, 54, 15660–15670, https://doi.org/10.1021/acs.est.0c04941, 2020.
Mahowald, N., Ward, D. S., Kloster, S., Flanner, M. G., Heald, C. L., Heavens, N. G., Hess, P. G., Lamarque, J. F., and Chuang, P. Y.: Aerosol Impacts on Climate and Biogeochemistry, in: Annual Review of Environment and Resources, edited by: Gadgil, A. and Liverman, D. M., 45–74, https://doi.org/10.1146/annurev-environ-042009-094507, 2011.
Matsui, H., Hamilton, D. S., and Mahowald, N. M.: Black carbon radiative effects highly sensitive to emitted particle size when resolving mixing-state diversity, Nature Communications, 9, https://doi.org/10.1038/s41467-018-05635-1, 2018.
Meng, Y., Zhou, J., Wang, Z., Tang, W., Ma, J., Zhang, T., and Long, Z.: Retrieval of nighttime aerosol optical depth by simultaneous consideration of artificial and natural light sources, Science of the Total Environment, 896, https://doi.org/10.1016/j.scitotenv.2023.166354, 2023.
Mitra, A. K., Sharma, A. K., Soni, V. K., and Kundu, P. K.: Characteristics of recent dust storms over the Indian region using real time multi-satellite observations from the direct broadcast receiving system at IMD, Advances in Space Research, 51, 1195–1203, https://doi.org/10.1016/j.asr.2012.11.017, 2013.
Nembrini, S., König, I. R., and Wright, M. N.: The revival of the Gini importance?, Bioinformatics, 34, 3711–3718, https://doi.org/10.1093/bioinformatics/bty373, 2018.
Ou, Y., Zhao, W., Wang, J., Zhao, W., and Zhang, B.: Characteristics of Aerosol Types in Beijing and the Associations with Air Pollution from 2004 to 2015, Remote Sensing, 9, https://doi.org/10.3390/rs9090898, 2017.
Panicker, A. S., Pandithurai, G., Safai, P. D., and Kewat, S.: Observations of enhanced aerosol longwave radiative forcing over an urban environment, Geophysical Research Letters, 35, https://doi.org/10.1029/2007GL032879, 2008.
Payne, V. H., Mlawer, E. J., Cady-Pereira, K. E., and Moncet, J. L.: Water Vapor Continuum Absorption in the Microwave, IEEE Transactions on Geoscience and Remote Sensing, 49, 2194–2208, https://doi.org/10.1109/TGRS.2010.2091416, 2011.
Pérez-Ramírez, D., Ruiz, B., Aceituno, J., Olmo, F. J., and Alados-Arboledas, L.: Application of Sun/star photometry to derive the aerosol optical depth, International Journal of Remote Sensing, 29, 5113–5132, https://doi.org/10.1080/01431160802036425, 2008.
Pérez-Ramírez, D., Lyamani, H., Olmo, F. J., and Alados-Arboledas, L.: Improvements in star photometry for aerosol characterizations, Journal of Aerosol Science, 42, 737–745, https://doi.org/10.1016/j.jaerosci.2011.06.010, 2011.
Pérez-Ramírez, D., Lyamani, H., Olmo, F. J., Whiteman, D. N., and Alados-Arboledas, L.: Columnar aerosol properties from sun-and-star photometry: statistical comparisons and day-to-night dynamic, Atmos. Chem. Phys., 12, 9719–9738, https://doi.org/10.5194/acp-12-9719-2012, 2012.
Pérez-Ramírez, D., Veselovskii, I., Whiteman, D. N., Suvorina, A., Korenskiy, M., Kolgotin, A., Holben, B., Dubovik, O., Siniuk, A., and Alados-Arboledas, L.: High temporal resolution estimates of columnar aerosol microphysical parameters from spectrum of aerosol optical depth by linear estimation: application to long-term AERONET and star-photometry measurements, Atmos. Meas. Tech., 8, 3117–3133, https://doi.org/10.5194/amt-8-3117-2015, 2015.
Pérez-Ramírez, D., Lyamani, H., Smirnov, A., O'Neill, N. T., Veselovskii, I., Whiteman, D. N., Olmo, F. J., and Alados-Arboledas, L.: Statistical study of day and night hourly patterns of columnar aerosol properties using sun and star photometry, Remote Sensing of Clouds and the Atmosphere XXI, WOS:000391488200014, https://doi.org/10.1117/12.2242372, 2016.
