Articles | Volume 11, issue 4
https://doi.org/10.5194/amt-11-1971-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-11-1971-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Intercomparison of middle-atmospheric wind in observations and models
Rolf Rüfenacht
CORRESPONDING AUTHOR
Leibniz-Institute of Atmospheric Physics at the Rostock University, Kühlungsborn, Germany
now at: Federal Office of Meteorology and Climatology MeteoSwiss, Payerne, Switzerland
now at: Institute of Applied Physics, University of Bern, Bern, Switzerland
Gerd Baumgarten
Leibniz-Institute of Atmospheric Physics at the Rostock University, Kühlungsborn, Germany
Jens Hildebrand
Leibniz-Institute of Atmospheric Physics at the Rostock University, Kühlungsborn, Germany
Franziska Schranz
Institute of Applied Physics, University of Bern, Bern, Switzerland
Vivien Matthias
Leibniz-Institute of Atmospheric Physics at the Rostock University, Kühlungsborn, Germany
Gunter Stober
Leibniz-Institute of Atmospheric Physics at the Rostock University, Kühlungsborn, Germany
Franz-Josef Lübken
Leibniz-Institute of Atmospheric Physics at the Rostock University, Kühlungsborn, Germany
Niklaus Kämpfer
Institute of Applied Physics, University of Bern, Bern, Switzerland
Related authors
Andreas Plach, Rolf Rüfenacht, Simone Kotthaus, and Markus Leuenberger
EGUsphere, https://doi.org/10.5194/egusphere-2022-1019, https://doi.org/10.5194/egusphere-2022-1019, 2022
Preprint archived
Short summary
Short summary
Greenhouse gases emissions are contributing to global warming and it is essential to better understand where they originate from and how they are transported. In this study we analyze greenhouse gas observations at a Swiss tall tower where measurements are taken more than 200 m above ground and investigate their origin by looking at the condition of the atmosphere at the time of the observations. We find that most pollution at this site is caused from emissions transported from further away.
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Ales Kuchar, Gunter Stober, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Manfred Ern, Damian Murphy, Diego Janches, Tracy Moffat-Griffin, Nicholas Mitchell, and Christoph Jacobi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2827, https://doi.org/10.5194/egusphere-2025-2827, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
We studied how the healing of the Antarctic ozone layer is affecting winds high above the South Pole. Using ground-based radar, satellite data, and computer models, we found that winds in the upper atmosphere have become stronger over the past two decades. These changes appear to be linked to shifts in the lower atmosphere caused by ozone recovery. Our results show that human efforts to repair the ozone layer are also influencing climate patterns far above Earth’s surface.
Mohamed Mossad, Irina Strelnikova, Robin Wing, Gerd Baumgarten, and Michael Gerding
EGUsphere, https://doi.org/10.5194/egusphere-2025-3267, https://doi.org/10.5194/egusphere-2025-3267, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We recorded atmospheric waves over seven years with a lidar in northern Norway, analysing temperature and wind from 35 to 60 km altitude. This yielded the first long-term picture of how wave energy varies with height and season at this location. Winter carried up to ten times more energy than summer, and the balance shifted with wavelength and frequency. Energy patterns often diverged from textbook slopes. These findings refine our view of the upper atmosphere at high latitudes.
Arthur Gauthier, Claudia Borries, Alexander Kozlovsky, Diego Janches, Peter Brown, Denis Vida, Christoph Jacobi, Damian Murphy, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Johan Kero, Nicholas Mitchell, Tracy Moffat-Griffin, and Gunter Stober
Ann. Geophys., 43, 427–440, https://doi.org/10.5194/angeo-43-427-2025, https://doi.org/10.5194/angeo-43-427-2025, 2025
Short summary
Short summary
This study focuses on a TIMED Doppler Interferometer (TIDI)–meteor radar (MR) comparison of zonal and meridional winds and their dependence on local time and latitude. The correlation calculation between TIDI wind measurements and MR winds shows good agreement. A TIDI–MR seasonal comparison and analysis of the altitude–latitude dependence for winds are performed. TIDI reproduces the mean circulation well when compared with MRs and may be a useful lower boundary for general circulation models.
Florian Günzkofer, Gunter Stober, Johan Kero, David R. Themens, Anders Tjulin, Njål Gulbrandsen, Masaki Tsutsumi, and Claudia Borries
Ann. Geophys., 43, 331–348, https://doi.org/10.5194/angeo-43-331-2025, https://doi.org/10.5194/angeo-43-331-2025, 2025
Short summary
Short summary
The Earth’s magnetic field is not closed at high latitudes. Electrically charged particles can penetrate the Earth’s atmosphere, deposit their energy, and heat the local atmosphere–ionosphere. This presumably causes an upwelling of the neutral atmosphere, which affects the atmosphere–ionosphere coupling. We apply a new analysis technique to infer the atmospheric density from incoherent scatter radar measurements. We identify signs of particle precipitation impact on the neutral atmosphere.
Jens Fiedler, Gerd Baumgarten, Michael Gerding, Torsten Köpnick, Reik Ostermann, and Bernd Kaifler
EGUsphere, https://doi.org/10.5194/egusphere-2025-1995, https://doi.org/10.5194/egusphere-2025-1995, 2025
This preprint is open for discussion and under review for Geoscientific Instrumentation, Methods and Data Systems (GI).
Short summary
Short summary
We developed a system for frequency control and monitoring of pulsed high-power lasers. It works in real-time, controls the laser cavity length, and performs a spectral analyzes of each individual laser pulse. The motivation for this work was to improve the retrieval of Doppler winds measured by lidar in the middle atmosphere by taking the frequency stability of the lidar transmitter into account.
Alistair Bell, Axel Murk, and Gunter Stober
EGUsphere, https://doi.org/10.5194/egusphere-2025-1396, https://doi.org/10.5194/egusphere-2025-1396, 2025
Short summary
Short summary
Increases in middle atmospheric water vapour from the 2022 Hunga eruption have been measured worldwide. This study uses remote sensing measurements at two latitudes and accurate radiative transfer modeling to show significant long-wave heating effects. Though minimal at the surface, the water vapour enhancement can alter middle-atmospheric dynamics, potentially affecting ozone chemistry and weather patterns.
