Articles | Volume 7, issue 2
Atmos. Meas. Tech., 7, 553–578, 2014
https://doi.org/10.5194/amt-7-553-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue: Advanced Global Navigation Satellite Systems tropospheric...
Research article 19 Feb 2014
Research article | 19 Feb 2014
A GPS network for tropospheric tomography in the framework of the Mediterranean hydrometeorological observatory Cévennes-Vivarais (southeastern France)
H. Brenot et al.
Related authors
H. Brenot, N. Theys, L. Clarisse, J. van Geffen, J. van Gent, M. Van Roozendael, R. van der A, D. Hurtmans, P.-F. Coheur, C. Clerbaux, P. Valks, P. Hedelt, F. Prata, O. Rasson, K. Sievers, and C. Zehner
Nat. Hazards Earth Syst. Sci., 14, 1099–1123, https://doi.org/10.5194/nhess-14-1099-2014, https://doi.org/10.5194/nhess-14-1099-2014, 2014
H. Brenot, J. Neméghaire, L. Delobbe, N. Clerbaux, P. De Meutter, A. Deckmyn, A. Delcloo, L. Frappez, and M. Van Roozendael
Atmos. Chem. Phys., 13, 5425–5449, https://doi.org/10.5194/acp-13-5425-2013, https://doi.org/10.5194/acp-13-5425-2013, 2013
Olivier Bock, Pierre Bosser, Cyrille Flamant, Erik Doerflinger, Friedhelm Jansen, Romain Fages, Sandrine Bony, and Sabrina Schnitt
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-50, https://doi.org/10.5194/essd-2021-50, 2021
Preprint under review for ESSD
Short summary
Short summary
Measurements from a network of Global Navigation Satellite System (GNSS) receivers operated form the eastern Caribbean islands are used to monitor the total water vapour content in the atmosphere during the EUREC4A field campaign. These data help describe the moisture environment of mesoscale cloud patterns in the Tradewinds with high temporal sampling. They are also useful to assess the accuracy of collocated radiosonde measurements and numerical weather model reanalyses.
Alexane Lovat, Béatrice Vincendon, and Véronique Ducrocq
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-629, https://doi.org/10.5194/hess-2020-629, 2020
Preprint under review for HESS
Short summary
Short summary
The hydrometeorological skills of two new nowcasting systems for forecasting Mediterranean intense rainfall events and floods are investigated. The results reveal that up to 1 h 15/1 h 30 of forecast, the performance of the nowcasting system blending numerical weather prediction and extrapolation of radar estimation is higher than the numerical weather model. For lead times up to 3 h their skills are equivalent in general. Using these nowcasting systems for flash-flood forecasting is also promising.
Marguerite Mathey, Christian Sue, Colin Pagani, Stéphane Baize, Andrea Walpersdorf, Thomas Bodin, Laurent Husson, Estelle Hannouz, and Bertrand Potin
Solid Earth Discuss., https://doi.org/10.5194/se-2020-196, https://doi.org/10.5194/se-2020-196, 2020
Preprint under review for SE
Olivier Nuissier, Fanny Duffourg, Maxime Martinet, Véronique Ducrocq, and Christine Lac
Atmos. Chem. Phys., 20, 14649–14667, https://doi.org/10.5194/acp-20-14649-2020, https://doi.org/10.5194/acp-20-14649-2020, 2020
Short summary
Short summary
This present article demonstrates how numerical simulations with very high horizontal resolution (150 m) can contribute to better understanding the key physical processes (turbulence and microphysics) that lead to Mediterranean heavy precipitation.
Christian Vincent, Diego Cusicanqui, Bruno Jourdain, Olivier Laarman, Delphine Six, Adrien Gilbert, Andrea Walpersdorf, Antoine Rabatel, Luc Piard, Florent Gimbert, Olivier Gagliardini, Vincent Peyaud, Laurent Arnaud, Emmanuel Thibert, Fanny Brun, and Ugo Nanni
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-239, https://doi.org/10.5194/tc-2020-239, 2020
Revised manuscript accepted for TC
Short summary
Short summary
In situ glacier point mass-balances data are crucial to assess climate change in different regions of the world. Unfortunately, these data are rare because huge efforts are required to conduct in situ measurements on glaciers. Here, we propose a new approach from remote sensing observations. The method has been tested on Argentière and Mer de Glace glaciers (France). It should be possible to apply this method to high spatial resolution satellite images as well on numerous glaciers in the world.
Maxime Mouyen, Philippe Steer, Kuo-Jen Chang, Nicolas Le Moigne, Cheinway Hwang, Wen-Chi Hsieh, Louise Jeandet, Laurent Longuevergne, Ching-Chung Cheng, Jean-Paul Boy, and Frédéric Masson
Earth Surf. Dynam., 8, 555–577, https://doi.org/10.5194/esurf-8-555-2020, https://doi.org/10.5194/esurf-8-555-2020, 2020
Short summary
Short summary
Land erosion creates sediment particles that are redistributed from mountains to oceans through climatic, tectonic and human activities, but measuring the mass of redistributed sediment is difficult. Here we describe a new method combining gravity and photogrammetry measurements, which make it possible to weigh the mass of sediment redistributed by a landslide and a river in Taiwan from 2015 to 2017. Trying this method in other regions will help us to better understand the erosion process.
César Sauvage, Cindy Lebeaupin Brossier, Marie-Noëlle Bouin, and Véronique Ducrocq
Atmos. Chem. Phys., 20, 1675–1699, https://doi.org/10.5194/acp-20-1675-2020, https://doi.org/10.5194/acp-20-1675-2020, 2020
Short summary
Short summary
Air–sea exchanges during Mediterranean heavy precipitation events are key and their representation must be improved for high-resolution weather forecasts. This study investigates the mechanisms acting at the air–sea interface during a case that occurred in southern France. To focus on the impact of sea state, we developed and used an original coupled air–wave model. Results show modifications of the forecast for the air–sea fluxes, the near-surface wind and the location of precipitation.
Mary Borderies, Olivier Caumont, Julien Delanoë, Véronique Ducrocq, Nadia Fourrié, and Pascal Marquet
Nat. Hazards Earth Syst. Sci., 19, 907–926, https://doi.org/10.5194/nhess-19-907-2019, https://doi.org/10.5194/nhess-19-907-2019, 2019
Short summary
Short summary
The potential of W-band radar reflectivity to improve the quality of analyses and forecasts of heavy precipitation events in the Mediterranean area is investigated. The 1D + 3DVar assimilation method has been adapted to assimilate the W-band reflectivity in the Météo-France kilometre-scale NWP model AROME. The results suggest that the joint assimilation of W-band reflectivity and horizontal wind profiles lead to a slight improvement of moisture analyses and rainfall precipitation forecasts.
Mary Borderies, Olivier Caumont, Julien Delanoë, Véronique Ducrocq, and Nadia Fourrié
Nat. Hazards Earth Syst. Sci., 19, 821–835, https://doi.org/10.5194/nhess-19-821-2019, https://doi.org/10.5194/nhess-19-821-2019, 2019
Short summary
Short summary
The study reports on the impact of the assimilation of wind data from airborne Doppler cloud-profiling radar in a kilometre-scale NWP model on predicting heavy precipitation events in the Mediterranean area. The positive impact of the assimilation of such data is particularly evidenced for a heavy precipitation event and results are slightly encouraging over a 45-day period. In addition, the impact of the length of the assimilation window in a 3h-3DVar assimilation system is investigated.
Alexane Lovat, Béatrice Vincendon, and Véronique Ducrocq
Hydrol. Earth Syst. Sci., 23, 1801–1818, https://doi.org/10.5194/hess-23-1801-2019, https://doi.org/10.5194/hess-23-1801-2019, 2019
Short summary
Short summary
This work aims to estimate the extent to which the terrain descriptors and the spatial resolution of the hydrological model influence flash-flood modelling at the local and basin scale. The skill of the hydrological simulations is evaluated with conventional data (such as discharge measurements) and impact data (post-event surveys and high-water marks). The results reveal that the spatial resolution has the largest impact on the hydrological simulations, larger than soil texture and land cover.
Keun-Ok Lee, Cyrille Flamant, Fanny Duffourg, Véronique Ducrocq, and Jean-Pierre Chaboureau
Atmos. Chem. Phys., 18, 16845–16862, https://doi.org/10.5194/acp-18-16845-2018, https://doi.org/10.5194/acp-18-16845-2018, 2018
Hugues Brenot, Witold Rohm, Michal Kačmařík, Gregor Möller, André Sá, Damian Tondaś, Lukas Rapant, Riccardo Biondi, Toby Manning, and Cédric Champollion
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-292, https://doi.org/10.5194/amt-2018-292, 2018
Revised manuscript not accepted
Short summary
Short summary
The increasing number of navigation satellites orbiting the Earth and the continuous world wide deployment of dense networks will enable more present and future GNSS applications in the field of atmospheric monitoring. This study suggests some elements of progress in methodology to highlight the interest of ensemble tomography solution for improving the understanding of severe weather conditions, especially the initiation of the deep convection.