Perrone, M. R., Lorusso, A., and Romano, S.: Diurnal and nocturnal aerosol properties by AERONET sun-sky-lunar photometer measurements along four years, Atmospheric Research, 265, https://doi.org/10.1016/j.atmosres.2021.105889, 2022.
Pierangelo, C., Chédin, A., Heilliette, S., Jacquinet-Husson, N., and Armante, R.: Dust altitude and infrared optical depth from AIRS, Atmos. Chem. Phys., 4, 1813–1822, https://doi.org/10.5194/acp-4-1813-2004, 2004.
Pierangelo, C., Mishchenko, M., Balkanski, Y., and Chédin, A.: Retrieving the effective radius of Saharan dust coarse mode from AIRS, Geophysical Research Letters, 32, L20813, https://doi.org/10.1029/2005GL023425, 2005.
Quan, J. N., Jiang, C. L., Xin, J. Y., Zhao, X. J., Jia, X. C., Liu, Q., Gao, Y., and Chen, D.: Evaluation of satellite aerosol retrievals with in situ aircraft and ground measurements: Contribution of relative humidity, Atmospheric Research, 212, 1–5, https://doi.org/10.1016/j.atmosres.2018.04.024, 2018.
Riemer, N., Ault, A. P., West, M., Craig, R. L., and Curtis, J. H.: Aerosol Mixing State: Measurements, Modeling, and Impacts, Reviews of Geophysics, 57, 187–249, https://doi.org/10.1029/2018RG000615, 2019.
Rogers, R. R., Vaughan, M. A., Hostetler, C. A., Burton, S. P., Ferrare, R. A., Young, S. A., Hair, J. W., Obland, M. D., Harper, D. B., Cook, A. L., and Winker, D. M.: Looking through the haze: evaluating the CALIPSO level 2 aerosol optical depth using airborne high spectral resolution lidar data, Atmos. Meas. Tech., 7, 4317–4340, https://doi.org/10.5194/amt-7-4317-2014, 2014.
Santa Maria, M. and Winker, D.: Sampling uncertainties in observing the global aerosol with a nadir-viewing satellite lidar, Lidar Remote Sensing for Industry and Environmental Monitoring V, WOS:000227658800037, https://doi.org/10.1117/12.583098, 2005.
Sayer, A. M., Hsu, N. C., Lee, J., Kim, W. V., and Dutcher, S. T.: Validation, Stability, and Consistency of MODIS Collection 6.1 and VIIRS Version 1 Deep Blue Aerosol Data Over Land, Journal of Geophysical Research-Atmospheres, 124, 4658–4688, https://doi.org/10.1029/2018JD029598, 2019.
Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J., Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., Kahn, R., Kraucunas, I., Kreidenweis, S. M., Molina, M. J., Nenes, A., Penner, J. E., Prather, K. A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A. R., Rosenfeld, D., Stephens, G., and Wood, R.: Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system, Proceedings of the National Academy of Sciences of the United States of America, 113, 5781–5790, https://doi.org/10.1073/pnas.1514043113, 2016.
Song, Q., Zhang, Z., Yu, H., Kok, J. F., Di Biagio, C., Albani, S., Zheng, J., and Ding, J.: Size-resolved dust direct radiative effect efficiency derived from satellite observations, Atmos. Chem. Phys., 22, 13115–13135, https://doi.org/10.5194/acp-22-13115-2022, 2022.
Stenchikov, G., Robock, A., Ramaswamy, V., Schwarzkopf, M. D., Hamilton, K., and Ramachandran, S.: Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion, Journal of Geophysical Research-Atmospheres, 107, https://doi.org/10.1029/2002JD002090, 2002.
Su, X., Huang, Y. H., Wang, L. C., Cao, M. D., and Feng, L.: Validation and diurnal variation evaluation of MERRA-2 multiple aerosol properties on a global scale, Atmospheric Environment, 311, https://doi.org/10.1016/j.atmosenv.2023.120019, 2023.
Sulaymon, I. D., Zhang, Y. X., Hopke, P. K., Hu, J. L., Zhang, Y., Li, L., Mei, X. D., Gong, K. J., Shi, Z. H., Zhao, B., and Zhao, F. X.: Persistent high PM2.5 pollution driven by unfavorable meteorological conditions during the COVID-19 lockdown period in the Beijing-Tianjin-Hebei region, China, Environmental Research, 198, https://doi.org/10.1016/j.envres.2021.111186, 2021.