Zishun Qiao, Alan Z. Liu, Gunter Stober, Javier Fuentes, Fabio Vargas, Christian L. Adami, and Iain M. Reid
Atmos. Meas. Tech., 18, 1091–1104, https://doi.org/10.5194/amt-18-1091-2025, https://doi.org/10.5194/amt-18-1091-2025, 2025
Short summary
Short summary
This paper describes the installation of the Chilean Observation Network De Meteor Radars (CONDOR) and its initial results. The routine winds are point-to-point comparable to the co-located lidar winds. The retrievals of spatially resolved horizontal wind fields and vertical winds are also facilitated, benefiting from the extensive meteor detections. The successful deployment and maintenance of CONDOR provide 24/7 and state-of-the-art wind measurements to the research community.
Alistair Bell, Eric Sauvageat, Gunter Stober, Klemens Hocke, and Axel Murk
Atmos. Meas. Tech., 18, 555–567, https://doi.org/10.5194/amt-18-555-2025, https://doi.org/10.5194/amt-18-555-2025, 2025
Short summary
Short summary
Hardware and software developments have been made on a 22 GHz microwave radiometer for the measurement of middle-atmospheric water vapour near Bern, Switzerland. Previous measurements dating back to 2010 have been re-calibrated and an improved optimal estimation retrieval performed on these measurements, giving a 13-year dataset. Measurements made with new and improved instrumental hardware are used to correct previous measurements, which show better agreement than the non-corrected dataset.
Natalie Kaifler, Bernd Kaifler, Markus Rapp, Guiping Liu, Diego Janches, Gerd Baumgarten, and Jose-Luis Hormaechea
Atmos. Chem. Phys., 24, 14029–14044, https://doi.org/10.5194/acp-24-14029-2024, https://doi.org/10.5194/acp-24-14029-2024, 2024
Short summary
Short summary
Noctilucent clouds (NLCs) are silvery clouds that can be viewed during twilight and indicate atmospheric conditions like temperature and water vapor in the upper mesosphere. High-resolution measurements from a remote sensing laser instrument provide NLC height, brightness, and occurrence rate since 2017. Most observations occur in the morning hours, likely caused by strong tidal winds, and NLC ice particles are thus transported from elsewhere to the observing location in the Southern Hemisphere.
Guochun Shi, Hanli Liu, Masaki Tsutsumi, Njål Gulbrandsen, Alexander Kozlovsky, Dimitry Pokhotelov, Mark Lester, Kun Wu, and Gunter Stober
EGUsphere, https://doi.org/10.5194/egusphere-2024-3749, https://doi.org/10.5194/egusphere-2024-3749, 2024
Short summary
Short summary
People are increasingly concerned about climate change due to its widespread impacts, including rising temperatures, extreme weather events, and ecosystem disruptions. Addressing these challenges requires urgent global action to reduce greenhouse gas emissions and adapt to a rapidly changing environment.
Jens Fiedler and Gerd Baumgarten
Atmos. Meas. Tech., 17, 5841–5859, https://doi.org/10.5194/amt-17-5841-2024, https://doi.org/10.5194/amt-17-5841-2024, 2024
Short summary
Short summary
This article describes the current status of a lidar installed at ALOMAR in northern Norway. It has investigated the Arctic middle atmosphere on a climatological basis for 30 years. We discuss major upgrades of the system implemented during recent years, including methods for reliable remote operation of this complex lidar. We also show examples that illustrate the performance of the lidar during measurements at different altitude ranges and timescales.
Guochun Shi, Witali Krochin, Eric Sauvageat, and Gunter Stober
Atmos. Chem. Phys., 24, 10187–10207, https://doi.org/10.5194/acp-24-10187-2024, https://doi.org/10.5194/acp-24-10187-2024, 2024
Short summary
Short summary
Here we investigated ozone anomalies over polar regions during sudden stratospheric and final stratospheric warming with ground-based microwave radiometers at polar latitudes compared with reanalysis and satellite data. The underlying dynamical and chemical mechanisms are responsible for the observed ozone anomalies in both events. Our research sheds light on these processes, emphasizing the need for a deeper understanding of these processes for more accurate climate modeling and forecasting.
Witali Krochin, Axel Murk, and Gunter Stober
Atmos. Meas. Tech., 17, 5015–5028, https://doi.org/10.5194/amt-17-5015-2024, https://doi.org/10.5194/amt-17-5015-2024, 2024
Short summary
Short summary
Atmospheric tides are global-scale oscillations with periods of a fraction of a day. Their observation in the middle atmosphere is challenging and rare, as it requires continuous measurements with a high temporal resolution. In this paper, temperature time series of a ground-based microwave radiometer were analyzed with a spectral filter to derive thermal tide amplitudes and phases in an altitude range of 25–50 km at the geographical locations of Payerne and Bern (Switzerland).
Michael Gerding, Robin Wing, Eframir Franco-Diaz, Gerd Baumgarten, Jens Fiedler, Torsten Köpnick, and Reik Ostermann
Atmos. Meas. Tech., 17, 2789–2809, https://doi.org/10.5194/amt-17-2789-2024, https://doi.org/10.5194/amt-17-2789-2024, 2024
Short summary
Short summary
This paper describes a new lidar system developed in Germany intended to study wind and temperature at night in the middle atmosphere. The paper explains how we have set up the system to work automatically and gives technical details for anyone who wants to build a similar system. We present a case study showing temperatures and winds at different altitudes. In a future article, we will present how we process the data and deal with uncertainties.
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Thorben H. Mense, Josef Höffner, Gerd Baumgarten, Ronald Eixmann, Jan Froh, Alsu Mauer, Alexander Munk, Robin Wing, and Franz-Josef Lübken
Atmos. Meas. Tech., 17, 1665–1677, https://doi.org/10.5194/amt-17-1665-2024, https://doi.org/10.5194/amt-17-1665-2024, 2024
Short summary
Short summary
A novel lidar system with five beams measured horizontal and vertical winds together, reaching altitudes up to 25 km. Developed in Germany, it revealed accurate horizontal wind data compared to forecasts, but vertical wind estimates differed. The lidar's capability to detect small-scale wind patterns was highlighted, advancing atmospheric research.