Christine Lac, Jean-Pierre Chaboureau, Valéry Masson, Jean-Pierre Pinty, Pierre Tulet, Juan Escobar, Maud Leriche, Christelle Barthe, Benjamin Aouizerats, Clotilde Augros, Pierre Aumond, Franck Auguste, Peter Bechtold, Sarah Berthet, Soline Bielli, Frédéric Bosseur, Olivier Caumont, Jean-Martial Cohard, Jeanne Colin, Fleur Couvreux, Joan Cuxart, Gaëlle Delautier, Thibaut Dauhut, Véronique Ducrocq, Jean-Baptiste Filippi, Didier Gazen, Olivier Geoffroy, François Gheusi, Rachel Honnert, Jean-Philippe Lafore, Cindy Lebeaupin Brossier, Quentin Libois, Thibaut Lunet, Céline Mari, Tomislav Maric, Patrick Mascart, Maxime Mogé, Gilles Molinié, Olivier Nuissier, Florian Pantillon, Philippe Peyrillé, Julien Pergaud, Emilie Perraud, Joris Pianezze, Jean-Luc Redelsperger, Didier Ricard, Evelyne Richard, Sébastien Riette, Quentin Rodier, Robert Schoetter, Léo Seyfried, Joël Stein, Karsten Suhre, Marie Taufour, Odile Thouron, Sandra Turner, Antoine Verrelle, Benoît Vié, Florian Visentin, Vincent Vionnet, and Philippe Wautelet
Geosci. Model Dev., 11, 1929–1969, https://doi.org/10.5194/gmd-11-1929-2018, https://doi.org/10.5194/gmd-11-1929-2018, 2018
Short summary
Short summary
This paper presents the Meso-NH model version 5.4, which is an atmospheric non-hydrostatic research model that is applied on synoptic to turbulent scales. The model includes advanced numerical techniques and state-of-the-art physics parameterization schemes. It has been expanded to provide capabilities for a range of Earth system prediction applications such as chemistry and aerosols, electricity and lightning, hydrology, wildland fires, volcanic eruptions, and cyclones with ocean coupling.
Aurore Voldoire, Bertrand Decharme, Joris Pianezze, Cindy Lebeaupin Brossier, Florence Sevault, Léo Seyfried, Valérie Garnier, Soline Bielli, Sophie Valcke, Antoinette Alias, Mickael Accensi, Fabrice Ardhuin, Marie-Noëlle Bouin, Véronique Ducrocq, Stéphanie Faroux, Hervé Giordani, Fabien Léger, Patrick Marsaleix, Romain Rainaud, Jean-Luc Redelsperger, Evelyne Richard, and Sébastien Riette
Geosci. Model Dev., 10, 4207–4227, https://doi.org/10.5194/gmd-10-4207-2017, https://doi.org/10.5194/gmd-10-4207-2017, 2017
Short summary
Short summary
This study presents the principles of the new coupling interface based on the SURFEX multi-surface model and the OASIS3-MCT coupler. As SURFEX can be plugged into several atmospheric models, it can be used in a wide range of applications. The objective of this development is to build and share a common structure for the atmosphere–surface coupling of all these applications, involving on the one hand atmospheric models and on the other hand ocean, ice, hydrology, and wave models.
A. Hally, O. Caumont, L. Garrote, E. Richard, A. Weerts, F. Delogu, E. Fiori, N. Rebora, A. Parodi, A. Mihalović, M. Ivković, L. Dekić, W. van Verseveld, O. Nuissier, V. Ducrocq, D. D'Agostino, A. Galizia, E. Danovaro, and A. Clematis
Nat. Hazards Earth Syst. Sci., 15, 537–555, https://doi.org/10.5194/nhess-15-537-2015, https://doi.org/10.5194/nhess-15-537-2015, 2015
E. Defer, J.-P. Pinty, S. Coquillat, J.-M. Martin, S. Prieur, S. Soula, E. Richard, W. Rison, P. Krehbiel, R. Thomas, D. Rodeheffer, C. Vergeiner, F. Malaterre, S. Pedeboy, W. Schulz, T. Farges, L.-J. Gallin, P. Ortéga, J.-F. Ribaud, G. Anderson, H.-D. Betz, B. Meneux, V. Kotroni, K. Lagouvardos, S. Roos, V. Ducrocq, O. Roussot, L. Labatut, and G. Molinié
Atmos. Meas. Tech., 8, 649–669, https://doi.org/10.5194/amt-8-649-2015, https://doi.org/10.5194/amt-8-649-2015, 2015
Short summary
Short summary
The paper summarizes the scientific objectives and the observational/modeling strategy of the atmospheric electricity PEACH project of the HyMeX program focusing on the lightning activity and the electrical state of Mediterranean thunderstorms. Examples of concurrent observations from radio frequency to acoustic for regular and atypical lightning flashes and for storms are discussed, showing the unique and comprehensive description of lightning flashes recorded during a dedicated field campaign.
V. Noel, H. Chepfer, C. Hoareau, M. Reverdy, and G. Cesana
Atmos. Meas. Tech., 7, 1597–1603, https://doi.org/10.5194/amt-7-1597-2014, https://doi.org/10.5194/amt-7-1597-2014, 2014
H. Brenot, N. Theys, L. Clarisse, J. van Geffen, J. van Gent, M. Van Roozendael, R. van der A, D. Hurtmans, P.-F. Coheur, C. Clerbaux, P. Valks, P. Hedelt, F. Prata, O. Rasson, K. Sievers, and C. Zehner
Nat. Hazards Earth Syst. Sci., 14, 1099–1123, https://doi.org/10.5194/nhess-14-1099-2014, https://doi.org/10.5194/nhess-14-1099-2014, 2014
A. Hally, E. Richard, and V. Ducrocq
Nat. Hazards Earth Syst. Sci., 14, 1071–1084, https://doi.org/10.5194/nhess-14-1071-2014, https://doi.org/10.5194/nhess-14-1071-2014, 2014
H. Brenot, J. Neméghaire, L. Delobbe, N. Clerbaux, P. De Meutter, A. Deckmyn, A. Delcloo, L. Frappez, and M. Van Roozendael
Atmos. Chem. Phys., 13, 5425–5449, https://doi.org/10.5194/acp-13-5425-2013, https://doi.org/10.5194/acp-13-5425-2013, 2013
M. Reverdy, V. Noel, H. Chepfer, and B. Legras
Atmos. Chem. Phys., 12, 12081–12101, https://doi.org/10.5194/acp-12-12081-2012, https://doi.org/10.5194/acp-12-12081-2012, 2012
Related subject area
Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Detection and quantification of CH4 plumes using the WFM-DOAS retrieval on AVIRIS-NG hyperspectral data
Anthropogenic CO2 monitoring satellite mission: the need for multi-angle polarimetric observations
Estimating real driving emissions from multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements at the A60 motorway near Mainz, Germany
Methane retrieved from TROPOMI: improvement of the data product and validation of the first 2 years of measurements
Accounting for the photochemical variation in stratospheric NO2 in the SAGE III/ISS solar occultation retrieval
Ozone Monitoring Instrument (OMI) Aura nitrogen dioxide standard product version 4.0 with improved surface and cloud treatments
A local- to national-scale inverse modeling system to assess the potential of spaceborne CO2 measurements for the monitoring of anthropogenic emissions
XCO2 estimates from the OCO-2 measurements using a neural network approach
Quantifying the impact of aerosol scattering on the retrieval of methane from airborne remote sensing measurements
Quantifying CO2 emissions of a city with the Copernicus Anthropogenic CO2 Monitoring satellite mission
An improved TROPOMI tropospheric HCHO retrieval over China
Retrieval of daytime mesospheric ozone using OSIRIS observations of O2 (a1Δg) emission
Version 2 Ozone Monitoring Instrument SO2 product (OMSO2 V2): new anthropogenic SO2 vertical column density dataset
The quantification of NOx and SO2 point source emission flux errors of mobile differential optical absorption spectroscopy on the basis of the Gaussian dispersion model: a simulation study
Probabilistic retrieval of volcanic SO2 layer height and partial column density using the Cross-track Infrared Sounder (CrIS)
Impact of using a new ultraviolet ozone absorption cross-section dataset on OMI ozone profile retrievals
Residual Temperature Bias Effects in LIMS Stratospheric Ozone and Water Vapor
An examination of enhanced atmospheric methane detection methods for predicting performance of a novel multiband uncooled radiometer imager
Ground-based Fourier transform infrared (FTIR) O3 retrievals from the 3040 cm−1 spectral range at Xianghe, China
Can a regional-scale reduction of atmospheric CO2 during the COVID-19 pandemic be detected from space? A case study for East China using satellite XCO2 retrievals
New Observations of Upper Tropospheric NO2 from TROPOMI
Radiative transfer acceleration based on the Principal Component Analysis and Look-Up Table of corrections: Optimization and application to UV ozone profile retrievals
Estimation of the error covariance matrix for IASI radiances and its impact on ozone analyses
Spectroscopic Imaging of Sub-Kilometer Spatial Structure in Lower Tropospheric Water Vapor
Establishment of AIRS climate-level radiometric stability using radiance anomaly retrievals of minor gases and sea surface temperature
MAX-DOAS measurements of tropospheric NO2 and HCHO in Munich and the comparison to OMI and TROPOMI satellite observations
Overview: Estimating and reporting uncertainties in remotely sensed atmospheric composition and temperature
CLIMCAPS observing capability for temperature, moisture, and trace gases from AIRS/AMSU and CrIS/ATMS
Three-dimensional radiative transfer effects on airborne and ground-based trace gas remote sensing
A new TROPOMI product for tropospheric NO2 columns over East Asia with explicit aerosol corrections
Total column water vapor retrieval for Global Ozone Monitoring Experience-2 (GOME-2) visible blue observations
Two-dimensional monitoring of air pollution in Madrid using a MAXDOAS-2D instrument
Instrumental characteristics and potential greenhouse gas measurement capabilities of the Compact High-Spectral-Resolution Infrared Spectrometer: CHRIS
Can statistics of turbulent tracer dispersion be inferred from camera observations of SO2 in the ultraviolet? A modelling study
A comparison of OH nightglow volume emission rates as measured by SCIAMACHY and SABER
Net CO2 fossil fuel emissions of Tokyo estimated directly from measurements of the Tsukuba TCCON site and radiosondes
Development of on-site self-calibration and retrieval methods for sky-radiometer observations of precipitable water vapor
Discrete-wavelength DOAS NO2 slant column retrievals from OMI and TROPOMI
Estimates of lightning NOx production based on high-resolution OMI NO2 retrievals over the continental US
S5P TROPOMI NO2 slant column retrieval: method, stability, uncertainties and comparisons with OMI
Applying FP_ILM to the retrieval of geometry-dependent effective Lambertian equivalent reflectivity (GE_LER) daily maps from UVN satellite measurements
Ensemble-based satellite-derived carbon dioxide and methane column-averaged dry-air mole fraction data sets (2003–2018) for carbon and climate applications
An improved air mass factor calculation for nitrogen dioxide measurements from the Global Ozone Monitoring Experiment-2 (GOME-2)
XCO2 observations using satellite measurements with moderate spectral resolution: investigation using GOSAT and OCO-2 measurements
Atmospheric ammonia retrieval from the TANSO-FTS/GOSAT thermal infrared sounder
First data set of H2O/HDO columns from the Tropospheric Monitoring Instrument (TROPOMI)
A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor
Detectability of CO2 emission plumes of cities and power plants with the Copernicus Anthropogenic CO2 Monitoring (CO2M) mission
Lee wave detection over the Mediterranean Sea using the Advanced Infra-Red WAter Vapour Estimator (AIRWAVE) total column water vapour (TCWV) dataset
The Complete Data Fusion for a Full Exploitation of Copernicus Atmospheric Sentinel Level 2 Products
Jakob Borchardt, Konstantin Gerilowski, Sven Krautwurst, Heinrich Bovensmann, Andrew K. Thorpe, David R. Thompson, Christian Frankenberg, Charles E. Miller, Riley M. Duren, and John Philip Burrows
Atmos. Meas. Tech., 14, 1267–1291, https://doi.org/10.5194/amt-14-1267-2021, https://doi.org/10.5194/amt-14-1267-2021, 2021
Short summary
Short summary
The AVIRIS-NG hyperspectral imager has been used successfully to identify and quantify anthropogenic methane sources utilizing different retrieval and inversion methods. Here, we examine the adaption and application of the WFM-DOAS algorithm to AVIRIS-NG measurements to retrieve local methane column enhancements, compare the results with other retrievals, and quantify the uncertainties resulting from the retrieval method. Additionally, we estimate emissions from five detected methane plumes.
