Articles | Volume 8, issue 3
https://doi.org/10.5194/amt-8-1055-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-8-1055-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A layer-averaged relative humidity profile retrieval for microwave observations: design and results for the Megha-Tropiques payload
R. G. Sivira
Université Versailles St-Quentin; Sorbonne Universités, UPMC Univ. Paris 06; CNRS/INSU, LATMOS-IPSL, Guyancourt, France
now at: Meteo Protect SAS, Paris, France
H. Brogniez
CORRESPONDING AUTHOR
Université Versailles St-Quentin; Sorbonne Universités, UPMC Univ. Paris 06; CNRS/INSU, LATMOS-IPSL, Guyancourt, France
C. Mallet
Université Versailles St-Quentin; Sorbonne Universités, UPMC Univ. Paris 06; CNRS/INSU, LATMOS-IPSL, Guyancourt, France
Y. Oussar
Laboratoire de Physique et d'Etudes des Matériaux (LPEM), UMR8213, ESPCI-ParisTech, Paris, France
Related authors
No articles found.
Tim Trent, Marc Schroeder, Shu-Peng Ho, Steffen Beirle, Ralf Bennartz, Eva Borbas, Christian Borger, Helene Brogniez, Xavier Calbet, Elisa Castelli, Gilbert P. Compo, Wesley Ebisuzaki, Ulrike Falk, Frank Fell, John Forsythe, Hans Hersbach, Misako Kachi, Shinya Kobayashi, Robert E. Kursinsk, Diego Loyola, Zhengzao Luo, Johannes K. Nielsen, Enzo Papandrea, Laurence Picon, Rene Preusker, Anthony Reale, Lei Shi, Laura Slivinski, Joao Teixeira, Tom Vonder Haar, and Thomas Wagner
EGUsphere, https://doi.org/10.5194/egusphere-2023-2808, https://doi.org/10.5194/egusphere-2023-2808, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
In a warmer future, water vapour will spend more time in the atmosphere changing global rainfall patterns. In this study, we analysed the performance of 28 water vapour records between 1988 & 2014. We find sensitivity to surface warming generally outside expected ranges, attributed to breakpoints in individual record trends & differing representations of climate variability. The implication is that longer records are required for high confidence in assessing climate trends
Rodrigo Andres Rivera Martinez, Pramod Kumar, Olivier Laurent, Grégoire Broquet, Christopher Caldow, Ford Cropley, Diego Santaren, Adil Shah, Cécile Mallet, Michel Ramonet, Leonard Rivier, Catherine Juery, Olivier Duclaux, Caroline Bouchet, Elisa Allegrini, Hervé Utard, and Philippe Ciais
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-52, https://doi.org/10.5194/amt-2023-52, 2023
Preprint under review for AMT
Short summary
Short summary
This study explores the use of Metal Oxide Sensors (MOS) as a low-cost alternative for detecting and measuring CH4 emissions from industrial facilities. MOS were exposed to several controlled releases to test their accuracy in detecting and quantifying emissions. Two reconstruction models were compared, and emission estimates were computed using a Gaussian dispersion model. Findings show that MOS can provide accurate emission estimates with a 25 % emission rate error and a 9.5 m location error.
Rodrigo Andres Rivera Martinez, Diego Santaren, Olivier Laurent, Gregoire Broquet, Ford Cropley, Cécile Mallet, Michel Ramonet, Adil Shah, Leonard Rivier, Caroline Bouchet, Catherine Juery, Olivier Duclaux, and Philippe Ciais
Atmos. Meas. Tech., 16, 2209–2235, https://doi.org/10.5194/amt-16-2209-2023, https://doi.org/10.5194/amt-16-2209-2023, 2023
Short summary
Short summary
A network of low-cost sensors is a good alternative to improve the detection of fugitive CH4 emissions. We present the results of four tests conducted with two types of Figaro sensors that were assembled on four chambers in a laboratory experiment: a comparison of five models to reconstruct the CH4 signal, a strategy to reduce the training set size, a detection of age effects in the sensors and a test of the capability to transfer a model between chambers for the same type of sensor.
Jia He, Helene Brogniez, and Laurence Picon
Atmos. Chem. Phys., 22, 12591–12606, https://doi.org/10.5194/acp-22-12591-2022, https://doi.org/10.5194/acp-22-12591-2022, 2022
Short summary
Short summary
A 2003–2017 satellite-based atmospheric water vapour climate data record is used to assess climate models and reanalyses. The focus is on the tropical belt, whose regional variations in the hydrological cycle are related to the tropospheric overturning circulation. While there are similarities in the interannual variability, the major discrepancies can be explained by the presence of clouds, the representation of moisture fluxes at the surface and cloud processes in the models.
Chloé Radice, Hélène Brogniez, Pierre-Emmanuel Kirstetter, and Philippe Chambon
Atmos. Chem. Phys., 22, 3811–3825, https://doi.org/10.5194/acp-22-3811-2022, https://doi.org/10.5194/acp-22-3811-2022, 2022
Short summary
Short summary
A novel probabilistic approach is proposed to evaluate relative humidity (RH) profiles simulated by an atmospheric model with respect to satellite-based RH defined from probability distributions. It improves upon deterministic comparisons by enhancing the information content to enable a finer assessment of each model–observation discrepancy, highlighting significant departures within a deterministic confidence range. Geographical and vertical distributions of the model biases are discussed.
Giulia Carella, Mathieu Vrac, Hélène Brogniez, Pascal Yiou, and Hélène Chepfer
Earth Syst. Sci. Data, 12, 1–20, https://doi.org/10.5194/essd-12-1-2020, https://doi.org/10.5194/essd-12-1-2020, 2020
Short summary
Short summary
Observations of relative humidity for ice clouds over the tropical oceans from a passive microwave sounder are downscaled by incorporating the high-resolution variability derived from simultaneous co-located cloud profiles from a lidar. By providing a method to generate pseudo-observations of relative humidity at high spatial resolution, this work will help revisit some of the current key barriers in atmospheric science.
Mohamed Djallel Dilmi, Cécile Mallet, Laurent Barthes, and Aymeric Chazottes
Atmos. Meas. Tech., 10, 1557–1574, https://doi.org/10.5194/amt-10-1557-2017, https://doi.org/10.5194/amt-10-1557-2017, 2017
Short summary
Short summary
The concept of a rain event is used to obtain a parsimonious characterisation of rain events using a minimal subset of variables at macrophysical scale. A classification in five classes is obtained in a unsupervised way from this subset. Relationships between these classes of microphysical parameters of precipitation are highlighted. There are several implications especially for remote sensing in the context of weather radar applications and quantitative precipitation estimation.
François Mercier, Aymeric Chazottes, Laurent Barthès, and Cécile Mallet
Atmos. Meas. Tech., 9, 3145–3163, https://doi.org/10.5194/amt-9-3145-2016, https://doi.org/10.5194/amt-9-3145-2016, 2016
Short summary
Short summary
The aim of this study is to retrieve vertical profiles of raindrop size distributions and vertical winds from radar and ground measurements. This is crucial to understand the phenomena acting on the raindrops at small scale during their fall and then to be able to merge measurements of rain at different heights and scales (from radar, rain gauges, satellites etc.). It could also help to improve the treatment of radar data and to better parameterize rain in numerical weather prediction models.
Hélène Brogniez, Stephen English, Jean-François Mahfouf, Andreas Behrendt, Wesley Berg, Sid Boukabara, Stefan Alexander Buehler, Philippe Chambon, Antonia Gambacorta, Alan Geer, William Ingram, E. Robert Kursinski, Marco Matricardi, Tatyana A. Odintsova, Vivienne H. Payne, Peter W. Thorne, Mikhail Yu. Tretyakov, and Junhong Wang
Atmos. Meas. Tech., 9, 2207–2221, https://doi.org/10.5194/amt-9-2207-2016, https://doi.org/10.5194/amt-9-2207-2016, 2016
Short summary
Short summary
Because a systematic difference between measurements of water vapor performed by space-borne observing instruments in the microwave spectral domain and their numerical modeling was recently highlighted, this work discusses and gives an overview of the various errors and uncertainties associated with each element in the comparison process. Indeed, the knowledge of absolute errors in any observation of the climate system is key, more specifically because we need to detect small changes.
