Articles | Volume 9, issue 10
https://doi.org/10.5194/amt-9-4879-2016
https://doi.org/10.5194/amt-9-4879-2016
Research article
 | 
04 Oct 2016
Research article |  | 04 Oct 2016

Estimation of background gas concentration from differential absorption lidar measurements

Peter Harris, Nadia Smith, Valerie Livina, Tom Gardiner, Rod Robinson, and Fabrizio Innocenti

Related authors

Tipping point analysis of ocean acoustic noise
Valerie N. Livina, Albert Brouwer, Peter Harris, Lian Wang, Kostas Sotirakopoulos, and Stephen Robinson
Nonlin. Processes Geophys., 25, 89–97, https://doi.org/10.5194/npg-25-89-2018,https://doi.org/10.5194/npg-25-89-2018, 2018
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
In-flight estimation of instrument spectral response functions using sparse representations
Jihanne El Haouari, Jean-Michel Gaucel, Christelle Pittet, Jean-Yves Tourneret, and Herwig Wendt
Atmos. Meas. Tech., 18, 2573–2590, https://doi.org/10.5194/amt-18-2573-2025,https://doi.org/10.5194/amt-18-2573-2025, 2025
Short summary
Robustness of atmospheric trace gas retrievals obtained from low-spectral-resolution Fourier transform infrared absorption spectra under variations of interferogram length
Bavo Langerock, Martine De Mazière, Filip Desmet, Pauli Heikkinen, Rigel Kivi, Mahesh Kumar Sha, Corinne Vigouroux, Minqiang Zhou, Gopala Krishna Darbha, and Mohmmed Talib
Atmos. Meas. Tech., 18, 2439–2446, https://doi.org/10.5194/amt-18-2439-2025,https://doi.org/10.5194/amt-18-2439-2025, 2025
Short summary
Retrieval of NO2 profiles from 3 years of Pandora MAX-DOAS measurements in Toronto, Canada
Ramina Alwarda, Kristof Bognar, Xiaoyi Zhao, Vitali Fioletov, Jonathan Davies, Sum Chi Lee, Debora Griffin, Alexandru Lupu, Udo Frieß, Alexander Cede, Yushan Su, and Kimberly Strong
Atmos. Meas. Tech., 18, 2397–2423, https://doi.org/10.5194/amt-18-2397-2025,https://doi.org/10.5194/amt-18-2397-2025, 2025
Short summary
A channel selection methodology for enhancing volcanic SO2 monitoring using FY-3E/HIRAS-II hyperspectral data
Xinyu Li, Lin Zhu, Hongfu Sun, Jun Li, Ximing Lv, Chengli Qi, and Huanhuan Yan
Atmos. Meas. Tech., 18, 2333–2352, https://doi.org/10.5194/amt-18-2333-2025,https://doi.org/10.5194/amt-18-2333-2025, 2025
Short summary
Predictions of failed satellite retrieval of air quality using machine learning
Edward Malina, Jure Brence, Jennifer Adams, Jovan Tanevski, Sašo Džeroski, Valentin Kantchev, and Kevin W. Bowman
Atmos. Meas. Tech., 18, 1689–1715, https://doi.org/10.5194/amt-18-1689-2025,https://doi.org/10.5194/amt-18-1689-2025, 2025
Short summary

Cited articles

Björck, A.: Numerical Methods for Least Squares Problems, Philadelphia: SIAM, 1996.
Butler, J. H. and Montzka, S. A.: The NOAA Annual Greenhouse Gas Index (AGGI), National Oceanic and Atmospheric Administration Earth System Research Laboratory, Global Monitoring Division, U.S. Department of Commerce, available at: http://esrl.noaa.gov/gmd/aggi/aggi.html, last access: July 2016.
Cox, M. G.: The numerical evaluation of B-splines, J. Inst. Math. Appl., 10, 134–149, 1972.
Cox, M. G.: Algorithms for spline curves and surfaces, in: Fundamental Developments of Computer-Aided Geometric Modelling, edited by: Piegl, L., London: Academic, 51–76, 1993.
de Boor, C.: A Practical Guide to Splines, New York: Springer, 1978.
Download
Short summary
We have described an approach to estimating the background concentration level of a species, such as methane, in the atmosphere from an analysis of the measured data provided by the National Physical Laboratory's differential absorption lidar (DIAL) system. The estimation of the background level supports the mapping of pollutant concentrations and the determination of emission fluxes. Results for data provided by a field measurement are presented, and ideas for future work are discussed.
Share