Stephanie P. Rusli, Otto Hasekamp, Joost aan de Brugh, Guangliang Fu, Yasjka Meijer, and Jochen Landgraf
Atmos. Meas. Tech., 14, 1167–1190, https://doi.org/10.5194/amt-14-1167-2021, https://doi.org/10.5194/amt-14-1167-2021, 2021
Short summary
Short summary
This study investigates the added value of multi-angle polarimeter (MAP) measurements for XCO2 retrievals, particularly in the context of the Copernicus Anthropogenic Carbon Dioxide Monitoring (CO2M) mission. In this paper, we derive the required MAP instrument specification, and we demonstrate that MAP observations significantly improve the retrieval performance and are needed to meet the XCO2 precision and accuracy requirements of the CO2M mission.
Bianca Lauster, Steffen Dörner, Steffen Beirle, Sebastian Donner, Sergey Gromov, Katharina Uhlmannsiek, and Thomas Wagner
Atmos. Meas. Tech., 14, 769–783, https://doi.org/10.5194/amt-14-769-2021, https://doi.org/10.5194/amt-14-769-2021, 2021
Short summary
Short summary
In urban areas, road traffic is a dominant source of nitrogen oxides. In this study, two multi-axis differential optical absorption spectroscopy (MAX-DOAS) instruments on opposite sides of a motorway were used to measure the nitrogen dioxide absorption near Mainz, Germany. Total nitrogen oxide emissions are estimated for the occurring traffic flux. We show that the measured emissions systematically exceed the maximum expected emissions calculated from the European emission standards.
Alba Lorente, Tobias Borsdorff, Andre Butz, Otto Hasekamp, Joost aan de Brugh, Andreas Schneider, Lianghai Wu, Frank Hase, Rigel Kivi, Debra Wunch, David F. Pollard, Kei Shiomi, Nicholas M. Deutscher, Voltaire A. Velazco, Coleen M. Roehl, Paul O. Wennberg, Thorsten Warneke, and Jochen Landgraf
Atmos. Meas. Tech., 14, 665–684, https://doi.org/10.5194/amt-14-665-2021, https://doi.org/10.5194/amt-14-665-2021, 2021
Short summary
Short summary
TROPOMI aboard Sentinel-5P satellite provides methane (CH4) measurements with exceptional temporal and spatial resolution. The study describes a series of improvements developed to retrieve CH4 from TROPOMI. The updated CH4 product features (among others) a more accurate a posteriori correction derived independently of any reference data. The validation of the improved data product shows good agreement with ground-based and satellite measurements, which highlights the quality of the TROPOMI CH4.
Kimberlee Dubé, Adam Bourassa, Daniel Zawada, Douglas Degenstein, Robert Damadeo, David Flittner, and William Randel
Atmos. Meas. Tech., 14, 557–566, https://doi.org/10.5194/amt-14-557-2021, https://doi.org/10.5194/amt-14-557-2021, 2021
Short summary
Short summary
SAGE III/ISS measures profiles of NO2; however the algorithm to convert raw measurements to NO2 concentration neglects variations caused by changes in chemistry over the course of a day. We devised a procedure to account for these diurnal variations and assess their impact on NO2 measurements from SAGE III/ISS. We find that the new NO2 concentration is more than 10 % lower than NO2 from the standard algorithm below 30 km, showing that this effect is important to consider at lower altitudes.
Lok N. Lamsal, Nickolay A. Krotkov, Alexander Vasilkov, Sergey Marchenko, Wenhan Qin, Eun-Su Yang, Zachary Fasnacht, Joanna Joiner, Sungyeon Choi, David Haffner, William H. Swartz, Bradford Fisher, and Eric Bucsela
Atmos. Meas. Tech., 14, 455–479, https://doi.org/10.5194/amt-14-455-2021, https://doi.org/10.5194/amt-14-455-2021, 2021
Short summary
Short summary
The NASA standard nitrogen dioxide (NO2) version 4.0 product for OMI Aura incorporates the most salient improvements. It represents the first global satellite trace gas retrieval with OMI–MODIS synergy accounting for surface reflectance anisotropy in cloud and NO2 retrievals. Improved spectral fitting procedures for NO2 and oxygen dimer (for cloud) retrievals and reliance on high-resolution field-of-view-specific input information for NO2 and cloud retrievals help enhance the NO2 data quality.
Diego Santaren, Grégoire Broquet, François-Marie Bréon, Frédéric Chevallier, Denis Siméoni, Bo Zheng, and Philippe Ciais
Atmos. Meas. Tech., 14, 403–433, https://doi.org/10.5194/amt-14-403-2021, https://doi.org/10.5194/amt-14-403-2021, 2021
Short summary
Short summary
Atmospheric transport inversions with synthetic data are used to assess the potential of new satellite observations of atmospheric CO2 to monitor anthropogenic emissions from regions, cities and large industrial plants. The analysis, applied to a large ensemble of sources in western Europe, shows a strong dependence of the results on different characteristics of the spaceborne instrument, on the source emission budgets and spreads, and on the wind conditions.
Leslie David, François-Marie Bréon, and Frédéric Chevallier
Atmos. Meas. Tech., 14, 117–132, https://doi.org/10.5194/amt-14-117-2021, https://doi.org/10.5194/amt-14-117-2021, 2021
Short summary
Short summary
This paper shows that a neural network (NN) approach can be used to process spaceborne observations from the OCO-2 satellite and retrieve both surface pressure and atmospheric CO2 content. The accuracy evaluation indicates that the retrievals have an accuracy that is at least as good as those of the operational approach, which relies on complex algorithms and is computer intensive. The NN approach is therefore a promising alternative for the processing of CO2-monitoring missions.
Yunxia Huang, Vijay Natraj, Zhao-Cheng Zeng, Pushkar Kopparla, and Yuk L. Yung
Atmos. Meas. Tech., 13, 6755–6769, https://doi.org/10.5194/amt-13-6755-2020, https://doi.org/10.5194/amt-13-6755-2020, 2020
Short summary
Short summary
As a greenhouse gas with strong global warming potential, atmospheric methane emissions have attracted a great deal of attention. However, accurate assessment of these emissions is challenging in the presence of atmospheric particulates called aerosols. We quantify the aerosol impact on methane quantification from airborne measurements using two techniques, one that has traditionally been used by the imaging spectroscopy community and the other commonly employed in trace gas remote sensing.
Gerrit Kuhlmann, Dominik Brunner, Grégoire Broquet, and Yasjka Meijer
Atmos. Meas. Tech., 13, 6733–6754, https://doi.org/10.5194/amt-13-6733-2020, https://doi.org/10.5194/amt-13-6733-2020, 2020
Short summary
Short summary
The European CO2M mission is a proposed constellation of CO2 imaging satellites expected to monitor CO2 emissions of large cities. Using synthetic observations, we show that a constellation of two or more satellites should be able to quantify Berlin's annual emissions with 10–20 % accuracy, even when considering atmospheric transport model errors. We therefore expect that CO2M will make an important contribution to the monitoring and verification of CO2 emissions from cities worldwide.
Wenjing Su, Cheng Liu, Ka Lok Chan, Qihou Hu, Haoran Liu, Xiangguang Ji, Yizhi Zhu, Ting Liu, Chengxin Zhang, Yujia Chen, and Jianguo Liu
Atmos. Meas. Tech., 13, 6271–6292, https://doi.org/10.5194/amt-13-6271-2020, https://doi.org/10.5194/amt-13-6271-2020, 2020
Short summary
Short summary
The paper presents an improved retrieval of the TROPOMI tropospheric HCHO column over China. The new retrieval optimized both slant column retrieval and air mass factor calculation for TROPOMI observations of HCHO over China. The improved TROPOMI HCHO is subsequently validated by MAX-DOAS observations. Compared to the operational product, the improved HCHO agrees better with the MAX-DOAS data and thus is better suited for the analysis of regional- and city-scale pollution in China.
