Articles | Volume 19, issue 3
https://doi.org/10.5194/amt-19-1077-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-19-1077-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Correction of PM2.5 underestimation in low-cost sensors under elevated dust loading using only sensor measurements
Kamaljeet Kaur
CORRESPONDING AUTHOR
Department of Chemical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
Tristalee Mangin
Department of Chemical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
Kerry E. Kelly
Department of Chemical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
Cited articles
AirGradient: https://www.airgradient.com/outdoor/, last access: 7 September 2025.
Airly: https://airly.org/en/, last access: 7 September 2025.
AirNow: https://docs.airnowapi.org/, last access: 16 September 2025.
AirNowTech: https://www.airnowtech.org/, last access: 7 September 2025.
Air Quality Egg: https://airqualityegg.com/home, last access: 7 September 2025.
Ardon-Dryer, K., Dryer, Y., Williams, J. N., and Moghimi, N.: Measurements of PM2.5 with PurpleAir under atmospheric conditions, Atmos. Meas. Tech., 13, 5441–5458, https://doi.org/10.5194/amt-13-5441-2020, 2020.
Ardon-Dryer, K., Clifford, K. R., and Hand, J. L.: Dust Under the Radar: Rethinking How to Evaluate the Impacts of Dust Events on Air Quality in the United States, Geohealth, 7, e2023GH000953, https://doi.org/10.1029/2023GH000953, 2023a.
Ardon-Dryer, K., Gill, T. E., and Tong, D. Q.: When a Dust Storm Is Not a Dust Storm: Reliability of Dust Records From the Storm Events Database and Implications for Geohealth Applications, Geohealth, 7, https://doi.org/10.1029/2022GH000699, 2023b.
Barkjohn, K. K., Gantt, B., and Clements, A. L.: Development and application of a United States-wide correction for PM2.5 data collected with the PurpleAir sensor, Atmos. Meas. Tech., 14, 4617–4637, https://doi.org/10.5194/amt-14-4617-2021, 2021.
Barkjohn, K. K., Holder, A. L., Frederick, S. G., and Clements, A. L.: Correction and Accuracy of PurpleAir PM2.5 Measurements for Extreme Wildfire Smoke, Sensors, 22, 9669, https://doi.org/10.3390/s22249669, 2022.
Brahney, J., Heindel, R. C., Gill, T. E., Carling, G., González-Olalla, J. M., Hand, J., Mallia, D. V., Munroe, J. S., Perry, K., Putman, A. L., Skiles, S. M., Adams, B. R., Aanderud, Z., Aarons, S., Aguirre, D., Ardon-Dryer, K., Blakowski, M. B., Creamean, J. M., Fernandez, D., Foroutan, H., Gaston, C., Hahnenberger, M., Hoch, S., Jones, D. K., Kelly, K. E., Lang, O. I., LeMonte, J., Reynolds, R., Singh, R. P., Sweeney, M., and Merrill, T.: Dust in the Critical Zone: North American case studies, Earth. Sci. Rev., 258, 104942, https://doi.org/10.1016/J.EARSCIREV.2024.104942, 2024.
Clarity: https://www.clarity.io/, last access: 7 September 2025.
Cowell, N., Chapman, L., Bloss, W., and Pope, F.: Field Calibration and Evaluation of an Internet-of-Things-Based Particulate Matter Sensor, Front. Environ. Sci., 9, 798485, https://doi.org/10.3389/fenvs.2021.798485, 2022.
Csavina, J., Field, J., Félix, O., Corral-Avitia, A. Y., Sáez, A. E., and Betterton, E. A.: Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates, Science of The Total Environment, 487, 82–90, https://doi.org/10.1016/J.SCITOTENV.2014.03.138, 2014.
deSouza, P., Barkjohn, K., Clements, A., Lee, J., Kahn, R., Crawford, B., and Kinney, P.: An analysis of degradation in low-cost particulate matter sensors, Environmental Science: Atmospheres, 3, 521–536, https://doi.org/10.1039/D2EA00142J, 2023.
Gautam, P., Ramirez, A., Bair, S., Arnott, W. P., Chow, J. C., Watson, J. G., Moosmüller, H., and Wang, X.: Sizing Accuracy of Low-Cost Optical Particle Sensors Under Controlled Laboratory Conditions, Atmosphere, 16, 502, https://doi.org/10.3390/atmos16050502, 2025.
Goudie, A. S.: Desert dust and human health disorders, Environ. Int., 63, 101–113, https://doi.org/10.1016/J.ENVINT.2013.10.011, 2014.