M. Schröder, R. Roca, L. Picon, A. Kniffka, and H. Brogniez
Atmos. Chem. Phys., 14, 11129–11148, https://doi.org/10.5194/acp-14-11129-2014, https://doi.org/10.5194/acp-14-11129-2014, 2014
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Observation of horizontal temperature variations by a spatial heterodyne interferometer using single-sided interferograms
Version 8 IMK–IAA MIPAS temperatures from 12–15 µm spectra: Middle and Upper Atmosphere modes
GNSS radio occultation excess-phase processing for climate applications including uncertainty estimation
Impact analysis of processing strategies for long-term GPS zenith tropospheric delay (ZTD)
Irradiance and cloud optical properties from solar photovoltaic systems
Single field-of-view sounder atmospheric product retrieval algorithm: establishing radiometric consistency for hyper-spectral sounder retrievals
Higher-order calibration on WindRAD (Wind Radar) scatterometer winds
On the polarimetric backscatter by a still or quasi-still wind turbine
OH airglow observations with two identical spectrometers: benefits of increased data homogeneity in the identification of variations induced by the 11-year solar cycle, the QBO, and other factors
Broadband radiative quantities for the EarthCARE mission: the ACM-COM and ACM-RT products
Difference spectrum fitting of the ion-neutral collision frequency from dual-frequency EISCAT measurements
Long-term multi-source precipitation estimation with high resolution (RainGRS Clim)
Retrieval of snow layer and melt pond properties on Arctic sea ice from airborne imaging spectrometer observations
Using optimal estimation to retrieve winds from velocity-azimuth display (VAD) scans by a Doppler lidar
Angular sampling of a monochromatic, wide-field-of-view camera to augment next-generation Earth radiation budget satellite observations
Radar and Environment-based Hail Damage Estimates using Machine Learning
Performance evaluation of three bio-optical models in aerosol and ocean color joint retrievals
Efficient collocation of global navigation satellite system radio occultation soundings with passive nadir microwave soundings
Analysis of 2D airglow imager data with respect to dynamics using machine learning
Estimation of extreme precipitation events in Estonia and Italy using dual-polarization weather radar quantitative precipitation estimations
Joint 1DVar Retrievals of Tropospheric Temperature and Water Vapor from GNSS-RO and Microwave Radiometer Observations
Detection and localization of F-layer ionospheric irregularities with the back-propagation method along the radio occultation ray path
Observations of anomalous propagation over waters near Sweden
Suppression of precipitation bias on wind velocity from continuous-wave Doppler lidars
Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at Réunion island and the Observatoire de Haute-Provence
Dual-frequency spectral radar retrieval of snowfall microphysics: a physics-driven deep-learning approach
High-resolution 3D winds derived from a modified WISSDOM synthesis scheme using multiple Doppler lidars and observations
Atmospheric boundary layer height from ground-based remote sensing: a review of capabilities and limitations
Assessing and mitigating the radar–radar interference in the German C-band weather radar network
Spectral replacement using machine learning methods for continuous mapping of the Geostationary Environment Monitoring Spectrometer (GEMS)
Doppler spectra from DWD's operational C-band radar birdbath scan: sampling strategy, spectral postprocessing, and multimodal analysis for the retrieval of precipitation processes
High-fidelity retrieval from instantaneous line-of-sight returns of nacelle-mounted lidar including supervised machine learning
Horizontal small-scale variability of water vapor in the atmosphere: implications for intercomparison of data from different measuring systems
Satellite observations of gravity wave momentum flux in the mesosphere and lower thermosphere (MLT): feasibility and requirements
An improved near-real-time precipitation retrieval for Brazil
Radio frequency interference detection and mitigation in the DWD C-band weather radar network
Quality control and error assessment of the Aeolus L2B wind results from the Joint Aeolus Tropical Atlantic Campaign
Long-distance propagation of 162 MHz shipping information links associated with sporadic E
Estimation of refractivity uncertainties and vertical error correlations in collocated radio occultations, radiosondes, and model forecasts
DeepPrecip: a deep neural network for precipitation retrievals
Machine learning-based prediction of Alpine foehn events using GNSS troposphere products: first results for Altdorf, Switzerland
Meteor radar vertical wind observation biases and mathematical debiasing strategies including the 3DVAR+DIV algorithm
Adaptive thermal image velocimetry of spatial wind movement on landscapes using near-target infrared cameras
Image muting of mixed precipitation to improve identification of regions of heavy snow in radar data
Extending water vapor measurement capability of photon-limited differential absorption lidars through simultaneous denoising and inversion
GPROF-NN: a neural-network-based implementation of the Goddard Profiling Algorithm
Sensitivity analysis of DSD retrievals from polarimetric radar in stratiform rain based on the μ–Λ relationship
On the use of high-frequency surface wave oceanographic research radars as bistatic single-frequency oblique ionospheric sounders
A statistically optimal analysis of systematic differences between Aeolus horizontal line-of-sight winds and NOAA's Global Forecast System
Hierarchical deconvolution for incoherent scatter radar data
Konstantin Ntokas, Jörn Ungermann, Martin Kaufmann, Tom Neubert, and Martin Riese
Atmos. Meas. Tech., 16, 5681–5696, https://doi.org/10.5194/amt-16-5681-2023, https://doi.org/10.5194/amt-16-5681-2023, 2023
Short summary
Short summary
A nanosatellite was developed to obtain 1-D vertical temperature profiles in the mesosphere and lower thermosphere, which can be used to derive wave parameters needed for atmospheric models. A new processing method is shown, which allows one to extract two 1-D temperature profiles. The location of the two profiles is analyzed, as it is needed for deriving wave parameters. We show that this method is feasible, which however will increase the requirements of an accurate calibration and processing.
Maya García-Comas, Bernd Funke, Manuel López-Puertas, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Andrea Linden, Belén Martínez-Mondéjar, Gabriele P. Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 16, 5357–5386, https://doi.org/10.5194/amt-16-5357-2023, https://doi.org/10.5194/amt-16-5357-2023, 2023
Short summary
Short summary
We have released version 8 of MIPAS IMK–IAA temperatures and pointing information retrieved from MIPAS Middle and Upper Atmosphere mode version 8.03 calibrated spectra, covering 20–115 km altitude. We considered non-local thermodynamic equilibrium emission explicitly for each limb scan, essential to retrieve accurate temperatures above the mid-mesosphere. Comparisons of this temperature dataset with SABER measurements show excellent agreement, improving those of previous MIPAS versions.
Josef Innerkofler, Gottfried Kirchengast, Marc Schwärz, Christian Marquardt, and Yago Andres
Atmos. Meas. Tech., 16, 5217–5247, https://doi.org/10.5194/amt-16-5217-2023, https://doi.org/10.5194/amt-16-5217-2023, 2023
Short summary
Short summary
Atmosphere remote sensing using GNSS radio occultation provides a highly valuable basis for atmospheric and climate science. For the highest-quality demands, the Wegener Center set up a rigorous system for processing low-level measurement data. This excess-phase processing setup includes integrated quality control and uncertainty estimation. It was successfully evaluated and inter-compared, ensuring the capability of producing reliable long-term data records for climate applications.
Jingna Bai, Yidong Lou, Weixing Zhang, Yaozong Zhou, Zhenyi Zhang, Chuang Shi, and Jingnan Liu
Atmos. Meas. Tech., 16, 5249–5259, https://doi.org/10.5194/amt-16-5249-2023, https://doi.org/10.5194/amt-16-5249-2023, 2023
Short summary
Short summary
Homogenized atmospheric water vapor data are an important prerequisite for climate analysis. Compared to other techniques, GPS has an inherent homogeneity advantage but requires reprocessing and homogenization to eliminate impacts of applied strategy and observation environmental changes. The low-elevation cut-off angles are suggested for the best estimates of zenith tropospheric delay (ZTD) reprocessing time series when compared to homogenized radiosonde data or ERA5 reference time series.