Anqi Li, Chris Z. Roth, Kristell Pérot, Ole Martin Christensen, Adam Bourassa, Doug A. Degenstein, and Donal P. Murtagh
Atmos. Meas. Tech., 13, 6215–6236, https://doi.org/10.5194/amt-13-6215-2020, https://doi.org/10.5194/amt-13-6215-2020, 2020
Short summary
Short summary
The OSIRIS IR imager, one of the instruments on the Odin satellite, routinely measures the oxygen airglow at 1.27 μm. In this study, we primarily focus on the steps done for retrieving the calibrated IRA band limb radiance, the volume emission rate of O2(a1∆g) and finally the ozone number density. Specifically, we use a novel approach to address the issue of the measurements that were made close to the local sunrise, where the O2(a1∆g) diverges from the equilibrium state.
Can Li, Nickolay A. Krotkov, Peter J. T. Leonard, Simon Carn, Joanna Joiner, Robert J. D. Spurr, and Alexander Vasilkov
Atmos. Meas. Tech., 13, 6175–6191, https://doi.org/10.5194/amt-13-6175-2020, https://doi.org/10.5194/amt-13-6175-2020, 2020
Short summary
Short summary
Sulfur dioxide (SO2) is an important pollutant that causes haze and acid rain. The Ozone Monitoring Instrument (OMI) has been providing global observation of SO2 from space for over 15 years. In this paper, we introduce a new OMI SO2 dataset for global pollution monitoring. The dataset better accounts for the influences of different factors such as location and sun and satellite angles, leading to improved data quality. The new OMI SO2 dataset is publicly available through NASA's data center.
Yeyuan Huang, Ang Li, Thomas Wagner, Yang Wang, Zhaokun Hu, Pinhua Xie, Jin Xu, Hongmei Ren, Julia Remmers, Xiaoyi Fang, and Bing Dang
Atmos. Meas. Tech., 13, 6025–6051, https://doi.org/10.5194/amt-13-6025-2020, https://doi.org/10.5194/amt-13-6025-2020, 2020
Short summary
Short summary
Mobile DOAS has become an important tool for the quantification of emission sources. In this study, we focused on the error budget of mobile DOAS measurements from NOx and SO2 point sources based on the model simulations, and we also offered recommendations for the optimum settings of such measurements.
David M. Hyman and Michael J. Pavolonis
Atmos. Meas. Tech., 13, 5891–5921, https://doi.org/10.5194/amt-13-5891-2020, https://doi.org/10.5194/amt-13-5891-2020, 2020
Short summary
Short summary
Understanding the lateral extent, altitude, and amount of sulfur dioxide (SO2) is important for studying volcanic clouds in support of aviation safety and for analyzing the effects of volcanoes on global climate.
In this study, we detail an enhanced satellite measurement that provides probability distributions for the altitude and concentration of SO2 instead of single estimates using the Cross-track Infrared Sounder (CrIS) on the Joint Polar Satellite System (JPSS) series of satellites.
Juseon Bak, Xiong Liu, Manfred Birk, Georg Wagner, Iouli E. Gordon, and Kelly Chance
Atmos. Meas. Tech., 13, 5845–5854, https://doi.org/10.5194/amt-13-5845-2020, https://doi.org/10.5194/amt-13-5845-2020, 2020
Short summary
Short summary
This paper evaluates different sets of high-resolution ozone absorption cross-section data for use in atmospheric ozone profile measurements in the Hartley and Huggins bands with a particular focus on BDM 1995 (Daumont et al. 1992; Brion et al., 1993; Malicet et al., 1995) currently used in our retrievals and a new laboratory dataset by Birk and Wagner (BW) (2018).
Ellis Remsberg, V. Lynn Harvey, Arlin Krueger, and Murali Natarajan
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-322, https://doi.org/10.5194/amt-2020-322, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
The LIMS satellite instrument operated in 1978/1979 and provided profiles of temperature T and of the species O3 and H2O. LIMS viewed the atmosphere in opposite directions on its ascending (A) vs descending (D) orbital segments. We find that (A-D) diagnostic plots of O3 and H2O contain residual T biases, which is a problem for profile assimilation in re-analyses. Even so, the combined, or A+D, data yield O3 and H2O fields that agree well with that of the dynamical tracer, potential vorticity.
Cody M. Webber and John P. Kerekes
Atmos. Meas. Tech., 13, 5359–5367, https://doi.org/10.5194/amt-13-5359-2020, https://doi.org/10.5194/amt-13-5359-2020, 2020
Short summary
Short summary
Here we present a study performed to determine the methane detection capabilities of a novel remote thermal instrument, the Multiband Uncooled Radiometer Imager. We utilize a novel methane detection approach, the normalized differential methane index, that when applied to simulated multispectral thermal imagery with a single spectral channel dedicated to methane detection shows similar results to a state-of-the-art method, the matched-filter approach.
Minqiang Zhou, Pucai Wang, Bavo Langerock, Corinne Vigouroux, Christian Hermans, Nicolas Kumps, Ting Wang, Yang Yang, Denghui Ji, Liang Ran, Jinqiang Zhang, Yuejian Xuan, Hongbin Chen, Françoise Posny, Valentin Duflot, Jean-Marc Metzger, and Martine De Mazière
Atmos. Meas. Tech., 13, 5379–5394, https://doi.org/10.5194/amt-13-5379-2020, https://doi.org/10.5194/amt-13-5379-2020, 2020
Short summary
Short summary
We study O3 retrievals in the 3040 cm-1 spectral range from FTIR measurements at Xianghe China (39.75° N, 116.96° E; 50 m a.s.l.) between June 2018 and December 2019. It was found that the FTIR O3 (3040 cm-1) retrievals capture the seasonal and synoptic variations of O3 very well. The systematic and random uncertainties of FTIR O3 (3040 cm-1) total column are about 13.6 % and 1.4 %, respectively. The DOFS is 2.4±0.3 (1σ), with two individual pieces of information in surface–20 km and 20–40 km.
Michael Buchwitz, Maximilian Reuter, Stefan Noël, Klaus Bramstedt, Oliver Schneising, Michael Hilker, Blanca Fuentes Andrade, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Hartmut Boesch, Lianghai Wu, Jochen Landgraf, Ilse Aben, Christian Retscher, Christopher W. O’Dell, and David Crisp
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-386, https://doi.org/10.5194/amt-2020-386, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
The COVID-19 pandemic resulted in reduced anthropogenic carbon dioxide (CO2) emissions during 2020 in large parts of the world. We have used a small emsemble of satellite retrievals of column-averaged CO2 (XCO2) to find out if a regional-scale reduction of atmospheric CO2 can be detected from space. We focus on East China and show that it is challenging to reliably detect and to accurately quantify the emission reduction, which only results in regional XCO2 reductions of about 0.1–0.2 ppm.
Eloise A. Marais, John F. Roberts, Robert G. Ryan, Henk Eskes, K. Folkert Boersma, Sungyeon Choi, Joanna Joiner, Nader Abuhassan, Alberto Redondas, Michel Grutter, Alexander Cede, Laura Gomez, and Monica Navarro-Comas
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-399, https://doi.org/10.5194/amt-2020-399, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
Nitrogen oxides in the upper troposphere have a profound influence on the global troposphere, though observations there are exceedingly rare. We apply cloud-slicing to high spatial resolution TROPOMI total columns of nitrogen dioxide (NO2) to derive near-global observations of upper tropospheric NO2 concentrations and show consistency with existing datasets. These data offer tremendous potential to address knowledge gaps in this oft under-appreciated portion of the atmosphere.
Juseon Bak, Xiong Liu, Robert Spurr, Kai Yang, Caroline R. Nowlan, Christopher Chan Miller, Gonzalo Gonzalez Abad, and Kelly Chance
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-349, https://doi.org/10.5194/amt-2020-349, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
we apply a principal component analysis (PCA)-based approach combined with look-up tables (LUTs) of corrections to accelerate the VLIDORT radiative transfer (RT) model used in the retrieval of ozone profiles from backscattered ultraviolet (UV) measurements by the Ozone Monitoring Instrument (OMI).
Mohammad El Aabaribaoune, Emanuele Emili, and Vincent Guidard
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-179, https://doi.org/10.5194/amt-2020-179, 2020
Preprint under review for AMT
Short summary
Short summary
This work aims to use correlated IASI errors in the ozone band within a chemical transport model assimilation. The validation of the results against ozone observations from ozonesondes, MLS, and OMI instruments has shown an improvement of the ozone distribution. The computational time was also highly reduced. The surface sea temperature was also improved. The work aims to improve the quality of the ozone prediction which is important for air quality, climate, meteorological applications.
David R. Thompson, Brian H. Kahn, Philip G. Brodrick, Matthew D. Lebsock, Mark Richardson, and Robert O. Green
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-346, https://doi.org/10.5194/amt-2020-346, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
Concentrations of water vapor in the atmosphere vary dramatically over space and time. Mapping this variability can provide insights into atmospheric processes that help us understand atmospheric processes in the Earth system. Here we use a new measurement strategy based on imaging spectroscopy to map atmospheric water vapor concentrations at very small spatial scales. Experiments demonstrate the accuracy of this technique and some initial results from an airborne remote sensing experiment.
L. Larrabee Strow and Sergio DeSouza-Machado
Atmos. Meas. Tech., 13, 4619–4644, https://doi.org/10.5194/amt-13-4619-2020, https://doi.org/10.5194/amt-13-4619-2020, 2020
Short summary
Short summary
The NASA AIRS satellite instrument has measured the infrared emission of the Earth continuously since 2002. If AIRS measurements are stable, these radiances can provide globally consistent multi-decadal trends of important climate variables, including the Earth's surface temperature, and the atmospheric temperature and humidity vs. height. Using the sensitivity of the AIRS radiances to well-known carbon dioxide trends, we show that AIRS is stable to 0.02 K per decade, well below climate trends.
Ka Lok Chan, Matthias Wiegner, Jos van Geffen, Isabelle De Smedt, Carlos Alberti, Zhibin Cheng, Sheng Ye, and Mark Wenig
Atmos. Meas. Tech., 13, 4499–4520, https://doi.org/10.5194/amt-13-4499-2020, https://doi.org/10.5194/amt-13-4499-2020, 2020
Short summary
Short summary
The paper presents 2D MAX-DOAS observations of vertical distributions of aerosol extinction, NO2 and HCHO in Munich. The measured surface aerosol extinction coefficients and NO2 mixing ratios are compared to in situ monitoring data. The NO2 and HCHO data are subsequently used to validate satellite measurements. The MAX-DOAS measurements are also used to investigate the spatiotemporal characteristic of NO2 and HCHO in Munich.
