Articles | Volume 11, issue 6
https://doi.org/10.5194/amt-11-3263-2018
https://doi.org/10.5194/amt-11-3263-2018
Research article
 | 
07 Jun 2018
Research article |  | 07 Jun 2018

A weighted least squares approach to retrieve aerosol layer height over bright surfaces applied to GOME-2 measurements of the oxygen A band for forest fire cases over Europe

Swadhin Nanda, J. Pepijn Veefkind, Martin de Graaf, Maarten Sneep, Piet Stammes, Johan F. de Haan, Abram F. J. Sanders, Arnoud Apituley, Olaf Tuinder, and Pieternel F. Levelt

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Swadhin Nanda on behalf of the Authors (22 May 2018)  Author's response   Manuscript 
ED: Publish as is (23 May 2018) by Alexander Kokhanovsky
AR by Swadhin Nanda on behalf of the Authors (23 May 2018)
Short summary
An approach to estimate the height of aerosol plumes over land from satellite measurements of the oxygen A band is proposed. The method, termed dynamic scaling, forces the retrieval to use spectral points that contain more height information. The method is tested in a synthetic environment as well as with GOME-2A and GOME-2B measurements of wildfire plumes over Europe, with very encouraging results. This method can be easily applied to other aerosol height algorithms using least squares.