Hahnenberger, M. and Nicoll, K.: Meteorological characteristics of dust storm events in the eastern Great Basin of Utah, U.S.A., Atmos. Environ., 60, 601–612, https://doi.org/10.1016/J.ATMOSENV.2012.06.029, 2012.
Hand, J. L., Gill, T. E., and Schichtel, B. A.: Spatial and seasonal variability in fine mineral dust and coarse aerosol mass at remote sites across the United States, Journal of Geophysical Research: Atmospheres, 122, 3080–3097, https://doi.org/10.1002/2016JD026290, 2017.
He, M., Kuerbanjiang, N., and Dhaniyala, S.: Performance characteristics of the low-cost Plantower PMS optical sensor, Aerosol Science and Technology, 54, 232–241, https://doi.org/10.1080/02786826.2019.1696015, 2020.
Hong, G. H., Le, T. C., Tu, J. W., Wang, C., Chang, S. C., Yu, J. Y., Lin, G. Y., Aggarwal, S. G., and Tsai, C. J.: Long-term evaluation and calibration of three types of low-cost PM2.5 sensors at different air quality monitoring stations, J. Aerosol Sci., 157, 105829, https://doi.org/10.1016/J.JAEROSCI.2021.105829, 2021.
Hua, J., Zhang, Y., de Foy, B., Mei, X., Shang, J., Zhang, Y., Sulaymon, I. D., and Zhou, D.: Improved PM2.5 concentration estimates from low-cost sensors using calibration models categorized by relative humidity, Aerosol Science and Technology, 55, 600–613, https://doi.org/10.1080/02786826.2021.1873911, 2021.
Jaffe, D. A., Miller, C., Thompson, K., Finley, B., Nelson, M., Ouimette, J., and Andrews, E.: An evaluation of the U.S. EPA's correction equation for PurpleAir sensor data in smoke, dust, and wintertime urban pollution events, Atmos. Meas. Tech., 16, 1311–1322, https://doi.org/10.5194/amt-16-1311-2023, 2023.
Kaur, K. and Kelly, K. E.: Laboratory evaluation of the Alphasense OPC-N3, and the Plantower PMS5003 and PMS6003 sensors, J. Aerosol Sci., 171, 106181, https://doi.org/10.1016/J.JAEROSCI.2023.106181, 2023a.
Kaur, K. and Kelly, K. E.: Performance evaluation of the Alphasense OPC-N3 and Plantower PMS5003 sensor in measuring dust events in the Salt Lake Valley, Utah, Atmos. Meas. Tech., 16, 2455–2470, https://doi.org/10.5194/amt-16-2455-2023, 2023b.
Kaur, K., Krall, J. R., Ivey, C., Holmes, H., and Kelly, K. E.: Long-term PM2.5 source apportionment at 12 sites in the western United States from 2000 to 2020, Atmos. Pollut. Res., 102779, https://doi.org/10.1016/j.apr.2025.102779, 2025.
Kim, K. T., Kim, H., Jeong, S., Lee, Y. S., Zhao, X., and Kim, J. Y.: Coincidence effect of a low-cost particulate matter sensor: Observations from environmental chamber tests at diverse particle concentrations, Atmos. Pollut. Res., 16, 102581, https://doi.org/10.1016/j.apr.2025.102581, 2025.
Kosmopoulos, G., Salamalikis, V., Wilbert, S., Zarzalejo, L. F., Hanrieder, N., Karatzas, S., and Kazantzidis, A.: Investigating the Sensitivity of Low-Cost Sensors in Measuring Particle Number Concentrations across Diverse Atmospheric Conditions in Greece and Spain, Sensors, 23, 6541, https://doi.org/10.3390/s23146541, 2023.
Kuula, J., Mäkelä, T., Aurela, M., Teinilä, K., Varjonen, S., González, Ó., and Timonen, H.: Laboratory evaluation of particle-size selectivity of optical low-cost particulate matter sensors, Atmos. Meas. Tech., 13, 2413–2423, https://doi.org/10.5194/amt-13-2413-2020, 2020.
Lei, H., Wang, J. X. L., Tong, D. Q., and Lee, P.: Merged dust climatology in Phoenix, Arizona based on satellite and station data, Clim. Dyn., 47, 2785–2799, https://doi.org/10.1007/s00382-016-2997-7, 2016.
Lewis, J. M., Kaplan, M. L., Vellore, R., Rabin, R. M., Hallett, J., and Cohn, S. A.: Dust storm over the Black Rock Desert: Larger-scale dynamic signatures, J. Geophys. Res., 116, D06113, https://doi.org/10.1029/2010JD014784, 2011.