Thomas von Clarmann, Douglas A. Degenstein, Nathaniel J. Livesey, Stefan Bender, Amy Braverman, André Butz, Steven Compernolle, Robert Damadeo, Seth Dueck, Patrick Eriksson, Bernd Funke, Margaret C. Johnson, Yasuko Kasai, Arno Keppens, Anne Kleinert, Natalya A. Kramarova, Alexandra Laeng, Bavo Langerock, Vivienne H. Payne, Alexei Rozanov, Tomohiro O. Sato, Matthias Schneider, Patrick Sheese, Viktoria Sofieva, Gabriele P. Stiller, Christian von Savigny, and Daniel Zawada
Atmos. Meas. Tech., 13, 4393–4436, https://doi.org/10.5194/amt-13-4393-2020, https://doi.org/10.5194/amt-13-4393-2020, 2020
Short summary
Short summary
Remote sensing of atmospheric state variables typically relies on the inverse solution of the radiative transfer equation. An adequately characterized retrieval provides information on the uncertainties of the estimated state variables as well as on how any constraint or a priori assumption affects the estimate. This paper summarizes related techniques and provides recommendations for unified error reporting.
Nadia Smith and Christopher D. Barnet
Atmos. Meas. Tech., 13, 4437–4459, https://doi.org/10.5194/amt-13-4437-2020, https://doi.org/10.5194/amt-13-4437-2020, 2020
Short summary
Short summary
We diagnose CLIMCAPS observing capability from two different instrument suites and satellite platforms using averaging kernels that quantify information content at every retrieval scene. CLIMCAPS retrieves atmospheric state variables from infrared and microwave measurements and is designed to maintain consistency across time to support climate science and applications. We use averaging kernels to characterize the degree to which we achieved consistency in CLIMCAPS V2 observing capability.
Marc Schwaerzel, Claudia Emde, Dominik Brunner, Randulph Morales, Thomas Wagner, Alexis Berne, Brigitte Buchmann, and Gerrit Kuhlmann
Atmos. Meas. Tech., 13, 4277–4293, https://doi.org/10.5194/amt-13-4277-2020, https://doi.org/10.5194/amt-13-4277-2020, 2020
Short summary
Short summary
Horizontal homogeneity is often assumed for trace gases remote sensing, although it is not valid where trace gas concentrations have high spatial variability, e.g., in cities. We show the importance of 3D effects for MAX-DOAS and airborne imaging spectrometers using 3D-box air mass factors implemented in the MYSTIC radiative transfer solver. In both cases, 3D information is invaluable for interpreting the measurements, as not considering 3D effects can lead to misinterpretation of measurements.
Mengyao Liu, Jintai Lin, Hao Kong, K. Folkert Boersma, Henk Eskes, Yugo Kanaya, Qin He, Xin Tian, Kai Qin, Pinhua Xie, Robert Spurr, Ruijing Ni, Yingying Yan, Hongjian Weng, and Jingxu Wang
Atmos. Meas. Tech., 13, 4247–4259, https://doi.org/10.5194/amt-13-4247-2020, https://doi.org/10.5194/amt-13-4247-2020, 2020
Short summary
Short summary
Nitrogen oxides (NOx = NO + NO2) are important air pollutants in the troposphere and play crucial roles in the formation of ozone and particulate matter. The recently launched TROPOspheric Monitoring Instrument (TROPOMI) provides an opportunity to retrieve tropospheric concentrations of nitrogen dioxide (NO2) at an unprecedented high horizontal resolution. This work presents a new NO2 retrieval product over East Asia and further quantifies key factors affecting the retrieval, including aerosol.
Ka Lok Chan, Pieter Valks, Sander Slijkhuis, Claas Köhler, and Diego Loyola
Atmos. Meas. Tech., 13, 4169–4193, https://doi.org/10.5194/amt-13-4169-2020, https://doi.org/10.5194/amt-13-4169-2020, 2020
Short summary
Short summary
The paper presents a new water vapor retrieval algorithm in the blue spectral band for the Global Ozone Monitoring Experience-2 (GOME-2) satellite instruments. The new retrieval features a dynamic a priori optimization module, which makes it less dependent on input from chemistry transport models and better suited for climate studies. As the blue band wavelength is available to various satellites, retrieving water vapor in the blue band potentially extends the water vapor climate record.
David Garcia-Nieto, Nuria Benavent, Rafael Borge, and Alfonso Saiz-Lopez
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-239, https://doi.org/10.5194/amt-2020-239, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
Trace gases play a key role in the chemistry of urban atmospheres. Therefore, knowledge about their spatial distribution is needed to fully characterize the air quality in urban areas. Using a new Multi-AXis Differential Optical Absorption Spectroscopy (MAXDOAS)-2D instrument, along with inversion algorithms, we report for the first time two-dimensional maps of NO2 concentrations in the city of Madrid, Spain.
Marie-Thérèse El Kattar, Frédérique Auriol, and Hervé Herbin
Atmos. Meas. Tech., 13, 3769–3786, https://doi.org/10.5194/amt-13-3769-2020, https://doi.org/10.5194/amt-13-3769-2020, 2020
Short summary
Short summary
This paper is submitted as part of my thesis project. It highlights the importance of ground-based measurements for future satellite validations. This paper represents the characteristics of a new prototype called CHRIS, which is the MIR version of the EM27/SUN. Our primary concern is the exploitation of the data of the MAGIC campaign, which is a French initiative in collaboration with the CoMet project, to monitor greenhouse gases.
Arve Kylling, Hamidreza Ardeshiri, Massimo Cassiani, Anna Solvejg Dinger, Soon-Young Park, Ignacio Pisso, Norbert Schmidbauer, Kerstin Stebel, and Andreas Stohl
Atmos. Meas. Tech., 13, 3303–3318, https://doi.org/10.5194/amt-13-3303-2020, https://doi.org/10.5194/amt-13-3303-2020, 2020
Short summary
Short summary
Atmospheric turbulence and its effect on tracer dispersion in particular may be measured by cameras sensitive to the absorption of ultraviolet (UV) sunlight by sulfur dioxide (SO2). Using large eddy simulation and 3D Monte Carlo radiative transfer modelling of a SO2 plume, we demonstrate that UV camera images of SO2 plumes may be used to derive plume statistics of relevance for the study of atmospheric turbulent dispersion.
Yajun Zhu, Martin Kaufmann, Qiuyu Chen, Jiyao Xu, Qiucheng Gong, Jilin Liu, Daikang Wei, and Martin Riese
Atmos. Meas. Tech., 13, 3033–3042, https://doi.org/10.5194/amt-13-3033-2020, https://doi.org/10.5194/amt-13-3033-2020, 2020
Short summary
Short summary
OH airglow emissions can be used to derive rotational temperature and trace constituents in the mesopause region, but systematic differences exist for the follow-up data using OH emission radiance as measured by SCIAMACHY and SABER. This paper makes a comparison of OH emission radiance as measured by them and shows the systematic differences between the two measurements. The radiometric calibration of the two instruments could potentially explain the differences between the two measurements.
Arne Babenhauserheide, Frank Hase, and Isamu Morino
Atmos. Meas. Tech., 13, 2697–2710, https://doi.org/10.5194/amt-13-2697-2020, https://doi.org/10.5194/amt-13-2697-2020, 2020
Short summary
Short summary
This paper demonstrates that the carbon dioxide emissions of Tokyo can be estimated from long-term ground-based measurements of column-averaged atmospheric carbon dioxide abundances recorded at the TCCON site Tsukuba.
Masahiro Momoi, Rei Kudo, Kazuma Aoki, Tatsuhiro Mori, Kazuhiko Miura, Hiroshi Okamoto, Hitoshi Irie, Yoshinori Shoji, Akihiro Uchiyama, Osamu Ijima, Matsumi Takano, and Teruyuki Nakajima
Atmos. Meas. Tech., 13, 2635–2658, https://doi.org/10.5194/amt-13-2635-2020, https://doi.org/10.5194/amt-13-2635-2020, 2020
Short summary
Short summary
The water vapor channel of sun photometers, such as a sky radiometer, has been calibrated at limited observation sites (e.g., Mauna Loa) in previous studies, but our procedure has made on-site calibration possible by using sky radiances in addition to direct solar irradiance. The retrieved precipitable water vapor values correspond well to those derived from a global-navigation-satellite-system–global-positioning-system receiver, a microwave radiometer, and an AERONET sun–sky radiometer.
Cristina Ruiz Villena, Jasdeep S. Anand, Roland J. Leigh, Paul S. Monks, Claire E. Parfitt, and Joshua D. Vande Hey
Atmos. Meas. Tech., 13, 1735–1756, https://doi.org/10.5194/amt-13-1735-2020, https://doi.org/10.5194/amt-13-1735-2020, 2020
Short summary
Short summary
We present a new method to derive NO2 concentrations from satellite observations that uses up to 30 times less spectral information than traditional methods. We tested the method using data from existing instruments OMI and TROPOMI and found our results agree with the reference data to 5 % and 11 %, respectively. Our method could allow for simpler instrument designs that can be used in low-cost constellations of small satellites for air quality monitoring at high spatial and temporal resolution.
Xin Zhang, Yan Yin, Ronald van der A, Jeff L. Lapierre, Qian Chen, Xiang Kuang, Shuqi Yan, Jinghua Chen, Chuan He, and Rulin Shi
Atmos. Meas. Tech., 13, 1709–1734, https://doi.org/10.5194/amt-13-1709-2020, https://doi.org/10.5194/amt-13-1709-2020, 2020
Short summary
Short summary
Lightning NOx has a strong impact on ozone and the hydroxyl radical production. However, the production efficiency of lightning NOx is still quite uncertain. This work develops the algorithm of estimating lightning NOx for both clean and polluted regions and evaluates the sensitivity of estimates to the model setting of lightning NO. Results reveal that our method reduces the sensitivity to the background NO2 and includes much of the below-cloud LNO2.