Sun, J. Y. T., Veefkind, P., van Velthoven, P., and Levelt, P. F.: Aerosol Absorption Over Land Derived From the Ultra-Violet Aerosol Index by Deep Learning, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 9692–9710, https://doi.org/10.1109/JSTARS.2021.3108669, 2021.
Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., and Feuston, B. P.: Random forest: A classification and regression tool for compound classification and QSAR modeling, Journal of Chemical Information and Computer Sciences, 43, 1947–1958, https://doi.org/10.1021/ci034160g, 2003.
Tao, C. L., Wheiler, K., Yu, C., Cheng, B. D., and Diao, G.: Does the joint prevention and control regulation improve the air quality? A quasi-experiment in the Beijing economic belt during the COVID-19 pandemic, Sustainable Cities and Society, 75, https://doi.org/10.1016/j.scs.2021.103365, 2021.
Tindan, J. Z., Jin, Q., and Pu, B.: Understanding day–night differences in dust aerosols over the dust belt of North Africa, the Middle East, and Asia, Atmos. Chem. Phys., 23, 5435–5466, https://doi.org/10.5194/acp-23-5435-2023, 2023.
Van Leeuwen, G. M. J., Hand, J. W., de Kamer, J. B., and Mizushina, S.: Temperature retrieval algorithm for brain temperature monitoring using microwave brightness temperatures, Electronics Letters, 37, 341–342, https://doi.org/10.1049/el:20010269, 2001.
Varga, A. J. and Breuer, H.: Evaluation of convective parameters derived from pressure level and native ERA5 data and different resolution WRF climate simulations over Central Europe, Climate Dynamics, 58, 1569–1585, https://doi.org/10.1007/s00382-021-05979-3, 2022.
Visioni, D., Bednarz, E. M., Lee, W. R., Kravitz, B., Jones, A., Haywood, J. M., and MacMartin, D. G.: Climate response to off-equatorial stratospheric sulfur injections in three Earth system models – Part 1: Experimental protocols and surface changes, Atmos. Chem. Phys., 23, 663–685, https://doi.org/10.5194/acp-23-663-2023, 2023.
Wang, H. Z., Zhang, R., Wang, G. H., An, Y. Z., and Jin, B. G.: Quality control of Argo temperature and salinity observation profiles, Chinese Journal of Geophysics-Chinese Edition, 55, 577–588, https://doi.org/10.6038/j.issn.0001-5733.2012.02.020, 2012.
Wang, J., Xia, X. G., Wang, P. C., and Christopher, S. A.: Diurnal variability of dust aerosol optical thickness and Angstrom exponent over dust source regions in China, Geophysical Research Letters, 31, https://doi.org/10.1029/2004GL019580, 2004.
Wang, L. T., Wei, Z., Yang, J., Zhang, Y., Zhang, F. F., Su, J., Meng, C. C., and Zhang, Q.: The 2013 severe haze over southern Hebei, China: model evaluation, source apportionment, and policy implications, Atmos. Chem. Phys., 14, 3151–3173, https://doi.org/10.5194/acp-14-3151-2014, 2014.
Wang, N., Hu, Y., Li, X. M., Kang, C., and Yan, L.: AOD Derivation from SDGSAT-1/GLI Dataset in Mega-City Area, Remote Sensing, 15, https://doi.org/10.3390/rs15051343, 2023.
Wang, S. Y., Li, F. X., de Leeuw, G., Fan, C., and Li, Z. Q.: A multilevel downscaling model for enhancing nocturnal aerosol optical depth reanalysis from CAMS over the Beijing-Tianjin-Hebei region, China, Environmental Technology & Innovation, 39, https://doi.org/10.1016/j.eti.2025.104238, 2025.
Wang, X., Mu, X., and Yan, G.: Quantitative Analysis of Aerosol Influence on Suomi-NPP VIIRS Nighttime Light in China, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 3557–3568, https://doi.org/10.1109/JSTARS.2020.3003480, 2020.
Wei, L. Y., Wang, Y., Liu, S., Zhang, G., and Wang, B.: Distinct roles of land cover in regulating spatial variabilities of temperature responses to radiative effects of aerosols and clouds, Environmental Research Letters, 16, https://doi.org/10.1088/1748-9326/ac3f04, 2021.