James Barry, Stefanie Meilinger, Klaus Pfeilsticker, Anna Herman-Czezuch, Nicola Kimiaie, Christopher Schirrmeister, Rone Yousif, Tina Buchmann, Johannes Grabenstein, Hartwig Deneke, Jonas Witthuhn, Claudia Emde, Felix Gödde, Bernhard Mayer, Leonhard Scheck, Marion Schroedter-Homscheidt, Philipp Hofbauer, and Matthias Struck
Atmos. Meas. Tech., 16, 4975–5007, https://doi.org/10.5194/amt-16-4975-2023, https://doi.org/10.5194/amt-16-4975-2023, 2023
Short summary
Short summary
Measured power data from solar photovoltaic (PV) systems contain information about the state of the atmosphere. In this work, power data from PV systems in the Allgäu region in Germany were used to determine the solar irradiance at each location, using state-of-the-art simulation and modelling. The results were validated using concurrent measurements of the incoming solar radiation in each case. If applied on a wider scale, this algorithm could help improve weather and climate models.
Wan Wu, Xu Liu, Liqiao Lei, Xiaozhen Xiong, Qiguang Yang, Qing Yue, Daniel K. Zhou, and Allen M. Larar
Atmos. Meas. Tech., 16, 4807–4832, https://doi.org/10.5194/amt-16-4807-2023, https://doi.org/10.5194/amt-16-4807-2023, 2023
Short summary
Short summary
We present a new operational physical retrieval algorithm that is used to retrieve atmospheric properties for each single field-of-view measurement of hyper-spectral IR sounders. The physical scheme includes a cloud-scattering calculation in its forward-simulation part. The data product generated using this algorithm has an advantage over traditional IR sounder data production algorithms in terms of improved spatial resolution and minimized error due to cloud contamination.
Zhen Li, Ad Stoffelen, Anton Verhoef, Zhixiong Wang, Jian Shang, and Honggang Yin
Atmos. Meas. Tech., 16, 4769–4783, https://doi.org/10.5194/amt-16-4769-2023, https://doi.org/10.5194/amt-16-4769-2023, 2023
Short summary
Short summary
WindRAD (Wind Radar) is the first dual-frequency rotating fan-beam scatterometer in orbit. We observe non-linearity in the backscatter distribution. Therefore, higher-order calibration (HOC) is proposed, which removes the non-linearities per incidence angle. The combination of HOC and NOCant is discussed. It can remove not only the non-linearity but also the anomalous harmonic azimuth dependencies caused by the antenna rotation; hence the optimal winds can be achieved with this combination.
Marco Gabella, Martin Lainer, Daniel Wolfensberger, and Jacopo Grazioli
Atmos. Meas. Tech., 16, 4409–4422, https://doi.org/10.5194/amt-16-4409-2023, https://doi.org/10.5194/amt-16-4409-2023, 2023
Short summary
Short summary
A still wind turbine observed with a fixed-pointing radar antenna has shown distinctive polarimetric signatures: the correlation coefficient between the two orthogonal polarization states was persistently equal to 1. The differential reflectivity and the radar reflectivity factors were also stable in time. Over 2 min (2000 Hz, 128 pulses were used; consequently, the sampling time was 64 ms), the standard deviation of the differential backscattering phase shift was only a few degrees.
Carsten Schmidt, Lisa Küchelbacher, Sabine Wüst, and Michael Bittner
Atmos. Meas. Tech., 16, 4331–4356, https://doi.org/10.5194/amt-16-4331-2023, https://doi.org/10.5194/amt-16-4331-2023, 2023
Short summary
Short summary
Two identical instruments in a parallel setup were used to observe the mesospheric OH airglow for more than 10 years (2009–2020) at 47.42°N, 10.98°E. This allows unique analyses of data quality aspects and their impact on the obtained results. During solar cycle 24 the influence of the sun was strong (∼6 K per 100 sfu). A quasi-2-year oscillation (QBO) of ±1 K is observed mainly during the maximum of the solar cycle. Unlike the stratospheric QBO the variation has a period of or below 24 months.
Jason N. S. Cole, Howard W. Barker, Zhipeng Qu, Najda Villefranque, and Mark W. Shephard
Atmos. Meas. Tech., 16, 4271–4288, https://doi.org/10.5194/amt-16-4271-2023, https://doi.org/10.5194/amt-16-4271-2023, 2023
Short summary
Short summary
Measurements from the EarthCARE satellite mission will be used to retrieve profiles of cloud and aerosol properties. These retrievals are combined with auxiliary information about surface properties and atmospheric state, e.g., temperature and water vapor. This information allows computation of 1D and 3D solar and thermal radiative transfer for small domains, which are compared with coincident radiometer observations to continually assess EarthCARE retrievals.
Florian Günzkofer, Gunter Stober, Dimitry Pokhotelov, Yasunobu Miyoshi, and Claudia Borries
EGUsphere, https://doi.org/10.5194/egusphere-2023-1495, https://doi.org/10.5194/egusphere-2023-1495, 2023
Short summary
Short summary
Electric currents in the ionosphere can impact both satellite and ground-based infrastructure. These currents depend strongly on the collisions of ions and neutral particles. Measuring ion-neutral collisions is often only possible via certain assumptions. Direct measurement of ion-neutral collision frequencies is possible with multifrequency Incoherent Scatter Radar measurements. This paper presents one analysis method of such measurements and discusses its advantages and disadvantages.
Anna Jurczyk, Katarzyna Ośródka, Jan Szturc, Magdalena Pasierb, and Agnieszka Kurcz
Atmos. Meas. Tech., 16, 4067–4079, https://doi.org/10.5194/amt-16-4067-2023, https://doi.org/10.5194/amt-16-4067-2023, 2023
Short summary
Short summary
A data-processing algorithm, RainGRS Clim, has been developed to work on precipitation accumulations such as daily or monthly totals. The algorithm makes the most of additional opportunities: access to high-quality data that are not operationally available and greater efficiency of the algorithms for data quality control and merging for longer accumulations. Monthly accumulations estimated by RainGRS Clim were found to be significantly more reliable than accumulations generated operationally.
Sophie Rosenburg, Charlotte Lange, Evelyn Jäkel, Michael Schäfer, André Ehrlich, and Manfred Wendisch
Atmos. Meas. Tech., 16, 3915–3930, https://doi.org/10.5194/amt-16-3915-2023, https://doi.org/10.5194/amt-16-3915-2023, 2023
Short summary
Short summary
Snow layer melting and melt pond formation on Arctic sea ice are important seasonal processes affecting the surface reflection and energy budget. Sea ice reflectivity was surveyed by airborne imaging spectrometers in May–June 2017. Adapted retrieval approaches were applied to find snow layer liquid water fraction, snow grain effective radius, and melt pond depth. The retrievals show the potential and limitations of spectral airborne imaging to map melting snow layer and melt pond properties.
Sunil Baidar, Timothy J. Wagner, David D. Turner, and W. Alan Brewer
Atmos. Meas. Tech., 16, 3715–3726, https://doi.org/10.5194/amt-16-3715-2023, https://doi.org/10.5194/amt-16-3715-2023, 2023
Short summary
Short summary
This paper provides a new method to retrieve wind profiles from coherent Doppler lidar (CDL) measurements. It takes advantage of layer-to-layer correlation in wind profiles to provide continuous profiles of up to 3 km by filling in the gaps where the CDL signal is too small to retrieve reliable results by itself. Comparison with the current method and collocated radiosonde wind measurements showed excellent agreement with no degradation in results where the current method gives valid results.
Jake J. Gristey, K. Sebastian Schmidt, Hong Chen, Daniel R. Feldman, Bruce C. Kindel, Joshua Mauss, Mathew van den Heever, Maria Z. Hakuba, and Peter Pilewskie
Atmos. Meas. Tech., 16, 3609–3630, https://doi.org/10.5194/amt-16-3609-2023, https://doi.org/10.5194/amt-16-3609-2023, 2023
Short summary
Short summary
The concept of a satellite-based camera is demonstrated for sampling the angular distribution of outgoing radiance from Earth needed to generate data products for new radiation budget spectral channels.
Luis Ackermann, Joshua Soderholm, Alain Protat, Rhys Whitley, Lisa Ye, and Nina Ridder
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-161, https://doi.org/10.5194/amt-2023-161, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
The manuscript addresses the crucial topic of hail damage quantification using radar observations. We propose a new radar-derived hail product that utilises a large dataset of insurance hail damage claims and radar observations. A deep neural network was employed, trained with local meteorological variables and the radar observations, to better quantify hail damage. Key meteorological variables were identified to have the most predictive capability in this regards.