Jos van Geffen, K. Folkert Boersma, Henk Eskes, Maarten Sneep, Mark ter Linden, Marina Zara, and J. Pepijn Veefkind
Atmos. Meas. Tech., 13, 1315–1335, https://doi.org/10.5194/amt-13-1315-2020, https://doi.org/10.5194/amt-13-1315-2020, 2020
Short summary
Short summary
The Tropospheric Monitoring Instrument (TROPOMI) provides atmospheric trace gase and cloud and aerosol property measurements at unprecedented spatial resolution. This study focusses on the TROPOMI NO2 slant column density (SCD) retrieval: the retrieval method used, the stability of and uncertainties in the SCDs, and a comparison with Ozone Monitoring Instrument (OMI) NO2 SCDs. TROPOMI shows a superior performance compared to OMI/QA4ECV and operates as anticipated from instrument specifications.
Diego G. Loyola, Jian Xu, Klaus-Peter Heue, and Walter Zimmer
Atmos. Meas. Tech., 13, 985–999, https://doi.org/10.5194/amt-13-985-2020, https://doi.org/10.5194/amt-13-985-2020, 2020
Short summary
Short summary
In this paper we present a novel algorithm for the retrieval of geometry-dependent effective Lambertian equivalent reflectivity (GE_LER) from UVN sensors based on the full-physics inverse learning machine (FP_ILM) retrieval.
The GE_LER retrieval is optimized for the trace gas retrievals using the DOAS technique and the large amount of data of TROPOMI on board the EU/ESA Sentinel-5 Precursor mission.
Maximilian Reuter, Michael Buchwitz, Oliver Schneising, Stefan Noël, Heinrich Bovensmann, John P. Burrows, Hartmut Boesch, Antonio Di Noia, Jasdeep Anand, Robert J. Parker, Peter Somkuti, Lianghai Wu, Otto P. Hasekamp, Ilse Aben, Akihiko Kuze, Hiroshi Suto, Kei Shiomi, Yukio Yoshida, Isamu Morino, David Crisp, Christopher W. O'Dell, Justus Notholt, Christof Petri, Thorsten Warneke, Voltaire A. Velazco, Nicholas M. Deutscher, David W. T. Griffith, Rigel Kivi, David F. Pollard, Frank Hase, Ralf Sussmann, Yao V. Té, Kimberly Strong, Sébastien Roche, Mahesh K. Sha, Martine De Mazière, Dietrich G. Feist, Laura T. Iraci, Coleen M. Roehl, Christian Retscher, and Dinand Schepers
Atmos. Meas. Tech., 13, 789–819, https://doi.org/10.5194/amt-13-789-2020, https://doi.org/10.5194/amt-13-789-2020, 2020
Short summary
Short summary
We present new satellite-derived data sets of atmospheric carbon dioxide (CO2) and methane (CH4). The data products are column-averaged dry-air mole fractions of CO2 and CH4, denoted XCO2 and XCH4. The products cover the years 2003–2018 and are merged Level 2 (satellite footprints) and merged Level 3 (gridded at monthly time and 5° x 5° spatial resolution) products obtained from combining several individual sensor products. We present the merging algorithms and product validation results.
Song Liu, Pieter Valks, Gaia Pinardi, Jian Xu, Athina Argyrouli, Ronny Lutz, L. Gijsbert Tilstra, Vincent Huijnen, François Hendrick, and Michel Van Roozendael
Atmos. Meas. Tech., 13, 755–787, https://doi.org/10.5194/amt-13-755-2020, https://doi.org/10.5194/amt-13-755-2020, 2020
Short summary
Short summary
This paper presents an improved tropospheric nitrogen dioxide (NO2) retrieval algorithm from the Global Ozone Monitoring Experiment-2 (GOME-2) instrument based on air mass factor (AMF) calculations that are
performed with a more accurate knowledge of surface albedo, the a priori NO2 profile, and cloud and aerosol corrections.
Lianghai Wu, Joost aan de Brugh, Yasjka Meijer, Bernd Sierk, Otto Hasekamp, Andre Butz, and Jochen Landgraf
Atmos. Meas. Tech., 13, 713–729, https://doi.org/10.5194/amt-13-713-2020, https://doi.org/10.5194/amt-13-713-2020, 2020
Short summary
Short summary
The future European CO2 monitoring constellation is targeting a moderate spectral resolution of 0.1, 0.3, and 0.3–0.55 nm in the spectral bands of 0.76, 1.61, and 2.06 μm. To assess this choice, we perform XCO2 retrievals using both satellite (OCO-2 and GOSAT) and synthetic observations, which we spectrally degrade to the target spectral resolution. We see that moderate spectral resolution mainly reduces XCO2 precision and has little effect on the the systematic error.
Yu Someya, Ryoichi Imasu, Kei Shiomi, and Naoko Saitoh
Atmos. Meas. Tech., 13, 309–321, https://doi.org/10.5194/amt-13-309-2020, https://doi.org/10.5194/amt-13-309-2020, 2020
Short summary
Short summary
This study presents a novel ammonia retrieval system we developed GOSAT. This system was used to derive estimates of global atmospheric ammonia concentrations between 2009 and 2014. The results demonstrated significantly high concentrations stemming from six anthropogenic emission source areas and four biomass burning ones. Their horizontal and temporal distributions were compared with those from IASI. They were totally consistent and the causes of the differences were discussed.
Andreas Schneider, Tobias Borsdorff, Joost aan de Brugh, Franziska Aemisegger, Dietrich G. Feist, Rigel Kivi, Frank Hase, Matthias Schneider, and Jochen Landgraf
Atmos. Meas. Tech., 13, 85–100, https://doi.org/10.5194/amt-13-85-2020, https://doi.org/10.5194/amt-13-85-2020, 2020
Short summary
Short summary
This paper presents a new H2O/HDO data set from TROPOMI short-wave infrared measurements. It is validated against recent ground-based FTIR measurements from the TCCON network. A bias in TCCON HDO (which is not verified) is corrected by fitting a correction factor for the HDO column to match MUSICA δD for common observations. The use of the new TROPOMI data set is demonstrated using a case study of a blocking anticyclone over Europe in July 2018.
Oliver Schneising, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann, John P. Burrows, Tobias Borsdorff, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Christian Hermans, Laura T. Iraci, Rigel Kivi, Jochen Landgraf, Isamu Morino, Justus Notholt, Christof Petri, David F. Pollard, Sébastien Roche, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Voltaire A. Velazco, Thorsten Warneke, and Debra Wunch
Atmos. Meas. Tech., 12, 6771–6802, https://doi.org/10.5194/amt-12-6771-2019, https://doi.org/10.5194/amt-12-6771-2019, 2019
Short summary
Short summary
We introduce an algorithm that is used to simultaneously derive the abundances of the important atmospheric constituents carbon monoxide and methane from the TROPOMI instrument onboard the Sentinel-5 Precursor satellite, which enables the determination of both gases with an unprecedented level of detail on a global scale. The quality of the resulting data sets is assessed and the first results are presented.
Gerrit Kuhlmann, Grégoire Broquet, Julia Marshall, Valentin Clément, Armin Löscher, Yasjka Meijer, and Dominik Brunner
Atmos. Meas. Tech., 12, 6695–6719, https://doi.org/10.5194/amt-12-6695-2019, https://doi.org/10.5194/amt-12-6695-2019, 2019
Short summary
Short summary
The Copernicus Anthropogenic CO2 Monitoring (CO2M) mission is a proposed constellation of imaging satellites with a CO2 instrument as main payload and optionally instruments for NO2, CO and aerosols. This study demonstrates the huge benefit of an NO2 instrument for detecting city plumes and weak point sources. Its main advantages are the higher signal-to-noise ratio and the lower sensitivity to clouds that significantly increases the number of observations available for quantifying CO2 emission.
Enzo Papandrea, Stefano Casadio, Elisa Castelli, Bianca Maria Dinelli, and Mario Marcello Miglietta
Atmos. Meas. Tech., 12, 6683–6693, https://doi.org/10.5194/amt-12-6683-2019, https://doi.org/10.5194/amt-12-6683-2019, 2019
Short summary
Short summary
Lee waves have been detected in clear-sky conditions over the Mediterranean Sea using the total column water vapour (TCWV) fields. The products were generated applying the Advanced Infra-Red WAter Vapour Estimator (AIRWAVE) retrieval algorithm to the thermal infrared measurements of the Along Track Scanning Radiometer (ATSR) instrument series. A subset of the occurrences has been compared with both independent observations and model simulations.
Nicola Zoppetti, Simone Ceccherini, Bruno Carli, Samuele Del Bianco, Marco Gai, Cecilia Tirelli, Flavio Barbara, Rossana Dragani, Antti Arola, Jukka Kujanpää, Jacob C. A. van Peet, Ronald van der A, and Ugo Cortesi
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-436, https://doi.org/10.5194/amt-2019-436, 2019
Revised manuscript accepted for AMT
Short summary
Short summary
The atmospheric Sentinels will provide an enormous amount of data that can be hard to exploit as a whole. The Complete Data Fusion algorithm is able to reduce the data volume while retaining the information of the full data set. In this work, the Complete Data Fusion is applied to simulated ozone profiles and the results show that the fused products are characterized by higher information content compared to individual L2 products.
Cited articles
Adams, D. K., Gutman, S. I., Holub, K. L., and Pereira, D. S.: GNSS Observations of Deep Convective Time scales in the Amazon, Geophys. Res. Lett., 40, 2818–2823, https://doi.org/10.1002/grl.50573, 2013.
Altamimi, Z., Sillard, P., and Boucher, C.: ITRF 2000 : A New Release of the International Terrestrial Reference Frame for Earth Science Applications, J. Geophys. Res., B10, 2214, 1–19, https://doi.org/10.1029/2001JB000561, 2002.