Eframir Franco-Diaz, Michael Gerding, Laura Holt, Irina Strelnikova, Robin Wing, Gerd Baumgarten, and Franz-Josef Lübken
Atmos. Chem. Phys., 24, 1543–1558, https://doi.org/10.5194/acp-24-1543-2024, https://doi.org/10.5194/acp-24-1543-2024, 2024
Short summary
Short summary
We use satellite, lidar, and ECMWF data to study storm-related waves that propagate above Kühlungsborn, Germany, during summer. Although these events occur in roughly half of the years of the satellite data we analyzed, we focus our study on two case study years (2014 and 2015). These events could contribute significantly to middle atmospheric circulation and are not accounted for in weather and climate models.
Mohamed Mossad, Irina Strelnikova, Robin Wing, and Gerd Baumgarten
Atmos. Meas. Tech., 17, 783–799, https://doi.org/10.5194/amt-17-783-2024, https://doi.org/10.5194/amt-17-783-2024, 2024
Short summary
Short summary
This numerical study addresses observational gaps' impact on atmospheric gravity wave spectra. Three methods, fast Fourier transform (FFT), generalized Lomb–Scargle periodogram (GLS), and Haar structure function (HSF), were tested on synthetic data. HSF is best for spectra with negative slopes. GLS excels for flat and positive slopes and identifying dominant frequencies. Accurately estimating these aspects is crucial for understanding gravity wave dynamics and energy transfer in the atmosphere.
Florian Günzkofer, Gunter Stober, Dimitry Pokhotelov, Yasunobu Miyoshi, and Claudia Borries
Atmos. Meas. Tech., 16, 5897–5907, https://doi.org/10.5194/amt-16-5897-2023, https://doi.org/10.5194/amt-16-5897-2023, 2023
Short summary
Short summary
Electric currents in the ionosphere can impact both satellite and ground-based infrastructure. These currents depend strongly on the collisions of ions and neutral particles. Measuring ion–neutral collisions is often only possible via certain assumptions. The direct measurement of ion–neutral collision frequencies is possible with multifrequency incoherent scatter radar measurements. This paper presents one analysis method of such measurements and discusses its advantages and disadvantages.
Florian Günzkofer, Dimitry Pokhotelov, Gunter Stober, Ingrid Mann, Sharon L. Vadas, Erich Becker, Anders Tjulin, Alexander Kozlovsky, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Nicholas J. Mitchell, and Claudia Borries
Ann. Geophys., 41, 409–428, https://doi.org/10.5194/angeo-41-409-2023, https://doi.org/10.5194/angeo-41-409-2023, 2023
Short summary
Short summary
Gravity waves (GWs) are waves in Earth's atmosphere and can be observed as cloud ripples. Under certain conditions, these waves can propagate up into the ionosphere. Here, they can cause ripples in the ionosphere plasma, observable as oscillations of the plasma density. Therefore, GWs contribute to the ionospheric variability, making them relevant for space weather prediction. Additionally, the behavior of these waves allows us to draw conclusions about the atmosphere at these altitudes.
Guochun Shi, Witali Krochin, Eric Sauvageat, and Gunter Stober
Atmos. Chem. Phys., 23, 9137–9159, https://doi.org/10.5194/acp-23-9137-2023, https://doi.org/10.5194/acp-23-9137-2023, 2023
Short summary
Short summary
We present the interannual and climatological behavior of ozone and water vapor from microwave radiometers in the Arctic.
By defining a virtual conjugate latitude station in the Southern Hemisphere, we investigate altitude-dependent interhemispheric differences and estimate the ascent and descent rates of water vapor in both hemispheres. Ozone and water vapor measurements will create a deeper understanding of the evolution of middle atmospheric ozone and water vapor.
Ashique Vellalassery, Gerd Baumgarten, Mykhaylo Grygalashvyly, and Franz-Josef Lübken
Ann. Geophys., 41, 289–300, https://doi.org/10.5194/angeo-41-289-2023, https://doi.org/10.5194/angeo-41-289-2023, 2023
Short summary
Short summary
The solar cycle affects the H2O concentration in the upper mesosphere mainly in two ways: directly through photolysis and, at the time and place of NLC formation, indirectly through temperature changes. The H2O–Lyman-α response is modified by NLC formation, resulting in a positive response at the ice formation region (due to the temperature change effect on the ice formation rate) and a negative response at the sublimation zone (due to the photolysis effect).
Gunter Stober, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Witali Krochin, Guochun Shi, Johan Kero, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Evgenia Belova, and Nicholas Mitchell
Ann. Geophys., 41, 197–208, https://doi.org/10.5194/angeo-41-197-2023, https://doi.org/10.5194/angeo-41-197-2023, 2023
Short summary
Short summary
The Hunga Tonga–Hunga Ha‘apai volcanic eruption was one of the most vigorous volcanic explosions in the last centuries. The eruption launched many atmospheric waves traveling around the Earth. In this study, we identify these volcanic waves at the edge of space in the mesosphere/lower-thermosphere, leveraging wind observations conducted with multi-static meteor radars in northern Europe and with the Chilean Observation Network De Meteor Radars (CONDOR).
Andreas Plach, Rolf Rüfenacht, Simone Kotthaus, and Markus Leuenberger
EGUsphere, https://doi.org/10.5194/egusphere-2022-1019, https://doi.org/10.5194/egusphere-2022-1019, 2022
Preprint archived
Short summary
Short summary
Greenhouse gases emissions are contributing to global warming and it is essential to better understand where they originate from and how they are transported. In this study we analyze greenhouse gas observations at a Swiss tall tower where measurements are taken more than 200 m above ground and investigate their origin by looking at the condition of the atmosphere at the time of the observations. We find that most pollution at this site is caused from emissions transported from further away.
Gabriele Messori, Marlene Kretschmer, Simon H. Lee, and Vivien Wendt
Weather Clim. Dynam., 3, 1215–1236, https://doi.org/10.5194/wcd-3-1215-2022, https://doi.org/10.5194/wcd-3-1215-2022, 2022
Short summary
Short summary
Over 10 km above the ground, there is a region of the atmosphere called the stratosphere. While there is very little air in the stratosphere itself, its interactions with the lower parts of the atmosphere – where we live – can affect the weather. Here we study a specific example of such an interaction, whereby processes occurring at the boundary of the stratosphere can lead to a continent-wide drop in temperatures in North America during winter.
