Articles | Volume 7, issue 12
https://doi.org/10.5194/amt-7-4023-2014
https://doi.org/10.5194/amt-7-4023-2014
Research article
 | 
01 Dec 2014
Research article |  | 01 Dec 2014

A neural network approach for the simultaneous retrieval of volcanic ash parameters and SO2 using MODIS data

A. Piscini, M. Picchiani, M. Chini, S. Corradini, L. Merucci, F. Del Frate, and S. Stramondo

Related authors

ANALYSIS AND DETECTION OF WILDFIRES BY USING PRISMA HYPERSPECTRAL IMAGERY
D. Spiller, L. Ansalone, S. Amici, A. Piscini, and P. P. Mathieu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 215–222, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-215-2021,https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-215-2021, 2021
Ionospheric anomalies detected by ionosonde and possibly related to crustal earthquakes in Greece
Loredana Perrone, Angelo De Santis, Cristoforo Abbattista, Lucilla Alfonsi, Leonardo Amoruso, Marianna Carbone, Claudio Cesaroni, Gianfranco Cianchini, Giorgiana De Franceschi, Anna De Santis, Rita Di Giovambattista, Dedalo Marchetti, Francisco J. Pavòn-Carrasco, Alessandro Piscini, Luca Spogli, and Francesca Santoro
Ann. Geophys., 36, 361–371, https://doi.org/10.5194/angeo-36-361-2018,https://doi.org/10.5194/angeo-36-361-2018, 2018
Short summary
Geosystemics and Earthquakes
Angelo De Santis, Gianfranco Cianchini, Rita Di Giovambattista, Cristoforo Abbattista, Lucilla Alfonsi, Leonardo Amoruso, Marianna Carbone, Claudio Cesaroni, Giorgiana De Franceschi, Anna De Santis, Alessandro Ippolito, Dedalo Marchetti, Luca Martino, Francisco Javier Pavòn-Carrasco, Loredana Perrone, Alessandro Piscini, Mario Luigi Rainone, Luca Spogli, and Francesca Santoro
Solid Earth Discuss., https://doi.org/10.5194/se-2017-120,https://doi.org/10.5194/se-2017-120, 2018
Revised manuscript not accepted
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Optimal selection of satellite XCO2 images for urban CO2 emission monitoring
Alexandre Danjou, Grégoire Broquet, Andrew Schuh, François-Marie Bréon, and Thomas Lauvaux
Atmos. Meas. Tech., 18, 533–554, https://doi.org/10.5194/amt-18-533-2025,https://doi.org/10.5194/amt-18-533-2025, 2025
Short summary
Separating and quantifying facility-level methane emissions with overlapping plumes for spaceborne methane monitoring
Yiguo Pang, Longfei Tian, Denghui Hu, Shuang Gao, and Guohua Liu
Atmos. Meas. Tech., 18, 455–470, https://doi.org/10.5194/amt-18-455-2025,https://doi.org/10.5194/amt-18-455-2025, 2025
Short summary
Retrieving the atmospheric concentrations of carbon dioxide and methane from the European Copernicus CO2M satellite mission using artificial neural networks
Maximilian Reuter, Michael Hilker, Stefan Noël, Antonio Di Noia, Michael Weimer, Oliver Schneising, Michael Buchwitz, Heinrich Bovensmann, John P. Burrows, Hartmut Bösch, and Ruediger Lang
Atmos. Meas. Tech., 18, 241–264, https://doi.org/10.5194/amt-18-241-2025,https://doi.org/10.5194/amt-18-241-2025, 2025
Short summary
The differences between remote sensing and in situ air pollutant measurements over the Canadian oil sands
Xiaoyi Zhao, Vitali Fioletov, Debora Griffin, Chris McLinden, Ralf Staebler, Cristian Mihele, Kevin Strawbridge, Jonathan Davies, Ihab Abboud, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, and Robert Swap
Atmos. Meas. Tech., 17, 6889–6912, https://doi.org/10.5194/amt-17-6889-2024,https://doi.org/10.5194/amt-17-6889-2024, 2024
Short summary
NitroNet – a machine learning model for the prediction of tropospheric NO2 profiles from TROPOMI observations
Leon Kuhn, Steffen Beirle, Sergey Osipov, Andrea Pozzer, and Thomas Wagner
Atmos. Meas. Tech., 17, 6485–6516, https://doi.org/10.5194/amt-17-6485-2024,https://doi.org/10.5194/amt-17-6485-2024, 2024
Short summary

Cited articles

Allard, P., Carbonnelle, J., Metrich, N., Loyer, H., and Zettwoog, P.: Sulphur output and magma degassing budget of Stromboli volcano, Nature, 368, 326–330, 1994.
Anderson, G. P., Wang, J., and Chrtwynd, J. H.: MODTRAN3: An update and recent validation against airborne high resolution inferometer measurements, In Summaries of the Fifth Annual Jet Propulsion Laboratory Airborne Earth Science Workshop, 95–1(1), 5–8, 1995.
Atkinson, P. M. and Tatnall, A. R. L.: Neural networks in remote sensing, Int. J. Remote Sens., 18, 699–709, 1997.
Bankert, R. L.: Cloud classification of AVHRR imagery in maritime regions using a probabilistic neural network, J. Appl. Meteorol., 33, 909-918, 1994.
Barnes, W. L., Pagano, T. S., and Salomonson, V. V.: Prelaunch characteristics of the ModerateResolution Imaging Spectroradiometer (MODIS) on EOS-AMI, IEEE T. Geosci. Remote Sens., 36, 1088–1100, 1998.
Download