Articles | Volume 11, issue 6
Atmos. Meas. Tech., 11, 3645–3659, 2018
https://doi.org/10.5194/amt-11-3645-2018
Atmos. Meas. Tech., 11, 3645–3659, 2018
https://doi.org/10.5194/amt-11-3645-2018

Research article 25 Jun 2018

Research article | 25 Jun 2018

Laboratory and in-flight evaluation of measurement uncertainties from a commercial Cloud Droplet Probe (CDP)

Spencer Faber et al.

Related authors

The development of rainfall retrievals from radar at Darwin
Robert Jackson, Scott Collis, Valentin Louf, Alain Protat, Die Wang, Scott Giangrande, Elizabeth J. Thompson, Brenda Dolan, and Scott W. Powell
Atmos. Meas. Tech., 14, 53–69, https://doi.org/10.5194/amt-14-53-2021,https://doi.org/10.5194/amt-14-53-2021, 2021
Short summary
Supercooled drizzle development in response to semi-coherent vertical velocity fluctuations within an orographic-layer cloud
Adam Majewski and Jeffrey R. French
Atmos. Chem. Phys., 20, 5035–5054, https://doi.org/10.5194/acp-20-5035-2020,https://doi.org/10.5194/acp-20-5035-2020, 2020
Short summary
Use of polarimetric radar measurements to constrain simulated convective cell evolution: a pilot study with Lagrangian tracking
Ann M. Fridlind, Marcus van Lier-Walqui, Scott Collis, Scott E. Giangrande, Robert C. Jackson, Xiaowen Li, Toshihisa Matsui, Richard Orville, Mark H. Picel, Daniel Rosenfeld, Alexander Ryzhkov, Richard Weitz, and Pengfei Zhang
Atmos. Meas. Tech., 12, 2979–3000, https://doi.org/10.5194/amt-12-2979-2019,https://doi.org/10.5194/amt-12-2979-2019, 2019
Short summary
A 17 year climatology of the macrophysical properties of convection in Darwin
Robert C. Jackson, Scott M. Collis, Valentin Louf, Alain Protat, and Leon Majewski
Atmos. Chem. Phys., 18, 17687–17704, https://doi.org/10.5194/acp-18-17687-2018,https://doi.org/10.5194/acp-18-17687-2018, 2018
Short summary
Observations of the microphysical evolution of convective clouds in the southwest of the United Kingdom
Robert Jackson, Jeffrey R. French, David C. Leon, David M. Plummer, Sonia Lasher-Trapp, Alan M. Blyth, and Alexei Korolev
Atmos. Chem. Phys., 18, 15329–15344, https://doi.org/10.5194/acp-18-15329-2018,https://doi.org/10.5194/acp-18-15329-2018, 2018
Short summary

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Design and field campaign validation of a multi-rotor unmanned aerial vehicle and optical particle counter
Joseph Girdwood, Helen Smith, Warren Stanley, Zbigniew Ulanowski, Chris Stopford, Charles Chemel, Konstantinos-Matthaios Doulgeris, David Brus, David Campbell, and Robert Mackenzie
Atmos. Meas. Tech., 13, 6613–6630, https://doi.org/10.5194/amt-13-6613-2020,https://doi.org/10.5194/amt-13-6613-2020, 2020
Short summary
In situ cloud ground-based measurements in the Finnish sub-Arctic: intercomparison of three cloud spectrometer setups
Konstantinos-Matthaios Doulgeris, Mika Komppula, Sami Romakkaniemi, Antti-Pekka Hyvärinen, Veli-Matti Kerminen, and David Brus
Atmos. Meas. Tech., 13, 5129–5147, https://doi.org/10.5194/amt-13-5129-2020,https://doi.org/10.5194/amt-13-5129-2020, 2020
Short summary
Evaluation of cloud properties from reanalyses over East Asia with a radiance-based approach
Bin Yao, Chao Liu, Yan Yin, Zhiquan Liu, Chunxiang Shi, Hironobu Iwabuchi, and Fuzhong Weng
Atmos. Meas. Tech., 13, 1033–1049, https://doi.org/10.5194/amt-13-1033-2020,https://doi.org/10.5194/amt-13-1033-2020, 2020
Short summary
A statistical comparison of cirrus particle size distributions measured using the 2-D stereo probe during the TC4, SPARTICUS, and MACPEX flight campaigns with historical cirrus datasets
M. Christian Schwartz
Atmos. Meas. Tech., 10, 3041–3055, https://doi.org/10.5194/amt-10-3041-2017,https://doi.org/10.5194/amt-10-3041-2017, 2017
Short summary
Comparing the cloud vertical structure derived from several methods based on radiosonde profiles and ground-based remote sensing measurements
M. Costa-Surós, J. Calbó, J. A. González, and C. N. Long
Atmos. Meas. Tech., 7, 2757–2773, https://doi.org/10.5194/amt-7-2757-2014,https://doi.org/10.5194/amt-7-2757-2014, 2014

Cited articles

Abel, S. J., Cotton, R. J., Barrett, P. A., and Vance, A. K.: A comparison of ice water content measurement techniques on the FAAM BAe-146 aircraft, Atmos. Meas. Tech., 7, 3007–3022, https://doi.org/10.5194/amt-7-3007-2014, 2014. 
Baumgardner, D., Abel, S. J., Axisa, D., Cotton, R., Crosier, J., Field, P., Gurganus, C., Heymsfield, A., Korolev, A., Kramer, M., Lawson, P., McFarquhar, G., Ulanowski, Z., and Um, J.: Cloud Ice Properties: In Situ Measurement Challenges, Meteorol. Monogr., 58, 9.1–9.23, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0011.1, 2017 
Baumgardner, D. and Spowart, M.: Evaluation of the Forward Scattering Spectrometer Probe, Part III: Time Response and Laser Imhomogeneity Limitations, J. Atmos. Oceanic Technol., 7, 666–672, 1990. 
Baumgardner, D., Strapp, J. W., and Dye J. E.: Evaluation of the Forward Scattering Spectrometer Probe, Part II: Corrections for Coincidence and Dead-Time Losses, J. Atmos. Ocean. Technol., 2, 626–632, https://doi.org/10.1175/1520-0426(1985)002<0626:EOTFSS>2.0.CO;2, 1985. 
Brenguier, J. L., Baumgardner, D., and Baker, B.: A review and discussion of processing algorithms for FSSP concentration measurements, J. Atmos. Ocean. Technol., 11, 1409–1414, https://doi.org/10.1175/1520-0426(1994)011<1409:ARADOP>2.0.CO;2, 1994. 
Download
Short summary
Laboratory and in-flight evaluations of uncertainties of measurements from a cloud droplet probe are presented. This study extends results of earlier studies by examining instrument response over a greater range of droplet sizes throughout the entire sample volume. Errors in droplet sizing based on the laboratory measurements tend to be less than 10 %, significantly less than typically quoted sizing accuracy for this class of instrument.