Articles | Volume 10, issue 9
https://doi.org/10.5194/amt-10-3117-2017
https://doi.org/10.5194/amt-10-3117-2017
Research article
 | 
31 Aug 2017
Research article |  | 31 Aug 2017

Estimating trends in atmospheric water vapor and temperature time series over Germany

Fadwa Alshawaf, Kyriakos Balidakis, Galina Dick, Stefan Heise, and Jens Wickert

Related authors

Decadal variations in atmospheric water vapor time series estimated using ground-based GNSS
Fadwa Alshawaf, Galina Dick, Stefan Heise, Tzvetan Simeonov, Sibylle Vey, Torsten Schmidt, and Jens Wickert
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-151,https://doi.org/10.5194/amt-2016-151, 2016
Revised manuscript not accepted
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieval of NO2 profiles from 3 years of Pandora MAX-DOAS measurements in Toronto, Canada
Ramina Alwarda, Kristof Bognar, Xiaoyi Zhao, Vitali Fioletov, Jonathan Davies, Sum Chi Lee, Debora Griffin, Alexandru Lupu, Udo Frieß, Alexander Cede, Yushan Su, and Kimberly Strong
Atmos. Meas. Tech., 18, 2397–2423, https://doi.org/10.5194/amt-18-2397-2025,https://doi.org/10.5194/amt-18-2397-2025, 2025
Short summary
A channel selection methodology for enhancing volcanic SO2 monitoring using FY-3E/HIRAS-II hyperspectral data
Xinyu Li, Lin Zhu, Hongfu Sun, Jun Li, Ximing Lv, Chengli Qi, and Huanhuan Yan
Atmos. Meas. Tech., 18, 2333–2352, https://doi.org/10.5194/amt-18-2333-2025,https://doi.org/10.5194/amt-18-2333-2025, 2025
Short summary
Predictions of failed satellite retrieval of air quality using machine learning
Edward Malina, Jure Brence, Jennifer Adams, Jovan Tanevski, Sašo Džeroski, Valentin Kantchev, and Kevin W. Bowman
Atmos. Meas. Tech., 18, 1689–1715, https://doi.org/10.5194/amt-18-1689-2025,https://doi.org/10.5194/amt-18-1689-2025, 2025
Short summary
Deep transfer learning method for seasonal TROPOMI XCH4 albedo correction
Alexander C. Bradley, Barbara Dix, Fergus Mackenzie, J. Pepijn Veefkind, and Joost A. de Gouw
Atmos. Meas. Tech., 18, 1675–1687, https://doi.org/10.5194/amt-18-1675-2025,https://doi.org/10.5194/amt-18-1675-2025, 2025
Short summary
Global retrieval of TROPOMI tropospheric HCHO and NO2 columns with improved consistency based on the updated Peking University OMI NO2 algorithm
Yuhang Zhang, Huan Yu, Isabelle De Smedt, Jintai Lin, Nicolas Theys, Michel Van Roozendael, Gaia Pinardi, Steven Compernolle, Ruijing Ni, Fangxuan Ren, Sijie Wang, Lulu Chen, Jos Van Geffen, Mengyao Liu, Alexander M. Cede, Martin Tiefengraber, Alexis Merlaud, Martina M. Friedrich, Andreas Richter, Ankie Piters, Vinod Kumar, Vinayak Sinha, Thomas Wagner, Yongjoo Choi, Hisahiro Takashima, Yugo Kanaya, Hitoshi Irie, Robert Spurr, Wenfu Sun, and Lorenzo Fabris
Atmos. Meas. Tech., 18, 1561–1589, https://doi.org/10.5194/amt-18-1561-2025,https://doi.org/10.5194/amt-18-1561-2025, 2025
Short summary

Cited articles

Alshawaf, F., Hinz, S., Mayer, M., and Meyer, F. J.: Constructing accurate maps of atmospheric water vapor by combining interferometric synthetic aperture radar and GNSS observations, J. Geophys. Res.-Atmos., 120, 1391–1403, 2015.
Arguez, A. and Vose, R. S.: The definition of the standard WMO climate normal: The key to deriving alternative climate normals, B. Am. Meteorol. Soc., 92, 699–704, 2011.
Askne, J. and Nordius, H.: Estimation of tropospheric delay for microwaves from surface weather data, Radio Sci., 22, 379–386, 1987.
Bender, M., Dick, G., Wickert, J., Schmidt, T., Song, S., Gendt, G., Ge, M., and Rothacher, M.: Validation of GPS slant delays using water vapour radiometers and weather models, Meteorol. Z., 17, 807–812, 2008.
Bender, M., Dick, G., Ge, M., Deng, Z., Wickert, J., Kahle, H.-G., Raabe, A., and Tetzlaff, G.: Development of a GNSS water vapour tomography system using algebraic reconstruction techniques, Adv. Space Res., 47, 1704–1720, 2011.
Download
Short summary
In this paper, we aimed at estimating climatic trends using precipitable water vapor time series and surface measurements of air temperature in Germany. We used GNSS, ERA-Interim, and synoptic data. The results show mainly a positive trend in precipitable water vapor and temperature with an increase in the trend when moving to northeastern Germany.
Share