Articles | Volume 7, issue 11
https://doi.org/10.5194/amt-7-3873-2014
https://doi.org/10.5194/amt-7-3873-2014
Research article
 | 
25 Nov 2014
Research article |  | 25 Nov 2014

FAME-C: cloud property retrieval using synergistic AATSR and MERIS observations

C. K. Carbajal Henken, R. Lindstrot, R. Preusker, and J. Fischer

Related authors

Optimal Estimation Retrieval Framework for Daytime Clear-Sky Total Column Water Vapour from MTG-FCI Near-Infrared Measurements
Jan El Kassar, Cintia Carbajal Henken, Xavier Calbet, Pilar Rípodas, Rene Preusker, and Jürgen Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3605,https://doi.org/10.5194/egusphere-2024-3605, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Measurement report: Can Zenith Wet Delay from GNSS "see" atmospheric turbulence? Insights from case studies across diverse climate zones
Gael Kermarrec, Xavier Calbet, Zhiguo Deng, and Cintia Carbajal Henken
EGUsphere, https://doi.org/10.5194/egusphere-2024-2680,https://doi.org/10.5194/egusphere-2024-2680, 2024
Short summary
Horizontal small-scale variability of water vapor in the atmosphere: implications for intercomparison of data from different measuring systems
Xavier Calbet, Cintia Carbajal Henken, Sergio DeSouza-Machado, Bomin Sun, and Tony Reale
Atmos. Meas. Tech., 15, 7105–7118, https://doi.org/10.5194/amt-15-7105-2022,https://doi.org/10.5194/amt-15-7105-2022, 2022
Short summary
Detection and attribution of aerosol–cloud interactions in large-domain large-eddy simulations with the ICOsahedral Non-hydrostatic model
Montserrat Costa-Surós, Odran Sourdeval, Claudia Acquistapace, Holger Baars, Cintia Carbajal Henken, Christa Genz, Jonas Hesemann, Cristofer Jimenez, Marcel König, Jan Kretzschmar, Nils Madenach, Catrin I. Meyer, Roland Schrödner, Patric Seifert, Fabian Senf, Matthias Brueck, Guido Cioni, Jan Frederik Engels, Kerstin Fieg, Ksenia Gorges, Rieke Heinze, Pavan Kumar Siligam, Ulrike Burkhardt, Susanne Crewell, Corinna Hoose, Axel Seifert, Ina Tegen, and Johannes Quaas
Atmos. Chem. Phys., 20, 5657–5678, https://doi.org/10.5194/acp-20-5657-2020,https://doi.org/10.5194/acp-20-5657-2020, 2020
Short summary
Analysis and quantification of ENSO-linked changes in the tropical Atlantic cloud vertical distribution using 14 years of MODIS observations
Nils Madenach, Cintia Carbajal Henken, René Preusker, Odran Sourdeval, and Jürgen Fischer
Atmos. Chem. Phys., 19, 13535–13546, https://doi.org/10.5194/acp-19-13535-2019,https://doi.org/10.5194/acp-19-13535-2019, 2019

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
3D cloud masking across a broad swath using multi-angle polarimetry and deep learning
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
Atmos. Meas. Tech., 17, 7027–7047, https://doi.org/10.5194/amt-17-7027-2024,https://doi.org/10.5194/amt-17-7027-2024, 2024
Short summary
Dual-frequency (Ka-band and G-band) radar estimates of liquid water content profiles in shallow clouds
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024,https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary
Retrieval of cloud fraction and optical thickness of liquid water clouds over the ocean from multi-angle polarization observations
Claudia Emde, Veronika Pörtge, Mihail Manev, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6769–6789, https://doi.org/10.5194/amt-17-6769-2024,https://doi.org/10.5194/amt-17-6769-2024, 2024
Short summary
Severe-hail detection with C-band dual-polarisation radars using convolutional neural networks
Vincent Forcadell, Clotilde Augros, Olivier Caumont, Kévin Dedieu, Maxandre Ouradou, Cloé David, Jordi Figueras i Ventura, Olivier Laurantin, and Hassan Al-Sakka
Atmos. Meas. Tech., 17, 6707–6734, https://doi.org/10.5194/amt-17-6707-2024,https://doi.org/10.5194/amt-17-6707-2024, 2024
Short summary
Retrieval of cloud fraction using machine learning algorithms based on FY-4A AGRI observations
Jinyi Xia and Li Guan
Atmos. Meas. Tech., 17, 6697–6706, https://doi.org/10.5194/amt-17-6697-2024,https://doi.org/10.5194/amt-17-6697-2024, 2024
Short summary

Cited articles

Baum, B. A., Yang, P., Heymsfield, A. J., Platnick, S., King, M. D., Hu, Y., and Bedka, S. T.: Bulk scattering properties for the remote sensing of ice clouds. Part II: Narrowband models, J. Appl. Meteorol., 44, 1896–1911, 2005.
Bennartz, R. and Fischer, J.: A modified k-distribution approach applied to narrow band water vapour and oxygen absorption estimates in the near infrared, J. Quant. Spectrosc. Ra., 66, 539–553, 2000.
Bourg, L., D'Alba, L., and Colagrande, P.: MERIS Smile effect characterisation and correction, European Space Agency, Paris, Technical note, http://earth.esa.int/pcs/envisat/meris/documentation/MERIS_Smile_Effect.pdf (last access: November 2014), 2008.
Chen, Y., Sun-Mack, S., Minnis, P., Smith, W. L., and Yooung, D. F.: Surface spectral emissivity derived from MODIS data, in: Optical Remote Sensing of the Atmosphere and Clouds III, vol. 361 of Proc. SPIE 4891, https://doi.org/10.1117/12.465995, 2003.
Chen, Y., Sun-Mack, S., Arduini, R. F., and Minnis, P.: Clear-sky and surface narrowband albedo variations derived from VIRS and MODIS Data, in: CONFERENCE ON CLOUD PHYSICS, CD ROM EDITION, 5.6 Atmospheric radiation 12th, Conference, Atmospheric radiation, vol. 12, Atmospheric radiation, Boston, Mass., USA, 2006.
Download
Short summary
Presented here is the FAME-C (Freie Universität Berlin AATSR and MERIS cloud) algorithm, which uses satellite measurements in the visible, near-infrared and infrared part of the spectrum to retrieve cloud macrophysical properties, such as cloud amount and two independent cloud top heights, and cloud optical and microphysical properties, such as cloud top thermodynamic phase, cloud optical thickness and effective radius, which describes the particle size distribution.