Articles | Volume 8, issue 3
https://doi.org/10.5194/amt-8-1173-2015
https://doi.org/10.5194/amt-8-1173-2015
Research article
 | 
10 Mar 2015
Research article |  | 10 Mar 2015

Block-based cloud classification with statistical features and distribution of local texture features

H.-Y. Cheng and C.-C. Yu

Related authors

Cloud detection in all-sky images via multi-scale neighborhood features and multiple supervised learning techniques
Hsu-Yung Cheng and Chih-Lung Lin
Atmos. Meas. Tech., 10, 199–208, https://doi.org/10.5194/amt-10-199-2017,https://doi.org/10.5194/amt-10-199-2017, 2017
Short summary

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Partition between supercooled liquid droplets and ice crystals in mixed-phase clouds based on airborne in situ observations
Flor Vanessa Maciel, Minghui Diao, and Ching An Yang
Atmos. Meas. Tech., 17, 4843–4861, https://doi.org/10.5194/amt-17-4843-2024,https://doi.org/10.5194/amt-17-4843-2024, 2024
Short summary
Innovative cloud quantification: deep learning classification and finite-sector clustering for ground-based all-sky imaging
Jingxuan Luo, Yubing Pan, Debin Su, Jinhua Zhong, Lingxiao Wu, Wei Zhao, Xiaoru Hu, Zhengchao Qi, Daren Lu, and Yinan Wang
Atmos. Meas. Tech., 17, 3765–3781, https://doi.org/10.5194/amt-17-3765-2024,https://doi.org/10.5194/amt-17-3765-2024, 2024
Short summary
Revealing halos concealed by cirrus clouds
Yuji Ayatsuka
Atmos. Meas. Tech., 17, 3739–3750, https://doi.org/10.5194/amt-17-3739-2024,https://doi.org/10.5194/amt-17-3739-2024, 2024
Short summary
In situ observations of supercooled liquid water clouds over Dome C, Antarctica by balloon-borne sondes
Philippe Ricaud, Pierre Durand, Paolo Grigioni, Massimo Del Guasta, Giuseppe Camporeale, Axel Roy, Jean-Luc Attié, and John Bognar
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-8,https://doi.org/10.5194/amt-2024-8, 2024
Revised manuscript accepted for AMT
Short summary
Quantifying riming from airborne data during the HALO-(AC)3 campaign
Nina Maherndl, Manuel Moser, Johannes Lucke, Mario Mech, Nils Risse, Imke Schirmacher, and Maximilian Maahn
Atmos. Meas. Tech., 17, 1475–1495, https://doi.org/10.5194/amt-17-1475-2024,https://doi.org/10.5194/amt-17-1475-2024, 2024
Short summary

Cited articles

Bensmail, H. and Celeux, G.: Regularized Gaussian discriminant analysis through eigenvalue decomposition, J. Am. Stat. Assoc., 91, 1743–1748, 1996.
Cadima, J. and Jolliffe, I.: On relationships between uncentered and column-centered principal component analysis, Pak. J. Statist., 25, 473–503, 2009.
Calbo, J. and Sabburg, J.: Feature extraction from whole-sky ground-based images for cloud-type recognition, J. Atmos. Ocean. Tech., 25, 3–14, 2008.
Cheng, H. Y., Yu, C. C., Tseng, C. C., Fan, K. C., Hwang, J. N., and Jeng, B. S.: Environment classification and hierarchical lane detection for structured and unstructured roads, IET Computer Vision, 4, 37–49, 2010.
Cristianini, N. and Shawe-Taylor, J.: An introduction to support vector machines and other kernel-based learning methods, Cambridge University Press, Cambridge, England, 2000.
Download
Short summary
This work performs cloud classification on all-sky images. To deal with mixed cloud types, we propose performing block-based classification. The proposed method combines local texture features with classical statistical texture features. The experimental results have shown that applying the combined feature results in higher classification accuracy. It is also validated that using block-based classification outperforms classification on the entire images.