Xie, Y., Chen, J. X., Liu, D. W., Lv, C. C., Liu, K., and Miao, J. G.: Development and Calibration of a K-Band Ground-Based Hyperspectral Microwave Radiometer for Water Vapor Measurements, Progress in Electromagnetics Research-Pier, 140, 415–438, https://doi.org/10.2528/PIER13050704, 2013.
Yang, Z. M., Zdanski, C., Farkas, D., Bang, J., and Williams, H.: Evaluation of Aerosol Optical Depth (AOD) and PM2.5 associations for air quality assessment, Remote Sensing Applications-Society and Environment, 20, https://doi.org/10.1016/j.rsase.2020.100396, 2020.
Yu, X. N., Zhu, B., and Zhang, M. G.: Seasonal variability of aerosol optical properties over Beijing, Atmospheric Environment, 43, 4095–4101, https://doi.org/10.1016/j.atmosenv.2009.03.061, 2009.
Yu, Y., Kalashnikova, O. V., Garay, M. J., Lee, H., Choi, M., Okin, G. S., Yorks, J. E., Campbell, J. R., and Marquis, J.: A global analysis of diurnal variability in dust and dust mixture using CATS observations, Atmos. Chem. Phys., 21, 1427–1447, https://doi.org/10.5194/acp-21-1427-2021, 2021.
Zhang, J., Jaker, S. L., Reid, J. S., Miller, S. D., Solbrig, J., and Toth, T. D.: Characterization and application of artificial light sources for nighttime aerosol optical depth retrievals using the Visible Infrared Imager Radiometer Suite Day/Night Band, Atmos. Meas. Tech., 12, 3209–3222, https://doi.org/10.5194/amt-12-3209-2019, 2019.
Zhang, L., Liu, M., He, W., Xia, X., Yu, H., Li, S., and Li, J.: Ground Passive Microwave Remote Sensing of Atmospheric Profiles Using WRF Simulations and Machine Learning Techniques, Journal of Meteorological Research, 38, 680–692, https://doi.org/10.1007/s13351-024-4004-2, 2024.
Zhang, X. Y., Xu, X. Y., Chen, H. S., Hu, X. M., and Gao, L.: Dust-planetary boundary layer interactions amplified by entrainment and advections, Atmospheric Research, 278, https://doi.org/10.1016/j.atmosres.2022.106359, 2022.
Zheng, J. Y., Zhang, Z. B., Garnier, A., Yu, H. B., Song, Q. Q., Wang, C. X., Dubuisson, P., and Di Biagio, C.: The thermal infrared optical depth of mineral dust retrieved from integrated CALIOP and IIR observations, Remote Sensing of Environment, 270, https://doi.org/10.1016/j.rse.2021.112841, 2022.
Zheng, J., Zhang, Z., Yu, H., Garnier, A., Song, Q., Wang, C., Di Biagio, C., Kok, J. F., Derimian, Y., and Ryder, C.: Thermal infrared dust optical depth and coarse-mode effective diameter over oceans retrieved from collocated MODIS and CALIOP observations, Atmos. Chem. Phys., 23, 8271–8304, https://doi.org/10.5194/acp-23-8271-2023, 2023.
Zhou, L. A., Wang, C., Miao, S., and Li, J.: Impact of the Complex Terrain in Beijing on Formation of Low-Level Jets, Journal of Meteorological Research, 38, 138–150, https://doi.org/10.1007/s13351-024-3122-1, 2024.
Zhou, M., Wang, J., Chen, X., Xu, X., Colarco, P. R., Miller, S. D., Reid, J. S., Kondragunta, S., Giles, D. M., and Holben, B.: Nighttime smoke aerosol optical depth over US rural areas: First retrieval from VIIRS moonlight observations, Remote Sensing of Environment, 267, https://doi.org/10.1016/j.rse.2021.112717, 2021.
Short summary
This study introduces a novel method to retrieve aerosol optical depth (AOD) at night using ground-based microwave radiometers, overcoming the limitation of traditional shortwave-based techniques that cannot operate in darkness. This result enables continuous aerosol monitoring and highlights microwave radiometry's under-utilized potential in atmospheric research.
This study introduces a novel method to retrieve aerosol optical depth (AOD) at night using...