Neranga K. Hannadige, Peng-Wang Zhai, Meng Gao, Yongxiang Hu, P. Jeremy Werdell, Kirk Knobelspiesse, and Brian Cairns
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-142, https://doi.org/10.5194/amt-2023-142, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
We evaluated the impact of three ocean optical models with different numbers of free parameters on the performance of an aerosol and ocean color remote sensing algorithm using the multi-angle polarimeter (MAP) measurements. It was demonstrated that the 3 and 7-parameter bio-optical models can be used to accurately represent both open and coastal waters, whereas the 1-parameter model does have smaller retrieval uncertainty over open waters.
Alex Meredith, Stephen Leroy, Lucy Halperin, and Kerri Cahoy
Atmos. Meas. Tech., 16, 3345–3361, https://doi.org/10.5194/amt-16-3345-2023, https://doi.org/10.5194/amt-16-3345-2023, 2023
Short summary
Short summary
We developed a new efficient algorithm leveraging orbital dynamics to collocate radio occultation soundings with microwave radiance soundings. This new algorithm is 99 % accurate and is much faster than traditional collocation-finding approaches. Speeding up collocation finding is useful for calibrating and validating microwave radiometers and for data assimilation into numerical weather prediction models. Our algorithm can also be used to predict collocation yield for new satellite missions.
René Sedlak, Andreas Welscher, Patrick Hannawald, Sabine Wüst, Rainer Lienhart, and Michael Bittner
Atmos. Meas. Tech., 16, 3141–3153, https://doi.org/10.5194/amt-16-3141-2023, https://doi.org/10.5194/amt-16-3141-2023, 2023
Short summary
Short summary
We show that machine learning can help in classifying images of the OH* airglow, a thin layer in the middle atmosphere (ca. 86 km height) emitting infrared radiation, in an efficient way. By doing this,
dynamicepisodes of strong movement in the OH* airglow caused predominantly by waves can be extracted automatically from large data sets. Within these dynamic episodes, turbulent wave breaking can also be found. We use these observations of turbulence to derive the energy released by waves.
Roberto Cremonini, Tanel Voormansik, Piia Post, and Dmitri Moisseev
Atmos. Meas. Tech., 16, 2943–2956, https://doi.org/10.5194/amt-16-2943-2023, https://doi.org/10.5194/amt-16-2943-2023, 2023
Short summary
Short summary
Extreme rainfall for a specific location is commonly evaluated when designing stormwater management systems. This study investigates the use of quantitative precipitation estimations (QPEs) based on polarimetric weather radar data, without rain gauge corrections, to estimate 1 h rainfall total maxima in Italy and Estonia. We show that dual-polarization weather radar provides reliable QPEs and effective estimations of return periods for extreme rainfall in climatologically homogeneous regions.
Kuo-Nung Wang, Chi O. Ao, Mary G. Morris, George A. Hajj, Marcin J. Kurowski, Francis J. Turk, and Angelyn W. Moore
EGUsphere, https://doi.org/10.5194/egusphere-2023-85, https://doi.org/10.5194/egusphere-2023-85, 2023
Short summary
Short summary
In this article we described a joint retrieval approach combining two techniques, RO and MWR, to obtain high vertical resolution and solve for temperature and moisture independently. The results show that the complicated structure in the lower troposphere can be better resolved with much smaller biases, and the RO/MWR combination is the most stable scenario in our sensitivity analysis. This approach is also applied to real data (COSMIC-2/Suomi-NPP) to show the promise of joint RO/MWR retrieval.
Vinícius Ludwig-Barbosa, Joel Rasch, Thomas Sievert, Anders Carlström, Mats I. Pettersson, Viet Thuy Vu, and Jacob Christensen
Atmos. Meas. Tech., 16, 1849–1864, https://doi.org/10.5194/amt-16-1849-2023, https://doi.org/10.5194/amt-16-1849-2023, 2023
Short summary
Short summary
In this paper, the back-propagation method's capabilities and limitations regarding the location of irregularity regions in the ionosphere, e.g. equatorial plasma bubbles, are evaluated. The assessment was performed with simulations in which different scenarios were assumed. The results showed that the location estimate is possible if the amplitude of the ionospheric disturbance is stronger than the instrument noise level. Further, multiple patches can be located if regions are well separated.
Lars Norin
Atmos. Meas. Tech., 16, 1789–1801, https://doi.org/10.5194/amt-16-1789-2023, https://doi.org/10.5194/amt-16-1789-2023, 2023
Short summary
Short summary
The atmosphere can cause radar beams to bend more or less towards the ground. When the atmosphere differs from standard atmospheric conditions, the propagation is considered anomalous. Radars affected by anomalous propagation can observe ground clutter far beyond the radar horizon. Here, 4.5 years' worth of data from five operational Swedish weather radars are presented. Analyses of the data reveal a strong seasonal cycle and weaker diurnal cycle in ground clutter from across nearby waters.
Liqin Jin, Jakob Mann, Nikolas Angelou, and Mikael Sjöholm
EGUsphere, https://doi.org/10.5194/egusphere-2023-464, https://doi.org/10.5194/egusphere-2023-464, 2023
Short summary
Short summary
By sampling the spectra of a Doppler lidar faster than the raindrop's beam transit time, the rain signal can be filtered away and the bias on the wind velocity estimation can be reduced. In the method we propose, 3 kHz spectra are normalized with their peak values before retrieving the radial wind velocity. In three hours period, we have observed a significant reduction of the bias of the lidar data relative to the sonic. The tendency is that the more it rains, the more the bias is reduced.
Mathieu Ratynski, Sergey Khaykin, Alain Hauchecorne, Robin Wing, Jean-Pierre Cammas, Yann Hello, and Philippe Keckhut
Atmos. Meas. Tech., 16, 997–1016, https://doi.org/10.5194/amt-16-997-2023, https://doi.org/10.5194/amt-16-997-2023, 2023
Short summary
Short summary
Aeolus is the first spaceborne wind lidar providing global wind measurements since 2018. This study offers a comprehensive analysis of Aeolus instrument performance, using ground-based wind lidars and meteorological radiosondes, at tropical and mid-latitudes sites. The analysis allows assessing the long-term evolution of the satellite's performance for more than 3 years. The results will help further elaborate the understanding of the error sources and the behavior of the Doppler wind lidar.
Anne-Claire Billault-Roux, Gionata Ghiggi, Louis Jaffeux, Audrey Martini, Nicolas Viltard, and Alexis Berne
Atmos. Meas. Tech., 16, 911–940, https://doi.org/10.5194/amt-16-911-2023, https://doi.org/10.5194/amt-16-911-2023, 2023
Short summary
Short summary
Better understanding and modeling snowfall properties and processes is relevant to many fields, ranging from weather forecasting to aircraft safety. Meteorological radars can be used to gain insights into the microphysics of snowfall. In this work, we propose a new method to retrieve snowfall properties from measurements of radars with different frequencies. It relies on an original deep-learning framework, which incorporates knowledge of the underlying physics, i.e., electromagnetic scattering.
Chia-Lun Tsai, Kwonil Kim, Yu-Chieng Liou, and GyuWon Lee
Atmos. Meas. Tech., 16, 845–869, https://doi.org/10.5194/amt-16-845-2023, https://doi.org/10.5194/amt-16-845-2023, 2023
Short summary
Short summary
Since the winds in clear-air conditions usually play an important role in the initiation of various weather systems and phenomena, the modified Wind Synthesis System using Doppler Measurements (WISSDOM) synthesis scheme was developed to derive high-quality and high-spatial-resolution 3D winds under clear-air conditions. The performance and accuracy of derived 3D winds from this modified scheme were evaluated with an extreme strong wind event over complex terrain in Pyeongchang, South Korea.
Simone Kotthaus, Juan Antonio Bravo-Aranda, Martine Collaud Coen, Juan Luis Guerrero-Rascado, Maria João Costa, Domenico Cimini, Ewan J. O'Connor, Maxime Hervo, Lucas Alados-Arboledas, María Jiménez-Portaz, Lucia Mona, Dominique Ruffieux, Anthony Illingworth, and Martial Haeffelin
Atmos. Meas. Tech., 16, 433–479, https://doi.org/10.5194/amt-16-433-2023, https://doi.org/10.5194/amt-16-433-2023, 2023
Short summary
Short summary
Profile observations of the atmospheric boundary layer now allow for layer heights and characteristics to be derived at high temporal and vertical resolution. With novel high-density ground-based remote-sensing measurement networks emerging, horizontal information content is also increasing. This review summarises the capabilities and limitations of various sensors and retrieval algorithms which need to be considered during the harmonisation of data products for high-impact applications.