Gunter Stober, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Ales Kuchar, Christoph Jacobi, Chris Meek, Diego Janches, Guiping Liu, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Meas. Tech., 15, 5769–5792, https://doi.org/10.5194/amt-15-5769-2022, https://doi.org/10.5194/amt-15-5769-2022, 2022
Short summary
Short summary
Precise and accurate measurements of vertical winds at the mesosphere and lower thermosphere are rare. Although meteor radars have been used for decades to observe horizontal winds, their ability to derive reliable vertical wind measurements was always questioned. In this article, we provide mathematical concepts to retrieve mathematically and physically consistent solutions, which are compared to the state-of-the-art non-hydrostatic model UA-ICON.
Anna Lange, Gerd Baumgarten, Alexei Rozanov, and Christian von Savigny
Ann. Geophys., 40, 407–419, https://doi.org/10.5194/angeo-40-407-2022, https://doi.org/10.5194/angeo-40-407-2022, 2022
Short summary
Short summary
We investigate the influence of different parameters on the colour of noctilucent clouds (highest clouds in the atmosphere), using radiative transfer calculations. We determined the effect of the particle size, optical depth, single scattering/multiple scattering and ozone. For sufficiently large optical depth and for specific viewing geometries, ozone plays only a minor role in the blueish colour of noctilucent clouds (new result).
Witali Krochin, Francisco Navas-Guzmán, David Kuhl, Axel Murk, and Gunter Stober
Atmos. Meas. Tech., 15, 2231–2249, https://doi.org/10.5194/amt-15-2231-2022, https://doi.org/10.5194/amt-15-2231-2022, 2022
Short summary
Short summary
This study leverages atmospheric temperature measurements performed with a ground-based radiometer making use of data that was collected during a 4-year observational campaign applying a new retrieval algorithm that improves the maximal altitude range from 45 to 55 km. The measurements are validated against two independent data sets, MERRA2 reanalysis data and the meteorological analysis of NAVGEM-HA.
Sumanta Sarkhel, Gunter Stober, Jorge L. Chau, Steven M. Smith, Christoph Jacobi, Subarna Mondal, Martin G. Mlynczak, and James M. Russell III
Ann. Geophys., 40, 179–190, https://doi.org/10.5194/angeo-40-179-2022, https://doi.org/10.5194/angeo-40-179-2022, 2022
Short summary
Short summary
A rare gravity wave event was observed on the night of 25 April 2017 over northern Germany. An all-sky airglow imager recorded an upward-propagating wave at different altitudes in mesosphere with a prominent wave front above 91 km and faintly observed below. Based on wind and satellite-borne temperature profiles close to the event location, we have found the presence of a leaky thermal duct layer in 85–91 km. The appearance of this duct layer caused the wave amplitudes to diminish below 91 km.
Juliana Jaen, Toralf Renkwitz, Jorge L. Chau, Maosheng He, Peter Hoffmann, Yosuke Yamazaki, Christoph Jacobi, Masaki Tsutsumi, Vivien Matthias, and Chris Hall
Ann. Geophys., 40, 23–35, https://doi.org/10.5194/angeo-40-23-2022, https://doi.org/10.5194/angeo-40-23-2022, 2022
Short summary
Short summary
To study long-term trends in the mesosphere and lower thermosphere (70–100 km), we established two summer length definitions and analyzed the variability over the years (2004–2020). After the analysis, we found significant trends in the summer beginning of one definition. Furthermore, we were able to extend one of the time series up to 31 years and obtained evidence of non-uniform trends and periodicities similar to those known for the quasi-biennial oscillation and El Niño–Southern Oscillation.
Christoph Jacobi, Friederike Lilienthal, Dmitry Korotyshkin, Evgeny Merzlyakov, and Gunter Stober
Adv. Radio Sci., 19, 185–193, https://doi.org/10.5194/ars-19-185-2021, https://doi.org/10.5194/ars-19-185-2021, 2021
Short summary
Short summary
We compare winds and tidal amplitudes in the upper mesosphere/lower thermosphere region for cases with disturbed and undisturbed geomagnetic conditions. The zonal winds in both the mesosphere and lower thermosphere tend to be weaker during disturbed conditions. The summer equatorward meridional wind jet is weaker for disturbed geomagnetic conditions. The effect of geomagnetic variability on tidal amplitudes, except for the semidiurnal tide, is relatively small.
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Gunter Stober, Alexander Kozlovsky, Alan Liu, Zishun Qiao, Masaki Tsutsumi, Chris Hall, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Patrick J. Espy, Robert E. Hibbins, and Nicholas Mitchell
Atmos. Meas. Tech., 14, 6509–6532, https://doi.org/10.5194/amt-14-6509-2021, https://doi.org/10.5194/amt-14-6509-2021, 2021
Short summary
Short summary
Wind observations at the edge to space, 70–110 km altitude, are challenging. Meteor radars have become a widely used instrument to obtain mean wind profiles above an instrument for these heights. We describe an advanced mathematical concept and present a tomographic analysis using several meteor radars located in Finland, Sweden and Norway, as well as Chile, to derive the three-dimensional flow field. We show an example of a gravity wave decelerating the mean flow.
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
Franz-Josef Lübken and Josef Höffner
Atmos. Meas. Tech., 14, 3815–3836, https://doi.org/10.5194/amt-14-3815-2021, https://doi.org/10.5194/amt-14-3815-2021, 2021
Short summary
Short summary
We present a new concept for a cluster of lidars that allows us to measure time-resolved profiles of temperatures, winds, and aerosols in the entire middle atmosphere for the first time, also covering regional horizontal scales (
four-dimensional coverage). Measurements are performed during day and night. The essential component is a newly developed laser with unprecedented performance. We present the first measurements. New observational capabilities in atmospheric physics are established.
