Articles | Volume 8, issue 2
Atmos. Meas. Tech., 8, 633–647, 2015
https://doi.org/10.5194/amt-8-633-2015
Atmos. Meas. Tech., 8, 633–647, 2015
https://doi.org/10.5194/amt-8-633-2015
Review article
09 Feb 2015
Review article | 09 Feb 2015

Impacts of cloud heterogeneities on cirrus optical properties retrieved from space-based thermal infrared radiometry

T. Fauchez et al.

Related authors

TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI): motivations and protocol version 1.0
Thomas J. Fauchez, Martin Turbet, Eric T. Wolf, Ian Boutle, Michael J. Way, Anthony D. Del Genio, Nathan J. Mayne, Konstantinos Tsigaridis, Ravi K. Kopparapu, Jun Yang, Francois Forget, Avi Mandell, and Shawn D. Domagal Goldman
Geosci. Model Dev., 13, 707–716, https://doi.org/10.5194/gmd-13-707-2020,https://doi.org/10.5194/gmd-13-707-2020, 2020
Short summary
Scale dependence of cirrus heterogeneity effects. Part II: MODIS NIR and SWIR channels
Thomas Fauchez, Steven Platnick, Tamás Várnai, Kerry Meyer, Céline Cornet, and Frédéric Szczap
Atmos. Chem. Phys., 18, 12105–12121, https://doi.org/10.5194/acp-18-12105-2018,https://doi.org/10.5194/acp-18-12105-2018, 2018
Short summary
An A-train and MERRA view of cloud, thermodynamic, and dynamic variability within the subtropical marine boundary layer
Brian H. Kahn, Georgios Matheou, Qing Yue, Thomas Fauchez, Eric J. Fetzer, Matthew Lebsock, João Martins, Mathias M. Schreier, Kentaroh Suzuki, and João Teixeira
Atmos. Chem. Phys., 17, 9451–9468, https://doi.org/10.5194/acp-17-9451-2017,https://doi.org/10.5194/acp-17-9451-2017, 2017
Short summary
Scale dependence of cirrus horizontal heterogeneity effects on TOA measurements – Part I: MODIS brightness temperatures in the thermal infrared
Thomas Fauchez, Steven Platnick, Kerry Meyer, Céline Cornet, Frédéric Szczap, and Tamás Várnai
Atmos. Chem. Phys., 17, 8489–8508, https://doi.org/10.5194/acp-17-8489-2017,https://doi.org/10.5194/acp-17-8489-2017, 2017
Short summary
A flexible three-dimensional stratocumulus, cumulus and cirrus cloud generator (3DCLOUD) based on drastically simplified atmospheric equations and the Fourier transform framework
F. Szczap, Y. Gour, T. Fauchez, C. Cornet, T. Faure, O. Jourdan, G. Penide, and P. Dubuisson
Geosci. Model Dev., 7, 1779–1801, https://doi.org/10.5194/gmd-7-1779-2014,https://doi.org/10.5194/gmd-7-1779-2014, 2014

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Improving discrimination between clouds and optically thick aerosol plumes in geostationary satellite data
Daniel Robbins, Caroline Poulsen, Steven Siems, and Simon Proud
Atmos. Meas. Tech., 15, 3031–3051, https://doi.org/10.5194/amt-15-3031-2022,https://doi.org/10.5194/amt-15-3031-2022, 2022
Short summary
Towards the use of conservative thermodynamic variables in data assimilation: a case study using ground-based microwave radiometer measurements
Pascal Marquet, Pauline Martinet, Jean-François Mahfouf, Alina Lavinia Barbu, and Benjamin Ménétrier
Atmos. Meas. Tech., 15, 2021–2035, https://doi.org/10.5194/amt-15-2021-2022,https://doi.org/10.5194/amt-15-2021-2022, 2022
Short summary
Empirical model of multiple-scattering effect on single-wavelength lidar data of aerosols and clouds
Valery Shcherbakov, Frédéric Szczap, Alaa Alkasem, Guillaume Mioche, and Céline Cornet
Atmos. Meas. Tech., 15, 1729–1754, https://doi.org/10.5194/amt-15-1729-2022,https://doi.org/10.5194/amt-15-1729-2022, 2022
Short summary
Analytic characterization of random errors in spectral dual-polarized cloud radar observations
Alexander Myagkov and Davide Ori
Atmos. Meas. Tech., 15, 1333–1354, https://doi.org/10.5194/amt-15-1333-2022,https://doi.org/10.5194/amt-15-1333-2022, 2022
Short summary
Assessing synergistic radar and radiometer capability in retrieving ice cloud microphysics based on hybrid Bayesian algorithms
Yuli Liu and Gerald G. Mace
Atmos. Meas. Tech., 15, 927–944, https://doi.org/10.5194/amt-15-927-2022,https://doi.org/10.5194/amt-15-927-2022, 2022
Short summary

Cited articles

Baran, A. J.: From the single-scattering properties of ice crystals to climate prediction: A way forward, Atmos. Res., 112, 45–69, 2012.
Baran, A. J. and Labonnote, L.-C.: A self-consistent scattering model for cirrus. I: The solar region, Q. J. Roy. Meteorol. Soc., 133, 1899–1912, 2007.
Baran, A. J., Connolly, P. J., and Lee, C.: Testing an ensemble model of cirrus ice crystals using midlatitude in situ estimates of ice water content, volume extinction coefficient and the total solar optical depth., J. Quant Spectrosc. Ra., 110, 1579–1598, 2009.
Baran, A. J., Cotton, R., Furtado, K., Havemann, S., Labonnote, L.-C., Marenco, F., Smith, A., and Thelen, J.-C.: A self-consistent scattering model for cirrus. II: The high and low frequencies, Q. J. Roy. Meteorol. Soc., 140, 1039–1057, 2013.
Baum, B., Heymsfield, A., Yang, P., Platnick, S., King, M., Hu, Y.-X., and Bedka, S.: Bulk scattering models for the remote sensing of ice clouds. Part 1: Microphysical data and models, J. Appl. Meteor., 44, 1885–1895, 2005a.
Download