Michael Frech, Cornelius Hald, Maximilian Schaper, Bertram Lange, and Benjamin Rohrdantz
Atmos. Meas. Tech., 16, 295–309, https://doi.org/10.5194/amt-16-295-2023, https://doi.org/10.5194/amt-16-295-2023, 2023
Short summary
Short summary
Weather radar data are the backbone of a lot of meteorological products. In order to obtain a better low-level coverage with radar data, additional systems have to be included. The frequency range in which radars are allowed to operate is limited. A potential radar-to-radar interference has to be avoided. The paper derives guidelines on how additional radars can be included into a C-band weather radar network and how interferences can be avoided.
Yeeun Lee, Myoung-Hwan Ahn, Mina Kang, and Mijin Eo
Atmos. Meas. Tech., 16, 153–168, https://doi.org/10.5194/amt-16-153-2023, https://doi.org/10.5194/amt-16-153-2023, 2023
Short summary
Short summary
This study aims to verify that a partly defective hyperspectral measurement can be successfully reproduced with concise machine learning models coupled with principal component analysis. Evaluation of the approach is performed with radiances and retrieval results of ozone and cloud properties. Considering that GEMS is the first geostationary UV–VIS hyperspectral spectrometer, we expect our findings can be introduced further to similar geostationary environmental instruments to be launched soon.
Mathias Gergely, Maximilian Schaper, Matthias Toussaint, and Michael Frech
Atmos. Meas. Tech., 15, 7315–7335, https://doi.org/10.5194/amt-15-7315-2022, https://doi.org/10.5194/amt-15-7315-2022, 2022
Short summary
Short summary
This study presents the new vertically pointing birdbath scan of the German C-band radar network, which provides high-resolution profiles of precipitating clouds above all DWD weather radars since the spring of 2021. Our AI-based postprocessing method for filtering and analyzing the recorded radar data offers a unique quantitative view into a wide range of precipitation events from snowfall over stratiform rain to intense frontal showers and will be used to complement DWD's operational services.
Kenneth A. Brown and Thomas G. Herges
Atmos. Meas. Tech., 15, 7211–7234, https://doi.org/10.5194/amt-15-7211-2022, https://doi.org/10.5194/amt-15-7211-2022, 2022
Short summary
Short summary
The character of the airflow around and within wind farms has a significant impact on the energy output and longevity of the wind turbines in the farm. For both research and control purposes, accurate measurements of the wind speed are required, and these are often accomplished with remote sensing devices. This article pertains to a field experiment of a lidar mounted to a wind turbine and demonstrates three data post-processing techniques with efficacy at extracting useful airflow information.
Xavier Calbet, Cintia Carbajal Henken, Sergio DeSouza-Machado, Bomin Sun, and Tony Reale
Atmos. Meas. Tech., 15, 7105–7118, https://doi.org/10.5194/amt-15-7105-2022, https://doi.org/10.5194/amt-15-7105-2022, 2022
Short summary
Short summary
Water vapor concentration in the atmosphere at small scales (< 6 km) is considered. The measurements show Gaussian random field behavior following Kolmogorov's theory of turbulence two-thirds law. These properties can be useful when estimating the water vapor variability within a given observed satellite scene or when different water vapor measurements have to be merged consistently.
Qiuyu Chen, Konstantin Ntokas, Björn Linder, Lukas Krasauskas, Manfred Ern, Peter Preusse, Jörn Ungermann, Erich Becker, Martin Kaufmann, and Martin Riese
Atmos. Meas. Tech., 15, 7071–7103, https://doi.org/10.5194/amt-15-7071-2022, https://doi.org/10.5194/amt-15-7071-2022, 2022
Short summary
Short summary
Observations of phase speed and direction spectra as well as zonal mean net gravity wave momentum flux are required to understand how gravity waves reach the mesosphere–lower thermosphere and how they there interact with background flow. To this end we propose flying two CubeSats, each deploying a spatial heterodyne spectrometer for limb observation of the airglow. End-to-end simulations demonstrate that individual gravity waves are retrieved faithfully for the expected instrument performance.
Simon Pfreundschuh, Ingrid Ingemarsson, Patrick Eriksson, Daniel A. Vila, and Alan J. P. Calheiros
Atmos. Meas. Tech., 15, 6907–6933, https://doi.org/10.5194/amt-15-6907-2022, https://doi.org/10.5194/amt-15-6907-2022, 2022
Short summary
Short summary
We used methods from the field of artificial intelligence to train an algorithm to estimate rain from satellite observations. In contrast to other methods, our algorithm not only estimates rain, but also the uncertainty of the estimate. Using independent measurements from rain gauges, we show that our method performs better than currently available methods and that the provided uncertainty estimates are reliable. Our method makes satellite-based measurements of rain more accurate and reliable.
Maximilian Schaper, Michael Frech, David Michaelis, Cornelius Hald, and Benjamin Rohrdantz
Atmos. Meas. Tech., 15, 6625–6642, https://doi.org/10.5194/amt-15-6625-2022, https://doi.org/10.5194/amt-15-6625-2022, 2022
Short summary
Short summary
C-band weather radar data are commonly compromised by radio frequency interference (RFI) from external sources. It is not possible to separate a superimposed interference signal from the radar data. Therefore, the best course of action is to shut down RFI sources as quickly as possible. An automated RFI detection algorithm has been developed. Since its implementation, persistent RFI sources are eliminated much more quickly, while the number of short-lived RFI sources keeps steadily increasing.
Oliver Lux, Benjamin Witschas, Alexander Geiß, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Stephan Rahm, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 15, 6467–6488, https://doi.org/10.5194/amt-15-6467-2022, https://doi.org/10.5194/amt-15-6467-2022, 2022
Short summary
Short summary
We discuss the influence of different quality control schemes on the results of Aeolus wind product validation and present statistical tools for ensuring consistency and comparability among diverse validation studies with regard to the specific error characteristics of the Rayleigh-clear and Mie-cloudy winds. The developed methods are applied for the validation of Aeolus winds against an ECMWF model background and airborne wind lidar data from the Joint Aeolus Tropical Atlantic Campaign.
Alex T. Chartier, Thomas R. Hanley, and Daniel J. Emmons
Atmos. Meas. Tech., 15, 6387–6393, https://doi.org/10.5194/amt-15-6387-2022, https://doi.org/10.5194/amt-15-6387-2022, 2022
Short summary
Short summary
This is a study of anomalous long-distance (>1000 km) radio propagation that was identified in United States Coast Guard monitors of automatic identification system (AIS) shipping transmissions at 162 MHz. Our results indicate this long-distance propagation is caused by dense sporadic E layers in the daytime ionosphere, which were observed by nearby ionosondes at the same time. This finding is surprising because it indicates these sporadic E layers may be far more dense than previously thought.
Johannes K. Nielsen, Hans Gleisner, Stig Syndergaard, and Kent B. Lauritsen
Atmos. Meas. Tech., 15, 6243–6256, https://doi.org/10.5194/amt-15-6243-2022, https://doi.org/10.5194/amt-15-6243-2022, 2022
Short summary
Short summary
This paper provides a new way to estimate uncertainties and error correlations. The method is a generalization of a known method called the
three-cornered hat: Instead of calculating uncertainties from assumed knowledge about the observation method, uncertainties and error correlations are estimated statistically from tree independent observation series, measuring the same variable. The results are useful for future estimation of atmospheric-specific humidity from the bending of radio waves.
Fraser King, George Duffy, Lisa Milani, Christopher G. Fletcher, Claire Pettersen, and Kerstin Ebell
Atmos. Meas. Tech., 15, 6035–6050, https://doi.org/10.5194/amt-15-6035-2022, https://doi.org/10.5194/amt-15-6035-2022, 2022
Short summary
Short summary
Under warmer global temperatures, precipitation patterns are expected to shift substantially, with critical impact on the global water-energy budget. In this work, we develop a deep learning model for predicting snow and rain accumulation based on surface radar observations of the lower atmosphere. Our model demonstrates improved skill over traditional methods and provides new insights into the regions of the atmosphere that provide the most significant contributions to high model accuracy.