Leys, C., Ley, C., Klein, O., Bernard, P., and Licata, L.: Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median, J. Exp. Soc. Psychol., 49, 764–766, https://doi.org/10.1016/J.JESP.2013.03.013, 2013.
Magi, B. I., Cupini, C., Francis, J., Green, M., and Hauser, C.: Evaluation of PM2.5 measured in an urban setting using a low-cost optical particle counter and a Federal Equivalent Method Beta Attenuation Monitor, Aerosol Science and Technology, 54, 147–159, https://doi.org/10.1080/02786826.2019.1619915, 2020.
Mai, C., Wang, Z., Chen, L., Huang, Y., Li, M., Shirazi, A., Altaee, A., and Zhou, J. L.: Field-based calibration and operation of low-cost sensors for particulate matter by linear and nonlinear methods, Atmos. Pollut. Res., 16, 102676, https://doi.org/10.1016/J.APR.2025.102676, 2025.
Malings, C., Tanzer, R., Hauryliuk, A., Saha, P. K., Robinson, A. L., Presto, A. A., and Subramanian, R.: Fine particle mass monitoring with low-cost sensors: Corrections and long-term performance evaluation, Aerosol Science and Technology, 54, 160–174, https://doi.org/10.1080/02786826.2019.1623863, 2020.
Masic, A., Bibic, D., Pikula, B., Blazevic, A., Huremovic, J., and Zero, S.: Evaluation of optical particulate matter sensors under realistic conditions of strong and mild urban pollution, Atmos. Meas. Tech., 13, 6427–6443, https://doi.org/10.5194/amt-13-6427-2020, 2020.
Mathieu-Campbell, M. E., Guo, C., Grieshop, A. P., and Richmond-Bryant, J.: Calibration of PurpleAir low-cost particulate matter sensors: model development for air quality under high relative humidity conditions, Atmos. Meas. Tech., 17, 6735–6749, https://doi.org/10.5194/amt-17-6735-2024, 2024.
NASA Earthdata: https://www.earthdata.nasa.gov/data/instruments/modis/near-real-time-data, last access: 7 September 2025.
Nilson, B., Jackson, P. L., Schiller, C. L., and Parsons, M. T.: Development and evaluation of correction models for a low-cost fine particulate matter monitor, Atmos. Meas. Tech., 15, 3315–3328, https://doi.org/10.5194/amt-15-3315-2022, 2022.
Ouimette, J., Arnott, W. P., Laven, P., Whitwell, R., Radhakrishnan, N., Dhaniyala, S., Sandink, M., Tryner, J., and Volckens, J.: Fundamentals of low-cost aerosol sensor design and operation, Aerosol Science and Technology, 58, 1–15, https://doi.org/10.1080/02786826.2023.2285935, 2024.
Ouimette, J. R., Malm, W. C., Schichtel, B. A., Sheridan, P. J., Andrews, E., Ogren, J. A., and Arnott, W. P.: Evaluating the PurpleAir monitor as an aerosol light scattering instrument, Atmos. Meas. Tech., 15, 655–676, https://doi.org/10.5194/amt-15-655-2022, 2022.
Patel, M. Y., Vannucci, P. F., Kim, J., Berelson, W. M., and Cohen, R. C.: Towards a hygroscopic growth calibration for low-cost PM2.5 sensors, Atmos. Meas. Tech., 17, 1051–1060, https://doi.org/10.5194/amt-17-1051-2024, 2024.
PurpleAir: https://location.purpleair.com/countries?layers=us_epa_aqi%2Caire_y_salud%2Caustralian_aqi%2Cbrazilian_pm25%2Caqhi_plus%2Cchinese_aqi%2Ceuropean_aqi%2Cindia_naqi%2Cindonesia_ispu%2Cnew_south_wales_pm_2_5%2Ctasmania_pm_2_5%2Cuk_daily_aqi%2Cc, last access: 7 September 2025.
QuantAQ: https://quant-aq.com/, last access: 7 September 2025.
Raheja, G., Nimo, J., Appoh, E. K.-E., Essien, B., Sunu, M., Nyante, J., Amegah, M., Quansah, R., Arku, R. E., Penn, S. L., Giordano, M. R., Zheng, Z., Jack, D., Chillrud, S., Amegah, K., Subramanian, R., Pinder, R., Appah-Sampong, E., Tetteh, E. N., Borketey, M. A., Hughes, A. F., and Westervelt, D. M.: Low-Cost Sensor Performance Intercomparison, Correction Factor Development, and 2+ Years of Ambient PM2.5 Monitoring in Accra, Ghana, Environ. Sci. Technol., 57, 10708–10720, https://doi.org/10.1021/acs.est.2c09264, 2023.