Gunter Stober, Diego Janches, Vivien Matthias, Dave Fritts, John Marino, Tracy Moffat-Griffin, Kathrin Baumgarten, Wonseok Lee, Damian Murphy, Yong Ha Kim, Nicholas Mitchell, and Scott Palo
Ann. Geophys., 39, 1–29, https://doi.org/10.5194/angeo-39-1-2021, https://doi.org/10.5194/angeo-39-1-2021, 2021
Gunter Stober, Kathrin Baumgarten, John P. McCormack, Peter Brown, and Jerry Czarnecki
Atmos. Chem. Phys., 20, 11979–12010, https://doi.org/10.5194/acp-20-11979-2020, https://doi.org/10.5194/acp-20-11979-2020, 2020
Short summary
Short summary
This paper presents a first cross-comparison of meteor ground-based observations and a meteorological analysis (NAVGEM-HA) to compare a seasonal climatology of winds and temperatures at the mesosphere/lower thermosphere. The validation is insofar unique as we not only compare the mean state but also provide a detailed comparison of the short time variability of atmospheric tidal waves. Our analysis questions previous results claiming the importance of lunar tides.
Leonie Bernet, Elmar Brockmann, Thomas von Clarmann, Niklaus Kämpfer, Emmanuel Mahieu, Christian Mätzler, Gunter Stober, and Klemens Hocke
Atmos. Chem. Phys., 20, 11223–11244, https://doi.org/10.5194/acp-20-11223-2020, https://doi.org/10.5194/acp-20-11223-2020, 2020
Short summary
Short summary
With global warming, water vapour increases in the atmosphere. Water vapour is an important gas because it is a natural greenhouse gas and affects the formation of clouds, rain and snow. How much water vapour increases can vary in different regions of the world. To verify if it increases as expected on a regional scale, we analysed water vapour measurements in Switzerland. We found that water vapour generally increases as expected from temperature changes, except in winter.
Franziska Schranz, Jonas Hagen, Gunter Stober, Klemens Hocke, Axel Murk, and Niklaus Kämpfer
Atmos. Chem. Phys., 20, 10791–10806, https://doi.org/10.5194/acp-20-10791-2020, https://doi.org/10.5194/acp-20-10791-2020, 2020
Short summary
Short summary
We measured middle-atmospheric ozone, water vapour and zonal and meridional wind with two ground-based microwave radiometers which are located at Ny-Alesund, Svalbard, in the Arctic. In this article we present measurements of the small-scale horizontal ozone gradients during winter 2018/2019. We found a distinct seasonal variation of the ozone gradients which is linked to the planetary wave activity. We further present the signatures of the SSW in the ozone, water vapour and wind measurements.
Cited articles
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric harbingers of anomalous
weather regimes, Science, 294, 581–584,
https://doi.org/10.1126/science.1063315, 2001. a
Baron, P., Murtagh, D. P., Urban, J., Sagawa, H., Ochiai, S., Kasai, Y., Kikuchi, K., Khosrawi, F., Körnich, H., Mizobuchi, S.,
Sagi, K., and Yasui, M.: Observation of horizontal winds in the middle-atmosphere between 30∘ S and 55∘ N during the northern
winter 2009–2010, Atmos. Chem. Phys., 13, 604–6064, https://doi.org/10.5194/acp-13-6049-2013, 2013. a
Baron, P., Manago, N., Ozeki, H., Irimajiri, Y., Murtagh, D., Uzawa, Y.,
Ochiai, S., Shiotani, M., and Suzuki, M.: Measurement of stratospheric and
mesospheric winds with a submillimeter wave limb sounder: results from
JEM/SMILES and simulation study for SMILES-2, Proc. SPIE, 9639, 96390N-1–96390N-20, https://doi.org/10.1117/12.2194741, 2015. a
Baumgarten, G.: Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km,
Atmos. Meas. Tech., 3, 1509–1518, https://doi.org/10.5194/amt-3-1509-2010, 2010. a, b, c
Baumgarten, G., Fiedler, J., Hildebrand, J., and Lübken, F.-J.: Inertia
gravity wave in the stratosphere and mesosphere observed by Doppler wind and
temperature lidar, Geophys. Res. Lett., 42, 10929–10936,
https://doi.org/10.1002/2015GL066991, 2015GL066991, 2015. a
Baumgarten, K., Gerding, M., Baumgarten, G., and Lübken, F.-J.: Temporal variability of tidal and gravity waves during a record
long 10-day continuous lidar sounding, Atmos. Chem. Phys., 18, 371–384, https://doi.org/10.5194/acp-18-371-2018, 2018. a
Blanc, E., Ceranna, L., Hauchecorne, A., Charlton-Perez, A., Marchetti, E.,
Evers, L. G., Kvaerna, T., Lastovicka, J., Eliasson, L., Crosby, N. B.,
Blanc-Benon, P., Le Pichon, A., Brachet, N., Pilger, C., Keckhut, P., Assink,
J. D., Smets, P. S. M., Lee, C. F., Kero, J., Sindelarova, T., Kämpfer,
N., Rüfenacht, R., Farges, T., Millet, C., Näsholm, S. P., Gibbons,
S. J., Espy, P. J., Hibbins, R. E., Heinrich, P., Ripepe, M., Khaykin, S.,
Mze, N., and Chum, J.: Toward an Improved Representation of Middle
Atmospheric Dynamics Thanks to the ARISE Project, Surv. Geophys.,
39, 171–225, https://doi.org/10.1007/s10712-017-9444-0, 2018. a, b
Brakebusch, M., Randall, C. E., Kinnison, D. E., Tilmes, S., Santee, M. L., and
Manney, G. L.: Evaluation of Whole Atmosphere Community Climate Model
simulations of ozone during Arctic winter 2004–2005, J. Geophys.
Res.-Atmos., 118, 2673–2688, https://doi.org/10.1002/jgrd.50226, 2013. a
Chanin, M. L., Garnier, A., Hauchecorne, A., and Porteneuve, J.: A Doppler
lidar for measuring winds in the middle atmosphere, Geopys. Res. Lett., 16,
1273–1276, https://doi.org/10.1029/GL016i011p01273, 1989. a
Dragani, R. and McNally, A. P.: Operational assimilation of ozone-sensitive
infrared radiances at ECMWF, Q. J. Roy. Meteor. Soc., 139, 2068–2080,
https://doi.org/10.1002/qj.2106, 2013. a
ECMWF: Changes in ECMWF model, Evolution of the IFS,
available at: http://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model,
last access: 12 August 2017a. a
ECMWF:
Datasets,
available at: https://www.ecmwf.int/en/forecasts/datasets,
last access: 12 August 2017b.