Matthias Aichinger-Rosenberger, Elmar Brockmann, Laura Crocetti, Benedikt Soja, and Gregor Moeller
Atmos. Meas. Tech., 15, 5821–5839, https://doi.org/10.5194/amt-15-5821-2022, https://doi.org/10.5194/amt-15-5821-2022, 2022
Short summary
Short summary
This study develops an innovative approach for the detection and prediction of foehn winds. The approach uses products generated from GNSS (Global Navigation Satellite Systems) in combination with machine learning-based classification algorithms to detect and predict foehn winds at Altdorf, Switzerland. Results are encouraging and comparable to similar studies using meteorological data, which might qualify the method as an additional tool for short-term foehn forecasting in the future.
Gunter Stober, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Ales Kuchar, Christoph Jacobi, Chris Meek, Diego Janches, Guiping Liu, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Meas. Tech., 15, 5769–5792, https://doi.org/10.5194/amt-15-5769-2022, https://doi.org/10.5194/amt-15-5769-2022, 2022
Short summary
Short summary
Precise and accurate measurements of vertical winds at the mesosphere and lower thermosphere are rare. Although meteor radars have been used for decades to observe horizontal winds, their ability to derive reliable vertical wind measurements was always questioned. In this article, we provide mathematical concepts to retrieve mathematically and physically consistent solutions, which are compared to the state-of-the-art non-hydrostatic model UA-ICON.
Benjamin Schumacher, Marwan Katurji, Jiawei Zhang, Peyman Zawar-Reza, Benjamin Adams, and Matthias Zeeman
Atmos. Meas. Tech., 15, 5681–5700, https://doi.org/10.5194/amt-15-5681-2022, https://doi.org/10.5194/amt-15-5681-2022, 2022
Short summary
Short summary
This investigation presents adaptive thermal image velocimetry (A-TIV), a newly developed algorithm to spatially measure near-surface atmospheric velocities using an infrared camera mounted on uncrewed aerial vehicles. A validation and accuracy assessment of the retrieved velocity fields shows the successful application of the algorithm over short-cut grass and turf surfaces in dry conditions. This provides new opportunities for atmospheric scientists to study surface–atmosphere interactions.
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, and Luke R. Allen
Atmos. Meas. Tech., 15, 5515–5525, https://doi.org/10.5194/amt-15-5515-2022, https://doi.org/10.5194/amt-15-5515-2022, 2022
Short summary
Short summary
Locally higher radar reflectivity values in winter storms can mean more snowfall or a transition from snow to mixtures of snow, partially melted snow, and/or rain. We use the correlation coefficient to de-emphasize regions of mixed precipitation. Visual muting is valuable for analyzing and monitoring evolving weather conditions during winter storm events.
Willem J. Marais and Matthew Hayman
Atmos. Meas. Tech., 15, 5159–5180, https://doi.org/10.5194/amt-15-5159-2022, https://doi.org/10.5194/amt-15-5159-2022, 2022
Short summary
Short summary
For atmospheric science and weather prediction, it is important to make water vapor measurements in real time. A low-cost lidar instrument has been developed by Montana State University and the National Center for Atmospheric Research. We developed an advanced signal-processing method to extend the scientific capability of the lidar instrument. With the new method we show that the maximum altitude at which the MPD can make water vapor measurements can be extended up to 8 km.
Simon Pfreundschuh, Paula J. Brown, Christian D. Kummerow, Patrick Eriksson, and Teodor Norrestad
Atmos. Meas. Tech., 15, 5033–5060, https://doi.org/10.5194/amt-15-5033-2022, https://doi.org/10.5194/amt-15-5033-2022, 2022
Short summary
Short summary
The Global Precipitation Measurement mission is an international satellite mission providing regular global rain measurements. We present two newly developed machine-learning-based implementations of one of the algorithms responsible for turning the satellite observations into rain measurements. We show that replacing the current algorithm with a neural network improves the accuracy of the measurements. A neural network that also makes use of spatial information unlocks further improvements.
Christos Gatidis, Marc Schleiss, and Christine Unal
Atmos. Meas. Tech., 15, 4951–4969, https://doi.org/10.5194/amt-15-4951-2022, https://doi.org/10.5194/amt-15-4951-2022, 2022
Short summary
Short summary
Knowledge of the raindrop size distribution (DSD) is crucial for understanding rainfall microphysics and quantifying uncertainty in quantitative precipitation estimates. In this study a general overview of the DSD retrieval approach from a polarimetric radar is discussed, highlighting sensitivity to potential sources of errors, either directly linked to the radar measurements or indirectly through the critical modeling assumptions behind the method such as the shape–size (μ–Λ) relationship.
Stephen R. Kaeppler, Ethan S. Miller, Daniel Cole, and Teresa Updyke
Atmos. Meas. Tech., 15, 4531–4545, https://doi.org/10.5194/amt-15-4531-2022, https://doi.org/10.5194/amt-15-4531-2022, 2022
Short summary
Short summary
This investigation demonstrates how useful ionospheric parameters can be extracted from existing high-frequency radars that are used for oceanographic research. The methodology presented can be used by scientists and radio amateurs to understand ionospheric dynamics.
Hui Liu, Kevin Garrett, Kayo Ide, Ross N. Hoffman, and Katherine E. Lukens
Atmos. Meas. Tech., 15, 3925–3940, https://doi.org/10.5194/amt-15-3925-2022, https://doi.org/10.5194/amt-15-3925-2022, 2022
Short summary
Short summary
A total least squares (TLS) regression is used to optimally estimate linear speed-dependent biases between Aeolus Level-2B winds and short-term (6 h) forecasts of NOAA’s FV3GFS. The winds for 1–7 September 2019 are examined. Clear speed-dependent biases for both Mie and Rayleigh winds are found, particularly in the tropics and Southern Hemisphere. Use of the TLS correction improves the forecast of the 26–28 November 2019 winter storm over the USA.
Snizhana Ross, Arttu Arjas, Ilkka I. Virtanen, Mikko J. Sillanpää, Lassi Roininen, and Andreas Hauptmann
Atmos. Meas. Tech., 15, 3843–3857, https://doi.org/10.5194/amt-15-3843-2022, https://doi.org/10.5194/amt-15-3843-2022, 2022
Short summary
Short summary
Radar measurements of thermal fluctuations in the Earth's ionosphere produce weak signals, and tuning to specific altitudes results in suboptimal resolution for other regions, making an accurate analysis of these changes difficult. A novel approach to improve the resolution and remove measurement noise is considered. The method can capture variable characteristics, making it ideal for the study of a large range of data. Synthetically generated examples and two measured datasets were considered.
Cited articles
Aires, F. and Prigent, C.: A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations, J. Geophys. Res., 106, 14887–14907, 2001.
Aires, F., Bernardo, F., Brogniez, H., and Prigent, C.: An innovative calibration method for the inversion of satellite observations, J. Appl. Meteor. Climatol., 49, 2458–2473, 2010.
Aires, F., Prigent, C., Bernardo, F., Jimenez, C., Saunders, R., and Brunel, P.: A Tool to Estimate Land-Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction, Q. J. Roy. Meteorol. Soc., 137(A), 690–699, 2011.
Aires, F., Bernardo, F., and Prigent, C.: Atmospheric water-vapour profiling from passive microwave sounders over ocean and land. Part I: Methodology for the Megha-Tropiques mission, Q. J. Roy. Meteorol. Soc., 139, 852–864, 2013.
Anandhi, A., Srinivas, V., Nanjundiah, R., and Kumar, D.: Downscaling precipitation to river basin in India for IPCC SRES scenarios using support vector machine, Int. J. Climatol., 28, 401–420, 2008.
Aumann, H., Chahine, M., Gautier, C., Goldberg, M., Kalnay, E., McMillin, L., Revercomb, H., Rosenkranz, P., Smith, W., Staelin, D., Strow, L., and Sussking, J.: AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products and processing systems, IEEE Trans. Geosci. Remote Sens., 41, 253–264, 2003.