Askne, J. and Nordius, H.: Estimation of Tropospheric Delay for Microwaves from Surface Weather Data, Radio Science, 22, 379–386, https://doi.org/10.1029/RS022i003p00379, 1987.
Bastin, S., Champollion, C., Bock, O., Drobinski, P., and Masson, F.: On the use of GPS tomography to investigate water vapor variability during a Mistral/sea breeze event in southeastern France, Geophys. Res. Lett., 32, L05808, https://doi.org/10.1029/2004GL021907, 2005.
Behrend D., Haas, R., Pino, D., Gradinarsky, L. P., Keihm, S. J., Schwarz, W., Cucurull, L., and Rius, A.: mm5 derived ZWDs compared to observational results from VLBI, GPS and WVR, Physics and Chemistry of the Earth, Parts A/B/C, 27, 301–308, https://doi.org/10.1016/S1474-7065(02)00004-9, 2002.
Benjamin, S. G., Jamison, B. D., Moninger, W. R., Sahm, S. R., Schwartz, B. E., and Schlatter, T. W.: Relative Short-Range Forecast Impact from Aircraft, Profiler, Radiosonde, VAD, GPS-PW, METAR, and Mesonet Observations via the RUC Hourly Assimilation Cycle, Mon. Weather Rev., 138, 1319–1343, https://doi.org/10.1175/2009MWR3097.1, 2010.
Bennitt, G. V. and Jupp, A.: Operational Assimilation of GPS Zenith Total Delay Observations into the Met Office Numerical Weather Prediction Models, Mon. Weather Rev., 140, 2706–2719, https://doi.org/10.1175/MWR-D-11-00156.1, 2012.
Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware, R. H.: GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System, J. Geophys. Res., 97, 15787–15801, https://doi.org/10.1029/92JD01517, 1992.
Bevis, M., Businger, S., Chiswell, S., Herring, T., Anthes, R., Rocken, C., and Ware, R.: GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water, J. Appl. Meteorol., 33, 379–386, https://doi.org/10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2, 1994.
Bock, O. and Doerflinger, E.: Atmospheric modeling in GPS data analysis for high accuracy positioning, Phys. Chem. Earth, Part A: Solid Earth and Geodesy, 26, 373–383, https://doi.org/10.1016/S1464-1895(01)00069-2, 2001.
Bock, O., Doerflinger, E., Masson, F., Walpersdorf, A., Van Baelen, J., Tarniewicz, J., Troller, M., Somieski, A., Geiger, A., and Buerki, B.: GPS Water Vapor Tomography : Description and First Results of the ESCOMPTE field Experiment, Phys. Chem. Earth, 29, 149–157, https://doi.org/10.1016/j.atmosres.2004.04.003, 2004.
Bock, O., Bouin, M.-N., Walpersdorf, A., Lafore, J.-P., Janicot, S., and Guichard, F.: Assessment of GPS data over Africa: Analysis of precipitable water vapour, Q. J. Roy. Meteorol. Soc., 133, 2001–2027, https://doi.org/10.1002/qj.185, 2007.
Boehm, J., Niell, A., Tregoning, P., and Schuh, H.: Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data, Geophys. Res. Lett., 33, L07304, https://doi.org/10.1029/2005GL025546, 2006a.
Boehm, J., Werl, B., and Schuh, H.: Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data, J. Geophys. Res., 111, B02406, https://doi.org/10.1029/2005JB003629, 2006b.
Braun, J., Rocken, C., and Ware, R.: Validation of Line-of-Sight Water Vapor Measurements with GPS, Radio Science, 36, 459–472, https://doi.org/10.1029/2000RS002353, 2001.
Brenot, H. and Warnant, R.: Characterization of the tropospheric small-scale activity, Technical Report ESA, WP250, GALOCAD project, 2008.
Brenot, H., Ducrocq, V., Walpersdorf, A., Champollion, C., and Caumont, O.: GPS zenith delay sensitivity evaluated from high resolution NWP simulations of the 8–9th September 2002 flash-flood over southeastern France, J. Geophys. Res., 111, D15105, https://doi.org/10.1029/2004JD005726, 2006.
Brenot, H., Neméghaire, J., Delobbe, L., Clerbaux, N., De Meutter, P., Deckmyn, A., Delcloo, A., Frappez, L., and Van Roozendael, M.: Preliminary signs of the initiation of deep convection by GNSS, Atmos. Chem. Phys., 13, 5425–5449, https://doi.org/10.5194/acp-13-5425-2013, 2013.
Bresson, É., Ducrocq, V., Nuissier, O., Ricard, D., and de Saint-Aubin, C.: Idealized numerical simulations of quasi-stationary convective systems over the Northwestern Mediterranean complex terrain, Q. J. R. Meteorol. Soc., 138, 1751–1763, https://doi.org/10.1002/qj.1911, 2012.
Businger, S., Chiswell, S., Bevis, M., Duan, J., Anthes, R., Rocken, C., Ware, R., Van Hove, T., and Solheim, F.: The Promise of GPS in Atmospheric Monitoring, Bull. Amer. Meteorol. Soc., 77, 379–386, https://doi.org/10.1175/1520-0477(1996)077<0005:TPOGIA>2.0.CO;2, 1996.
Ceresetti, D.: Structure spatio-temporelle des fortes précipitations: application à la région Cévennes-Vivarais, PhD in French and English, LTHE, Grenoble, France, 2011.
Champollion, C., Masson, F., Van Baelen, J., Walpersdorf, A., Chéry, J., and Doerflinger, E.: GPS monitoring of the tropospheric water vapour distribution and variation during the September 9, 2002, torrential precipitation episode in the Cévennes (Southern France), J. Geophys. Res. Atmos., 109, D24102, https://doi.org/10.1029/2004JD004897, 2004.
Champollion, C., Masson, F., Bouin, M.-N., Walpersdorf, A., Doerflinger, E., Bock, O., and Van Baelen, J.: GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment, Atmos. Res., 74, 253–274, https://doi.org/10.1016/j.atmosres.2004.04.003, 2005.
Chen, G. and Herring, T. A.: Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data, J. Geophys. Res., 102, 20489–20502, https://doi.org/10.1029/97JB01739, 1997.
Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers, A. E. E., and Elgered, G.: Geodesy by Interferometry : Effects of Atmospheric Modeling Errors on Estimates of Baseline Length, Radio Science, 20, 1593–1607, https://doi.org/10.1029/RS020i006p01593, 1985.
Delrieu, G., Nicol, J., Yates, E., Kirstetter, P.-E., Creutin, J.-D., Anquetin, S., Obled, C., Saulnier, G.-M., Ducrocq, V., Gaume, E., Payrastre, O., Andrieu, H., Ayral, P.-A., Bouvier, C., Neppel, L., Livet, M., Lang, M., Parent du-Châtelet, J., Walpersdorf, A., and Wobrock, W.: The Catastrophic Flash-Flood Event of 8-9 September 2002 in the Gard Region, France : a First Case Study for the Cévennes-Vivarais Mediterranean Hydrometeorological Observatory, J. Hydrometeorol., 6, 34–51, https://doi.org/10.1175/JHM-400.1, 2005.
Duan, J., Bevis, M., Fang, P., Bock, Y., Chiswell, S., Businger, S., Rocken, C., Solheim, F., van Hove, T., Ware, R., McClusky, S., Herring, T. A., and King, R. W.: GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water, J. Appl. Meteor., 35, 830–838, https://doi.org/10.1175/1520-0450(1999)038<0941:ACOPWV>2.0.CO;2, 1996.
Ducrocq, V., Ricard, D., Lafore, J. P., and Orain, F.: Storm-Scale Numerical Rainfall Prediction for Five Precipitations Events over France : on the Importance of the Initial Humidity Field, Weather Forecast., 17, 1236–1256, 2002.
Elgered, G.: An Overview of COST 716 : Exploitation of Ground-Based GPS Climate and Numerical Weather Prediction Applications, Phys. Chem. Earth, 26, 399–404, 2001.
Elgered, G., Davis, J. L., Herring, T. A., and Shapiro, I. I.: Geodesy by Radio Interferometry : Water Vapour Radiometry for Estimation of the Wet Delay, J. Geophys. Res., 96, 6541–6555, https://doi.org/10.1029/90JB00834, 1991.
Emardson, T. and Derks, H.: On the Relation Between the Wet Delay and the Integrated Precipitable Water Vapour in the European Atmosphere, Meteorol. Appl., 6, 1–12, https://doi.org/10.1175/1520-0450(2003)042<1547:AAVOGT>2.0.CO;2, 1999.
Flores, A., Ruffini, G., and Rius, A.: 4D tropospheric tomography using GPS slant wet delays, Ann. Geophys., 18, 223–234, https://doi.org/10.1007/s00585-000-0223-7, 2000.
Gendt, G., Dick, G., Reigber, C., Tomassini, M., Liu, Y., and Ramatschi, M.: Near real time GPS water vapour monitoring for numerical weather prediction in Germany, J. Meteorol. Soc. Jpn., 82, 361–370, 2004.
Gradinarsky, L. P.: Sensing Atmospheric Water Vapor Using Radio Waves, Ph.D. thesis, School of Electrical Engineering, Chalmers University of Technology, Göteborg, Sweden, 2002.
Gradinarsky, L. P. and Jarlemark, P.: Ground-Based GPS Tomography of Water Vapor : Analysis of Simulated and Real Data, J. Meteorol. Soc. Jpn., 82, 551–560, 2004.
Guerova, G., Bettems, J.-M., Brockmann, E., and Matzler, C.: Assimilation of COST 716 Near-real Time GPS data in the nonhydrostatic limited area model used at MeteoSwiss, Meteorol. Atmos. Phys., 91, 149–164, https://doi.org/10.1007/s00703-005-0110-6, 2006.