Fernandez, S., Rüfenacht, R., Kämpfer, N., Portafaix, T., Posny, F., and Payen, G.: Results from the validation campaign of the
ozone radiometer GROMOS-C at the NDACC station of Réunion island, Atmos. Chem. Phys., 16, 7531–7543, https://doi.org/10.5194/acp-16-7531-2016, 2016. a
Fleming, E. L., Chandra, S., Barnett, J., and Corney, M.: Zonal mean
temperature, pressure, zonal wind and geopotential height as functions of
latitude, Adv. Space Res., 10, 11–59,
https://doi.org/10.1016/0273-1177(90)90386-E, 1990. a
Forkman, P., Eriksson, P., Winnberg, A., Garcia, R. R., and Kinnison, D.:
Longest continuous ground-based measurements of mesospheric CO, Geophys. Res.
Lett., 30, 1532, https://doi.org/10.1029/2003GL016931, 2003. a
Friedman, J. S., Tepley, C. A., Castleberg, P. A., and Roe, H.:
Middle-atmospheric Doppler lidar using an iodine-vapor edge filter, Opt.
Lett., 22, 1648–1650, https://doi.org/10.1364/OL.22.001648, 1997. a
Fritts, D. C., Iimura, H., Lieberman, R., Janches, D., and Singer, W.: A
conjugate study of mean winds and planetary waves employing enhanced meteor
radars at Rio Grande, Argentina (53.8∘ S) and Juliusruh, Germany (54.6∘ N),
J. Geophys. Res.-Atmos., 117, D05117, https://doi.org/10.1029/2011JD016305, 2012. a
Froidevaux, L., Livesey, N. J., Read, W. G., Jiang, Y. B., Jimenez, C.,
Filipiak, M. J., Schwartz, M. J., Santee, M. L., Pumphrey, H. C., Jiang,
J. H., Wu, D. L., Manney, G. L., Drouin, B. J., Waters, J. W., Fetzer, E. J.,
Bernath, P. F., Boone, C. D., Walker, K. A., Jucks, K. W., Toon, G. C.,
Margitan, J. J., Sen, B., Webster, C. R., Christensen, L. E., Elkins, J. W.,
Atlas, E., Lueb, R. A., and Hendershot, R.: Early validation analyses of
atmospheric profiles from EOS MLS on the aura Satellite, IEEE T. Geosci.
Remote, 44, 1106–1121, https://doi.org/10.1109/TGRS.2006.864366, 2006. a
Garfinkel, C. I., Son, S.-W., Song, K., Aquila, V., and Oman, L. D.:
Stratospheric variability contributed to and sustained the recent hiatus in
Eurasian winter warming, Geophys. Res. Lett., 44, 374–382,
https://doi.org/10.1002/2016GL072035, 2017. a
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis
for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
Hagen, J.: Design and characterisation of a compact 142-GHz-radiometer
for middle-atmospheric wind measurements, Master's thesis, Faculty of
Science, University of Bern, Bern, Switzerland, 2015. a
Hersbach, H. and Dee, D.: ERA5 reanalysis is in production, ECMWF Newsletter,
p. 7, 2016. a
Hildebrand, J., Baumgarten, G., Fiedler, J., Hoppe, U.-P., Kaifler, B., Lübken, F.-J., and Williams, B. P.: Combined wind
measurements by two different lidar instruments in the Arctic middle atmosphere, Atmos. Meas. Tech., 5, 2433–2445, https://doi.org/10.5194/amt-5-2433-2012, 2012. a, b, c
Hildebrand, J., Baumgarten, G., Fiedler, J., and Lübken, F.-J.: Winds and temperatures of the Arctic middle atmosphere during
January measured by Doppler lidar, Atmos. Chem. Phys., 17, 13345–13359, https://doi.org/10.5194/acp-17-13345-2017, 2017. a
Hocking, W. K.: Atmospheric Radar: Application and Science of MST Radars in
the Earth's Mesosphere, Stratosphere, Troposphere, and Weakly Ionized
Regions, Cambridge University Press, Cambridge, 2016. a
Hocking, W. K., Fuller, B., and Vandepeer, B.: Realtime determination of
meteor-related parameters utilizing modern digital technology, J. Atmos.
Sol.-Terr. Phy., 69, 155–169, https://doi.org/10.1016/S1364-6826(00)00138-3,
2001a. a
Iimura, H., Fritts, D. C., Janches, D., Singer, W., and Mitchell, N. J.:
Interhemispheric structure and variability of the 5-day planetary wave from
meteor radar wind measurements, Ann. Geophys., 33, 1349–1359,
https://doi.org/10.5194/angeo-33-1349-2015, 2015. a
Jacobi, C.: Meteor radar measurements of mean winds and tides over Collm (51.3∘ N, 13∘ E) and comparison with LF drift
measurements 2005–2007, Adv. Radio Sci., 9, 335–341, https://doi.org/10.5194/ars-9-335-2011, 2011. a
Kidston, J., Scaife, A. A., Hardiman, S. C., Mitchell, D. M., Butchart, N.,
Baldwin, M. P., and Gray, L. J.: Stratospheric influence on tropospheric jet
streams, storm tracks and surface weather, Nat. Geosci., 8, 433–440,
https://doi.org/10.1038/ngeo2424, 2015. a
Kishore Kumar, G., Kishore Kumar, K., Baumgarten, G., and Ramkumar, G.:
Validation of MERRA reanalysis upper-level winds over low latitudes with
independent rocket sounding data, J. Atmos. Sol.-Terr. Phy., 123, 48–54,
https://doi.org/10.1016/j.jastp.2014.12.001, 2015. a, b
Kopp, M., Gerding, M., Höffner, J., and Lübken, F.-J.: Tidal signatures
in temperatures derived from daylight lidar soundings above Kühlungsborn
(54∘ N, 12∘ E), J. Atmos. Sol.-Terr. Phy., 127, 37–50,
https://doi.org/10.1016/j.jastp.2014.09.002, 2015. a