Robinson, M. C. and Ardon-Dryer, K.: Characterization of 21 years of dust events across four West Texas regions, Aeolian Res., 67–69, 100930, https://doi.org/10.1016/J.AEOLIA.2024.100930, 2024.
Sandhu, T., Robinson, M. C., Rawlins, E., and Ardon-Dryer, K.: Identification of dust events in the greater Phoenix area, Atmos. Pollut. Res., 15, 102275, https://doi.org/10.1016/J.APR.2024.102275, 2024.
Sayahi, T., Butterfield, A., and Kelly, K. E.: Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors, Environmental Pollution, 245, 932–940, https://doi.org/10.1016/J.ENVPOL.2018.11.065, 2019.
Searle, N., Kaur, K., and Kelly, K.: Technical note: Identifying a performance change in the Plantower PMS 5003 particulate matter sensor, J. Aerosol Sci., 174, 106256, https://doi.org/10.1016/J.JAEROSCI.2023.106256, 2023.
Si, M., Xiong, Y., Du, S., and Du, K.: Evaluation and calibration of a low-cost particle sensor in ambient conditions using machine-learning methods, Atmos. Meas. Tech., 13, 1693–1707, https://doi.org/10.5194/amt-13-1693-2020, 2020.
Sugimoto, N., Shimizu, A., Matsui, I., and Nishikawa, M.: A method for estimating the fraction of mineral dust in particulate matter using PM2.5-to-PM10 ratios, Particuology, 28, 114–120, https://doi.org/10.1016/J.PARTIC.2015.09.005, 2016.
TELLUS: https://www.tellusensors.com/, last access: 7 September 2025.
Tong, D. Q., Dan, M., Wang, T., and Lee, P.: Long-term dust climatology in the western United States reconstructed from routine aerosol ground monitoring, Atmos. Chem. Phys., 12, 5189–5205, https://doi.org/10.5194/acp-12-5189-2012, 2012.
Tryner, J., Mehaffy, J., Miller-Lionberg, D., and Volckens, J.: Effects of aerosol type and simulated aging on performance of low-cost PM sensors, J. Aerosol Sci., 150, 105654, https://doi.org/10.1016/J.JAEROSCI.2020.105654, 2020a.
Tryner, J., L'Orange, C., Mehaffy, J., Miller-Lionberg, D., Hofstetter, J. C., Wilson, A., and Volckens, J.: Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers, Atmos. Environ., 220, 117067, https://doi.org/10.1016/J.ATMOSENV.2019.117067, 2020b.
U.S. EPA: https://www.regulations.gov/document/EPA-HQ-OAR-2023-0642-0031, last access: 9 September 2025a.
U.S. EPA: https://aqs.epa.gov/aqsweb/airdata/download_files.html, last access: 7 September 2025b.
Vogt, M., Schneider, P., Castell, N., and Hamer, P.: Assessment of Low-Cost Particulate Matter Sensor Systems against Optical and Gravimetric Methods in a Field Co-Location in Norway, Atmosphere, 12, 961, https://doi.org/10.3390/ATMOS12080961, 2021.
Wallace, L.: Cracking the code – Matching a proprietary algorithm for a low-cost sensor measuring PM1 and PM2.5, Science of The Total Environment, 893, 164874, https://doi.org/10.1016/J.SCITOTENV.2023.164874, 2023.
Wallace, L., Zhao, T., and Klepeis, N. E.: Calibration of PurpleAir PA-I and PA-II Monitors Using Daily Mean PM2.5 Concentrations Measured in California, Washington, and Oregon from 2017 to 2021, Sensors, 22, 4741, https://doi.org/10.3390/s22134741, 2022.
Weissert, L. F., Henshaw, G. S., Clements, A. L., Duvall, R. M., and Croghan, C.: Seasonal effects in the application of the MOment MAtching (MOMA) remote calibration tool to outdoor PM2.5 air sensors, Atmos. Meas. Tech., 18, 3635–3645, https://doi.org/10.5194/amt-18-3635-2025, 2025.
Short summary
We improved the accuracy of low-cost particulate matter sensor (PMS5003/6003) measurements under dust-dominated conditions common in arid regions. By applying sensor-specific particle mass ratios and a relative humidity cutoff, dust-influenced measurements were identified and PM2.5 concentrations corrected, reducing bias by ~ 50 % relative to regulatory monitors. This method enables real-time PM2.5 correction where reference data are unavailable.
We improved the accuracy of low-cost particulate matter sensor (PMS5003/6003) measurements under...