Balabin, R. and Lomakina, E.: Support vector machine regression (SVR/LS-SVM). An alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data, Analyst, 136, 1703–1712, 2011.
Beckmann, B. and Buishand, T.: Statistical downscaling relationships for precipitations in The Netherlands and North Germany, Int. J. Climatol., 22, 15–32, 2002.
Belsley, D., Kuh, E., and Welsch, R.: Regression Diagnostics, in: Regression Diagnostics: identifying influential data and sources of collinearity, John Wiley & Sons Inc., 1980.
Bennartz, R. and Bauer, P.: Sensitivity of microwave radiances at 85–183 GHz to precipitating ice particles, Radio Sci., 38, 8075, https://doi.org/10.1029/2002RS002626, 2003.
Bishop, C.: Neural networks for pattern recognition, vol. 1, Clarendon Press, Oxford, 1995.
Blackwell, W.: A neural-network technique for the retrieval of atmospheric temperature and moisture profiles from high spectral resolution sounding data, IEEE Trans. Geosci. Remote Sens., 43, 2535–2546, 2005.
Blankenship, C., Al-Khalaf, A., and Wilheit, T.: Retrieval of Water Vapor Profiles Using SSM/T-2 and SSM/I Data, J. Atmos. Sci., 57, 939–955, 2000.
Brogniez, H. and Pierrehumbert, R.: Using microwave observations to assess large-scale control of free tropospheric water vapor in the mid-latitudes, Geophys. Res. Lett., 33, L14801, https://doi.org/10.1029/2006GL026240, 2006.
Brogniez, H., Kirstetter, P.-E., and Eymard, L.: Expected improvements in the atmospheric humidity profile retrieval using the Megha-Tropiques microwave payload, Q. J. Roy. Meteorol. Soc., 139, 842–851, https://doi.org/10.1002/qj.1869, 2013.
Buehler, S. and John, V. O.: A simple method to relate microwave radiances to Upper Tropospheric Humidity, J. Geophys. Res., 110, D02110, https://doi.org/10.1029/2004JD005111, 2004.
Buehler, S. A., Kuvatov, M., and John, V. O.: Comparison of microwave satellite humidity data and radiosonde profiles: A case study, J. Geophys. Res., 109, D13103, https://doi.org/10.1029/2004JD004605, 2004.
Buehler, S. A., Kuvatov, M., and John, V. O.: Scan asymmetries in AMSU-B data, Geophys. Res. Lett., 32, L24810, https://doi.org/10.1029/2005GL024747, 2005.
Cabrera-Mercadier, C. and Staelin, D.: Passive microwave relative humidity retrievals using feedforward neural networks, IEEE Trans. Geosci. Remote Sens., 33, 1324–1328, 1995.
Cawley, G. and Talbot, N.: Preventing Over-Fitting during Model Selection via Bayesian Regularisation of the Hyper-Parameters, J. Machine Learning Res., 8, 841–861, 2007.
Chen, S., Billings, S., and Luo, W.: Orthogonal least squares methods and their application to non-linear system identification, Int. J. Control, 50, 1873–1896, 1989.
Ciesielski, P., Yu, H., Johnson, R., Yoneyama, K., Katsumata, M., Long, C., Wang, J., Loehrer, S., Young, K., Williams, S., Brown, W., Braun, J., and Van Hove, T.: Quality-controlled upper-air sounding dayaset for DYNAMO/CINDY/AMIE: development and corrections, J. Atmos. Oceanic Technol., 31, 741–764, https://doi.org/10.1175/JTECH-D-13-00165.1, 2015.
Clain, G., Brogniez, H., Payne, V. H., John, V. O., and Ming, L.: An assessment of SAPHIR calibration using quality tropical soundings, J. Atmos. Oceanic Technol., 32, 61–78, https://doi.org/10.1175/JTECH-D-14-00054.1, 2015.
Davis, J., Eder, B., Nychka, D., and Yang, Q.: Modeling the effects of eteorology on Ozone in Houston using cluster analysis and generalized additive models, Atmos. Environ., 32, 2505–2520, 1998.
Deblonde, G. and English, S.: Evaluation of the FASTEM-2 fast microwave oceanic surface emissivity model, Tech. Proc., 2001.
Durre, I., Vose, R., and Wuertz, D.: Overview of the Integrated Global Radiosonde Archive, J. Climate, 19, 53–68, 2006.
English, S., Guillou, C., Prigent, C., and Jones, D.: Aircraft measurements of water vapour continuum absorption at millimetre wavelengths, Q. J. Roy. Meteorol. Soc., 120, 603–625, 1994.
Fetzer, E., Hulley, G., Lambrigsten, B., Manning, E., Blaisdell, J., Iredell, L., Sussking, J., Warner, J., Wei, Z., and Blackwell, W.: AIRS/AMSU/HSB version 6 changes from version 5, Tech. rep., NASA Jet Propulsion Laboratory, 2013.
Franquet, S.: Contribution à l'étude du cycle hydologique par radiométrie hyperfréquence: algorithme de restitution (réseaux de neurones) et validation pour la vapeur d'eau (AMSU, SAPHIR) et les précipitations (AMSU, radars au sol BALTRAD), PhD thesis, Université de Paris 7, 2003.
Gierens, K., Schumann, U., Helten, M., Smit, H., and Marenco, A.: A distribution law for relative humidity in the upper troposphere and lower stratosphere derived from three years of MOZAIC measurements, Ann. Geophys., 17, 1218–1226, https://doi.org/10.1007/s00585-999-1218-7, 1999.
Gohil, B., Gairola, R., Mathur, A., Varma, A., Mahesh, C., Gangwar, R., and Pal, P.: Algorithms for retrieving geophysical parameters from the MADRAS and SAPHIR sensors of the Megha-Tropiques satellites: Indian scenario, Q. J. Roy. Meteorol. Soc., 139, 954–963, 2013.
Goldberg, M., Crosby, D., and Zhou, L.: The Limb Adjustment of AMSU-A Observations: Methodology and Validation, J. Appl. Meteor., 40, 70–83, 2000.
Hall, A. and Manabe, S.: Effect of water vapor feedback on internal and anthropogenic variations of the global hydrological cycleø, J. Geophys. Res., 105, 6935–6944, 2000.
Hastie, T. and Tibshirani, R.: Generalized Additive Models, Chapman & Hall/CRC, 1990.
Hastie, T., Tibshirani, R., and Friedman, J.: The elements of statistical learning, Springer, 2009.
Haykin, S.: Neural Networks: A Comprehensive Foundation, IEEE Press, New York, NY, USA, 1994.
Held, I. and Soden, B.: Water vapour feedback and global warming, Annu. Rev. Energy Environn., 25, 441–475, 2000.
Held, I. and Soden, B.: Robust responses of the hydrological cycle to global warming, J. Climate, 19, 3354–3360, 2006.
Hong, G., Heygster, G., Miao, J., and Kunzi, K.: Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements, J. Geophys. Res., 110, D05205, https://doi.org/10.1029/2004JD004949, 2005.
Houze, R. and Betts, A.: Convection in GATE, Rev. Geophys., 19, 541–576, 1981.
Karbou, F., Aires, F., Prigent, C., and Eymard, L.: Potential of Advanced Microwaves Sounding Unit-A (AMSU-A) and AMSU-B measurements for atmospheric temperature and humidity profiling over land, J. Geophys. Res., 110, D07109, https://doi.org/10.1029/2004JD005318, 2005.
Karouche, N., Goldstein, C., Rosak, A., Malassingne, C., and Raju, G.: Megha-Tropiques satellite mission: in flight performances results, Geosci. Remote Sens. Symposium (IGARSS), 4684–4687, https://doi.org/10.1109/IGARSS.2012.6350420, 2012.
Kohonen, T.: Self-organizing formation of topologically correct feature maps, Biological Cybernetics, 46, 59–69, 1982.
Kohonen, T.: Self-Organizing maps, Springer series in Informations Sciences, 3rd edn., 2001.
Kuo, C., Staelin, D., and Rosenkranz, P.: Statistical iterative scheme for estimating atmospheric relative humidity profiles, IEEE Transactions on Geoscience and Remote Sensing, 32, 254–260, 1994.