Kunz, A., Pan, L. L., Konopka, P., Kinnison, D. E., and Tilmes, S.: Chemical
and dynamical discontinuity at the extratropical tropopause based on START08
and WACCM analyses, J. Geophys. Res.-Atmos., 116, 1–15,
https://doi.org/10.1029/2011JD016686, 2011. a
Lamarque, J.-F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt, F., Heald, C. L., Holland, E. A., Lauritzen, P. H.,
Neu, J., Orlando, J. J., Rasch, P. J., and Tyndall, G. K.: CAM-chem: description and evaluation of interactive atmospheric chemistry in the
Community Earth System Model, Geosci. Model Dev., 5, 369–411, https://doi.org/10.5194/gmd-5-369-2012, 2012. a
Le Pichon, A., Assink, J. D., Heinrich, P., Blanc, E., Charlton-Perez, A., Lee,
C. F., Keckhut, P., Hauchecorne, A., Rüfenacht, R., Kämpfer, N., Drob,
D. P., Smets, P. S. M., Evers, L. G., Ceranna, L., Pilger, C., Ross, O., and
Claud, C.: Comparison of co-located independent ground-based
middle-atmospheric wind and temperature measurements with Numerical Weather
Prediction models, J. Geophys. Res.-Atmos., 120, 8318–8331, https://doi.org/10.1002/2015JD023273,
2015. a
Lieberman, R. S., Riggin, D. M., Ortland, D. A., Oberheide, J., and Siskind,
D. E.: Global observations and modeling of nonmigrating diurnal tides
generated by tide-planetary wave interactions, J. Geophys. Res.-Atmos.,
120, 11419–11437, https://doi.org/10.1002/2015JD023739, 2015JD023739, 2015. a
Livesey, N. J., Read, W. G., Wagner, P. A., Froidevaux, L., Lambert, A.,
Manney, G. L., Millan, L., Pumphrey, H. C., Santee, M. L., Schwartz, M. J.,
Wang, S., Fuller, R. A., Jarnot, R. F., Knosp, B., and Martinez, E.: EOS
MLS Version 4.2x Level 2 data quality and description document, Jet
Propulsion Laboratory, California Institute of Technology, Pasadena, CA,
2015. a, b
Lobsiger, E.: Ground-based microwave radiometry to determine stratospheric
and mesospheric ozone profiles, J. Atmos. Terr. Phys., 49, 493–501,
https://doi.org/10.1016/0021-9169(87)90043-2, 1987. a
Lübken, F.-J., Baumgarten, G., Hildebrand, J., and Schmidlin, F. J.: Simultaneous and co-located wind measurements in the middle
atmosphere by lidar and rocket-borne techniques, Atmos. Meas. Tech., 9, 3911–3919, https://doi.org/10.5194/amt-9-3911-2016, 2016. a, b, c, d
Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J.-F., Calvo, N., and
Polvani, L. M.: Climate Change from 1850 to 2005 Simulated in CESM1(WACCM),
J. Climate, 26, 7372–7391, https://doi.org/10.1175/JCLI-D-12-00558.1, 2013. a
McCormack, J., Hoppel, K., Kuhl, D., de Wit, R., Stober, G., Espy, P., Baker,
N., Brown, P., Fritts, D., Jacobi, C., Janches, D., Mitchell, N., Ruston, B.,
Swadley, S., Viner, K., Whitcomb, T., and Hibbins, R.: Comparison of
mesospheric winds from a high-altitude meteorological analysis system and
meteor radar observations during the boreal winters of 2009–2010
and 2012–2013, J. Atmos. Sol.-Terr. Phy., 154, 132–166,
https://doi.org/10.1016/j.jastp.2016.12.007, 2017. a
Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model:
evolution from MERRA to MERRA2, Geosci. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015, 2015. a
NASA:
Modern-Era Retrospective analysis for Research and Applications, Version 2,
Data Access,
available at: https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access,
28 March 2018.
NASA:
Microwave Limb Sounder,
available at: https://mls.jpl.nasa.gov,
last access: 7 August 2017.
National Research Council: United States Space Science Program: Report to
COSPAR, Ninth Meeting, National Academy of Sciences, 1966. a
Nedoluha, G. E., Bevilacqua, R. M., Gomez, R. M., Thacker, D. L., Waltman,
W. B., and Pauls, T. A.: Ground-based measurements of water vapor in the
middle atmosphere, J. Geophys. Res.-Atmos., 100, 2927–2939,
https://doi.org/10.1029/94JD02952, 1995. a
Nicolls, M. J., Varney, R. H., Vadas, S. L., Stamus, P. A., Heinselman, C. J.,
Cosgrove, R. B., and Kelley, M. C.: Influence of an inertia-gravity wave on
mesospheric dynamics: A case study with the Poker Flat Incoherent Scatter
Radar, J. Geophys. Res.-Atmos., 115, D00N02, https://doi.org/10.1029/2010JD014042, 2010. a
Palm, M., Hoffmann, C. G., Golchert, S. H. W., and Notholt, J.: The ground-based MW radiometer OZORAM on Spitsbergen – description and status of
stratospheric and mesospheric O3-measurements, Atmos. Meas. Tech., 3, 1533–1545, https://doi.org/10.5194/amt-3-1533-2010, 2010. a
Reid, I. M.: MF and HF radar techniques for investigating the dynamics and
structure of the 50 to 110 km height region: a review, Prog. Earth Planet.
Sci., 2, 1, https://doi.org/10.1186/s40645-015-0060-7, 2015. a
Richter, J. H., Sassi, F., and Garcia, R. R.: Toward a Physically Based
Gravity Wave Source Parameterization in a General Circulation Model, J.