Gutman, S. I., Sahm, S. R., Benjamin, S. G., Schwarz, B. E., Holub, K. L., Stewart, J. Q., and Smith, T. L.: Rapid retrieval and assimilation of ground based GPS precipitable water observations at the NOAA Forecast Systems Laboratory: impact on weather forecasts, J. Meteorol. Soc. Jpn., 82, 351–360, 2004.
Haan, S., Jones, J., and Vedel, H.: EUMETNET GPS Water Vapour (E-GVAP), Presentation at European Meteorological Society, Ljubljana, Slovenia, 2006.
Haase, J., Calais, E., Talaya, J., Rius, A., Vespe, F., Santangelo, R., Huang, X.-Y., Davila, J. M., Ge, M., Cucurull, L., Flores, A., Sciarretta, C., Pacione, R., Boccolari, M., Pugnaghi, S., Vedel, H., Mogensen, K., Yang, X., and Garate, J.: The Contributions of the MAGIC Project to the COST 716 Objectives of Assessing the Operational Potential of Ground-Based GPS Meteorology on an International Scale, Phys. Chem. Earth, 26, 433–437, https://doi.org/10.1016/S1464-1895(01)00079-5, 2001.
Haase, J., Ge, M., Vedel, H., and Calais, E.: Accuracy and Variability of GPS Tropospheric Delay Measurements of Water Vapor in the Western Mediterranean, J. Appl. Meteor., 42, 1547–1568, https://doi.org/10.1175/1520-0450(2003)042<1547:AAVOGT>2.0.CO;2, 2003.
Herring, T. A., King, R. W., and McClusky, S. C.: Introduction to GAMIT/GLOBK, Release 10.3, Dep. of Earth Atmos. and Planet. Sci., Mass. Inst. of Technol., Cambridge, Mass., 2006.
Ineichen, D., Gurtner, W., Springer, T., Engelhardt, G., Luthardt, J., and Ihde, J.: EUVN 97 Combined GPS Solution, in EUREF Publication no.7/II, Mitteilungen des Bundesamts für Kartographie und Geodäsie, Band 7, Frankfurt a. M., 1999.
Kämpfer, N.: Monitoring Atmospheric Water Vapour, ISSI Scientific Report Series, 10, 326 pp., https://doi.org/10.1007/978-1-4614-3909-7_9, 2012.
Labbouz, L., Van Baelen, J., Tridon, F., Reverdy, M., Hagen, M., Bender, M., Dick, G., Gorgas, T., and Planche, C.: Precipitation on the lee side of the Vosges Mountains: Multi-instrumental study of one case from the COPS campaign, Meteorologische Z., 4, 413–432, 2013.
Macpherson, S. R., Deblonde, G., Aparicio, J. M., and Casati, B.: Impact of NOAA Ground-Based GPS Observations on the Canadian Regional Analysis and Forecast System, Mon. Weather Rev., 136, 2727–2746, 2008.
Nakamura, H., Koizumi, K., and Mannoji, N.: Data assimilation of GPS precipitable water vapor into the JMA mesoscale numerical weather prediction model and its impact on rainfall forecasts, J. Meteorol. Soc. Jpn., 82, 441–452, 2004.
Niell, A. E.: Global mapping functions for the atmosphere delay at radio wavelengths, J. Geophys. Res., 101, 3227–3246, https://doi.org/10.1029/95JB03048, 1996.
Niell, A. E.: Improved atmospheric mapping functions for VLBI and GPS, Earth Planet. Space, 52, 699–702, 2000.
Pacione, R., Fionda, E., Ferrara, R., Lanotte, R., Sciarretta, C., and Vespe, F.: Comparison of atmospheric parameters derived from GPS, VLBI and a ground-based microwave radiometer in Italy, PCE, 27, 309–316, https://doi.org/10.1016/S1474-7065(02)00005-0, 2002.
Perler, D., Geiger, A., and Hurter, F.: 4D GPS water vapor tomography: new parameterized approaches, J. Geod., 85, 539–550, https://doi.org/10.1007/s00190-011-0454-2, 2011.
Poli, P., Moll, P., Rabier, F., Desroziers, G., Chapnik, B., Berre, L., Healy, S. B., Andersson, E., and El Guelai, F.-Z.: Forecast impact studies of zenith total delay data from European near real-time GPS stations in Météo France 4DVAR, J. Geophys. Res., 112, D06114, https://doi.org/10.1029/2006JD007430, 2007.
Reverdy, M.: Estimation des paramètres atmosphériques par GPS: analyse de la variabilité spatio-temporelle de la vapeur d'eau, PhD thesis in French, University Clermont-Ferrand, 2008.
Rocken, C., Hove, T. V., Johnson, J., Solheim, F., and Ware, R.: GPS/STORM : GPS Sensing of Atmospheric Water Vapor for Meteorology, J. Atmos. Ocean. Tech., 12, 2631–2634, https://doi.org/10.1175/1520-0426(1995)012<0468:GSOAWV>2.0.CO;2, 1995.
Saastamoinen, J.: Atmospheric Correction for the Troposphere and Stratosphere in Radio ranging of satellites, Geophys. Monogr. Ser., 15, 247–251, https://doi.org/10.1029/GM015p0247, 1972.
Sandwell, D. T.: Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data, Geophys. Res. Lett., 14, 139–142, https://doi.org/10.1029/GL014i002p00139, 1987.
Santerre, R.: Impact of GPS satellite sky distribution, Manuscriptae Geodaetica, 16, 28–53, 1991.
Schneider, M., Romero, P. M., Hase, F., Blumenstock, T., Cuevas, E., and Ramos, R.: Continuous quality assessment of atmospheric water vapour measurement techniques: FTIR, Cimel, MFRSR, GPS, and Vaisala RS92, Atmos. Meas. Tech., 3, 323–338, https://doi.org/10.5194/amt-3-323-2010, 2010.
Sguerso, D., Labbouz, L., and Walpersdorf, A.: 14 years of GPS tropospheric delays in the French-Italian border region: A data base for meteorological and climatological analyses, International Workshop "The Role of Geomatics in Hydrogeological Risk", Padua, 26–28 February 2013.
Smith, T. L., Benjamin, S. G., Gutman, S. I., and Sahm, S.: Short-Range Forecast Impact from Assimilation of GPS-IPW Observations into the Rapid Update Cycle, Mon. Weather Rev., 135, 2914–2930, https://doi.org/10.1175/MWR3436.1, 2007.
Tregoning, P., Boers, R., O'Brien, D., and Hendy, M.: Accuracy of Absolute Precipitable Water Vapor Estimates from GPS Observations, J. Geophys. Res., 103, 28701–28710, https://doi.org/10.1029/98JD02516, 1998.
Troller M., Geiger A., Brockmann E., Bettems J.-M., Burki B., and Kahle H.-G.: Tomographic determination of the spatial distribution of water vapour using GPS observations, Adv. Space Res., 37, 2211–2217, https://doi.org/10.1016/j.asr.2005.07.002, 2006.
Van Baelen, J. and Penide, G.: Study of water vapor vertical variability and possible cloud formation with a small network of GPS stations, Geophys. Res. Lett., 36, L02804, https://doi.org/10.1029/2008GL036148, 2009.
Van Baelen, J., Aubagnac, J.-P., and Dabas, A.: Comparison of Near Real Time Estimates of Integrated Water Vapor Derived with GPS, Radiosondes, and Microwave Radiometer, J. Atmos. Ocean. Technol., 22, p. 201, https://doi.org/10.1175/JTECH-1697.1, 2005.
Van Baelen, J., Reverdy, M., Tridon, F., Labbouz, L., Dick, G., Bender, M., and Hagen, M.: On the relationship between water vapour field evolution and precipitation systems lifecycle, Q. J. R. Meteorol. Soc., 137, 204–223, https://doi.org/10.1002/qj.785, 2011.
Van der Marel, H.: COST-716 Demonstration Project for the Near Real-Time Estimation of Integrated Water Vapour from GPS, Phys. Chem. Earth, 29, 187–199, 2004.
Vedel, H., Mogensen, K., and Huang, X.-Y.: Calculation of Zenith Delays From Meteorological Data Comparison of NWP Model, Radiosonde and GPS Delays, Phys. Chem. Earth, 26, 497–502, https://doi.org/10.1016/S1464-1895(01)00091-6, 2001.
Walpersdorf, A., Calais, E., Haase, J., Eymard, L., Desbois, M., and Vedel, H.: Atmospheric Gradients Estimated by GPS Compared to a High Resolution Numerical Weather Prediction (NWP) Model, Phys. Chem. Earth, 26, 147–152, https://doi.org/10.1016/S1464-1895(01)00038-2, 2001.
Walpersdorf, A., Bock, O., Doerflinger, E., Masson, F., Van Baelen, J., Somieski, A., and Buerki, B.: Data analysis of a dense GPS network operated during the ESCOMPTE campaign: First results, Phys. Chem. Earth, 29, 201–211, https://doi.org/10.1016/j.pce.2004.01.002, 2004.
Walpersdorf, A., Bouin, M.-N., Bock, O., and Doerflinger, E.: Assessment of GPS data for meteorological applications over Africa: Study of error sources and analysis of positioning accuracy, J. Atmos. Sol. Terr. Phys., 69, 1312–1330, https://doi.org/10.1016/j.jastp.2007.04.008, 2007.
Wang, J., Zhang, L., Dai, A., Van Hove, T., and Van Baelen, J.: A near-global 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements, J. Geophys. Res., 112, D11107, https://doi.org/10.1029/2006JD007529, 2007.
Yan, X., Ducrocq, V., Poli, P., Hakam, M., Jaubert, G., and Walpersdorf, A.: Impact of GPS zenith delay assimilation on convective scale prediction of Mediterranean heavy rainfall, J. Geophys. Res., 114, D03104, https://doi.org/10.1029/2008JD011036, 2009.
Yang, X., Sass, B. H., Elgered, G., Johansson, J. M., and Emardson, T. R.: A Comparison of Precipitable Water Vapor Estimates by an NWP Simulation and GPS Observations, J. Appl. Meteor., 38, 941–956, https://doi.org/10.1175/1520-0450(1999)038, 1999.