Laurent, R. T. and Cook, R.: Leverage, local influence and curvature in nonlinear regression, Biometrika, 80, 99–106, 1993.
Lee, Y., Wahba, G., and Ackerman, S.: Cloud classification of satellite radiance data by Multicategory Support Vectore Machines, J. Atmos. Oceanic Technol., 21, 159–169, 2004.
Liu, Q. and Weng, F.: One-dimensional variational retrieval algorithm of temperature, water vapor and cloud water profiles from Advanced Microwave Sounding Unit (AMSU), IEEE Trans. Geosci. Remote Sens., 43, 1087–1095, 2005.
Mallet, C., Moreau, E., Casagrande, L., and Klapisz, C.: Determination of integrated cloud liquid water path and total precipitable water from SSM/I data using a neural network algorithm, Int. J. Remote Sens., 23, 661–674, 1993.
Matricardi, M., Chevallier, F., Kelly, G., and Thépaut, J.: An improved general fast radiative transfer model for the assimilation of radiance observations, Am. Meteorol. Soc., 130, 153–173, 2004.
Mestre, O. and Hallegatte, S.: Predictors of tropical cyclone numbers and extreme hurricane intensities over the North Atlantic using Generalized Additive and Linear Models, J. Climate, 22, 633–648, 2009.
Moradi, I., Soden, B., Ferraro, R., Arkin, P., and Vömel, H.: Assessing the quality of humidity measurements from global operational radiosonde sensors, J. Geophys. Res., 118, 8040–8053, 2013.
Nash, J., Smout, R., Oakley, T., Pathack, B., and Kurnosenko, S.: WMO intercomparison of high quality radiosonde systems : Final report, WMO Report, p. 118, 2005.
Pierrehumbert, R. and Roca, R.: Evidence for control of Atlantic subtropical humidity by large-scale advection, Geophys. Res. Lett., 25, 4537–4540, 1998.
Pierrehumbert, R., Brogniez, H., and Roca, R.: On the relative humidity of the Earth's atmosphere, in: The Global Circulation of the Atmosphere, Princeton University Press, 143–185, 2007.
Prigent, C., Aires, F., and Rossow, W.: Land surface microwave emissivities over the globe for a decade, B. Am. Meteorol. Soc., 87, 1572–1584, 2006.
Qu, Z.: Cooperative Control of Dynamical Systems, 2009.
Read, W. G., Waters, J. W., Wu, D. L., Stone, E., Shippony, Z., Smedley, A. C., Smallcomb, C. C., Oltmans, S., Kley, D., Smit, H. G. J., Mergenthaler, J., and Karki, M.: UARS Microwave Limb Sounder upper tropospheric humidity measurement: Method and validation, J. Geophys. Res., 106, 32207–32258, 2001.
Read, W. G., Lambert, A., Bacmeister, J., Cofield, R. E., Christensen, L. E., Cuddy, D. T., Daffer, W. H., Drouin, B. J., Fetzer, E., Froidevaux, L., Fuller, R., Herman, R., Jarnot, R. F., Jiang, J. H., Jiang, Y. B., Kelly, K., Knosp, B. W., Kovalenko, L. J., Livesey, N. J., Liu, H.-C., Manney, G. L., Pickett, H. M., Pumphrey, H. C., Rosenlof, K. H., Sabounchi, X., Santee, M. L., Schwartz, M. J., Snyder, W. V., Stek, P. C., Su, H., Takacs, L. L., Thurstans, R. P., Vömel, H., Wagner, P. A., Waters, J. W., Webster, C. R., Weinstock, E. M., and Wu, D. L.: Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H2O and relative humidity with respect to ice validation, J. Geophys. Res., 112, D24S35, https://doi.org/10.1029/2007JD008752, 2007.
Rieder, M. and Kirchengast, G.: Physical-statistical retrieval of water vapor profiles using SSM/T-2 sounder data, Geophys. Res. Lett., 26, 1397–1400, 1999.
Roca, R., Bergès, J.-C., Brogniez, H., Capderou, M., Chambon, P., Chomette, O., Cloché, S., Fiolleau, T., Jobard, I., Lémond, J., Ly, M., Picon, L., Raberanto, P., Szantai, A., and Viollier, M.: On the water and energy cycles in the Tropics, C.R. Geoscience, 342, 390–402, 2010.
Rumelhart, D., Hinton†, G., and Williams, R.: Learning internal representation by error propagation. in: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, edited by: Rumelhart, D. E. and McClelland, J. L., 1986.
Schaerer, G. and Wilheit, T. T.: A passive microwave technique for profiling of atmospheric water vapor, Radio Sci., 14, 371–375, 1979.
Schmetz, J. and Turpeinen, O.: Estimation of the Upper Tropospheric Relative Humidity field from METEOSAT water vapor image data, J. Appl. Meteor., 27, 889–899, 1988.
Scholkopf, B. and Smola, A.: Learning with Kernels, MIT Press, 2002.
Sherwood, S., Roca, R., Weckwerth, T., and Andronova, N.: Tropospheric water vapor, convection and climate, Rev. Geophys., 48, RG2001, https://doi.org/10.1029/2009RG000301, 2010.
Soden, B. and Bretherton, F.: Upper Tropospheric Relative Humidity from the GOES 6.7 Channel: Method and Climatology for July 1987, J. Geophys. Res., 98, 16669–16688, 1993.
Spencer, R. and Braswell, W.: How dry is the tropical free troposphere? Implications for a global warming theory, B. Am. Meteorol. Soc., 78, 1097–1106, 1997.
Stephens, G.: On the relationship between water vapor over the oceans and sea surface temperature, J. Climate, 3, 634–645, 1990.
Stephens, G., Jackson, D., and Wittmeyer, I.: Global observations of Upper-Tropospheric water vapor derived from TOVSQ radiance data, J. Climate, 9, 305–326, 1996.
Student: The probable error of a mean, Biometrika, 6, 1–25, 1908.
Sun, B.-Y., Huang, D.-S., and Fang, H.-T.: Lidar signal denoising using Least-Squares Support Vector Machine, IEEE Signal Processing Lett., 12, 101–104, 2005.
Suykens, J. A., Gestel, T. V., de Brabanter, J., de Moor, B., and Vandewalle, J.: Least Squares Support Vector Machines, World Scientific, 2002.
Tripathi, S., Srinivas, V., and Nanjundiah, R.: Downscaling of precipitation for climate change scenarios: a support vectore machine approach, J. Hydrol., 330, 621–640, 2006.
Ulaby, F., Moore, R., and Fung, A.: Microwave Remote Sensing Active and Passing Vol. 1: Microwave Remote Sensing Fundamentals and Radiometry, vol. 1, Addison-Wesley, 1981.
Underwood, F.: Describing long-term trends in precipitation using generalized additive models, J. Hydrol., 364, 285–297, 2009.
Van Dang, H., Lambrigsten, B., and Manning, E.: AIRS/AMSU/HSB version 6 Level 2 performance and test report, Tech. rep., NASA Jet Propulsion Laboratory, 2012.
Venkat Ratnam, M., Basha, G., Krishna Murthy, B., and Jayaraman, A.: Relative humidity distribution from SAPHIR experiment onboard Megha-Tropiques satellite mission: Comparison with global radiosonde and other satellite and reanalysis datasets, J. Geophys. Res., 118, 9622–9630, 2013.
Vrac, M., Marbaix, P., Paillard, D., and Naveau, P.: Non-linear statistical downscaling of present and LGM precipitation and temperatures over Europe, Clim. Past, 3, 669–682, https://doi.org/10.5194/cp-3-669-2007, 2007.
Wang, J. and Zhang, L.: Systematic Errors in Global Radiosonde Precipitable Water Data from Comparisons with Ground-Based GPS Measurements, J. Climate, 21, 2218–2238, 2008.
Wood, S.: Stable and efficient multiple smoothing parameter estimation for generalized additive models, J. Am. Statist. Assoc., 99, 673–686, 2004.
Wood, S.: Generalized Additive Models, an Introduction with R, Chapman & Hall/CRC, 2006.
Wun-Hua, C., Jen-Ying, S., and Soushan, W.: Comparison of support-vector machines and back propagation neural networks in forecasting the six major Asian stock, Inderscience Enterprises Ltd, 1, 49–67, 2006.