Atmos. Sci., 67, 136–156, https://doi.org/10.1175/2009JAS3112.1, 2010. a
Rodgers, C. D.: Inverse methods for atmospheric sounding: theory and practice,
vol. 2 of Series on atmospheric, oceanic and planetary physics, World
Scientific, Singapore, reprint 2008, 2000. a
Rüfenacht, R., Kämpfer, N., and Murk, A.: First middle-atmospheric zonal wind profile measurements with a new ground-based microwave
Doppler-spectro-radiometer, Atmos. Meas. Tech., 5, 2647–2659, https://doi.org/10.5194/amt-5-2647-2012, 2012. a, b, c
Rüfenacht, R., Murk, A., Kämpfer, N., Eriksson, P., and Buehler, S. A.: Middle-atmospheric zonal and meridional wind profiles
from polar, tropical and midlatitudes with the ground-based microwave Doppler wind radiometer WIRA, Atmos. Meas. Tech., 7, 4491–4505, https://doi.org/10.5194/amt-7-4491-2014, 2014. a, b
Sakazaki, T., Fujiwara, M., and Shiotani, M.: Representation of solar tides in the stratosphere and lower mesosphere in state-of-the-art
reanalyses and in satellite observations, Atmos. Chem. Phys., 18, 1437–1456, https://doi.org/10.5194/acp-18-1437-2018, 2018. a
Scaife, A. A., Folland, C. K., Alexander, L. V., Moberg, A., and Knight, J. R.:
European Climate Extremes and the North Atlantic Oscillation, J. Climate,
21, 72–83, https://doi.org/10.1175/2007JCLI1631.1, 2008. a
Schmidlin, F., Carlson, M., Rees, D., Offermann, D., Philbrick, C., and Widdel,
H. U.: Wind structure and variability in the middle atmosphere during the
November 1980 Energy Budget Campaign, J. Atmos. Terr. Phys., 47, 183–193, https://doi.org/10.1016/0021-9169(85)90133-3, 1985. a
Schwartz, M. J., Lambert, A., Manney, G. L., Read, W. G., Livesey, N. J.,
Froidevaux, L., Ao, C. O., Bernath, P. F., Boone, C. D., Cofield, R. E.,
Daffer, W. H., Drouin, B. J., Fetzer, E. J., Fuller, R. A., Jarnot, R. F.,
Jiang, J. H., Jiang, Y. B., Knosp, B. W., Krüger, K., Li, J.-L. F.,
Mlynczak, M. G., Pawson, S., Russell, J. M., Santee, M. L., Snyder, W. V.,
Stek, P. C., Thurstans, R. P., Tompkins, A. M., Wagner, P. A., Walker, K. A.,
Waters, J. W., and Wu, D. L.: Validation of the Aura Microwave Limb
Sounder temperature and geopotential height measurements, J. Geophys.
Res.-Atmos., 113, D15S11, https://doi.org/10.1029/2007JD008783, 2008. a
Shibuya, R., Sato, K., Tsutsumi, M., Sato, T., Tomikawa, Y., Nishimura, K., and Kohma, M.: Quasi-12 h inertia-gravity waves in the lower
mesosphere observed by the PANSY radar at Syowa Station (39.6∘ E, 69.0∘ S), Atmos. Chem. Phys., 17, 6455–6476, https://doi.org/10.5194/acp-17-6455-2017, 2017. a
Souprayen, C., Garnier, A., Hertzog, A., Hauchecorne, A., and Porteneuve, J.:
Rayleigh-Mie Doppler wind lidar for atmospheric measurements. Instrumental
setup, validation, and first climatological results, Appl. Opt., 38,
2410–2421, https://doi.org/10.1364/AO.38.002410, 1999. a
Stober, G., Matthias, V., Jacobi, C., Wilhelm, S., Höffner, J., and Chau, J. L.: Exceptionally strong summer-like zonal
wind reversal in the upper mesosphere during winter 2015/16, Ann. Geophys., 35, 711–720, https://doi.org/10.5194/angeo-35-711-2017, 2017. a
Tepley, C. A.: Neutral winds of the middle atmosphere observed at Arecibo using
a Doppler Rayleigh lidar, J. Geophys. Res.-Atmos., 99, 25781–25790,
https://doi.org/10.1029/94JD02213,
1994. a
Waters, J., Froidevaux, L., Harwood, R., Jarnot, R., Pickett, H., Read, W.,
Siegel, P., Cofield, R., Filipiak, M., Flower, D., Holden, J., Lau, G.,
Livesey, N., Manney, G., Pumphrey, H., Santee, M., Wu, D., Cuddy, D., Lay,
R., Loo, M., Perun, V., Schwartz, M., Stek, P., Thurstans, R., Boyles, M.,
Chandra, K., Chavez, M., Chen, G., Chudasama, B., Dodge, R., Fuller, R.,
Girard, M., Jiang, J., Jiang, Y., Knosp, B., LaBelle, R., Lam, J., Lee, K.,
Miller, D., Oswald, J., Patel, N., Pukala, D., Quintero, O., Scaff, D.,
Van Snyder, W., Tope, M., Wagner, P., and Walch, M.: The Earth Observing
System Microwave Limb Sounder (EOS MLS) on the Aura satellite, IEEE T.
Geosci. Remote, 44, 1075–1092, https://doi.org/10.1109/TGRS.2006.873771,
2006. a, b
Wilhelm, S., Stober, G., and Chau, J. L.: A comparison of 11-year mesospheric and lower thermospheric winds determined by meteor and
MF radar at 69∘ N, Ann. Geophys., 35, 893–906, https://doi.org/10.5194/angeo-35-893-2017, 2017. a
Xu, X., Manson, A. H., Meek, C. E., Chshyolkova, T., Drummond, J. R., Hall, C. M., Riggin, D. M., and Hibbins, R. E.: Vertical and
interhemispheric links in the stratosphere-mesosphere as revealed by the day-to-day variability of Aura-MLS temperature data,
Ann. Geophys., 27, 3387–3409, https://doi.org/10.5194/angeo-27-3387-2009, 2009. a
Yan, Z., Hu, X., Guo, W., Guo, S., Cheng, Y., Gong, J., and Yue, J.:
Development of a mobile Doppler lidar system for wind and temperature
measurements at 30–70 km, J. Quant. Spectrosc. Ra., 188, 52–59,
https://doi.org/10.1016/j.jqsrt.2016.04.024, 2017. a
Short summary
Wind information throughout the middle-atmosphere is crucial for the understanding of atmospheric dynamics but became available only recently, thanks to developments in remote sensing and modelling approaches. We present the first thorough assessment of the quality of the wind estimates by comparing co-located observations from lidar and microwave radiometry and opposing them to the major atmospheric models. Moreover we evaluated a new approach for measuring mesopause region wind by radiometry.
Wind information throughout the middle-atmosphere is crucial for the understanding of...