Articles | Volume 11, issue 10
https://doi.org/10.5194/amt-11-5865-2018
https://doi.org/10.5194/amt-11-5865-2018
Research article
 | 
24 Oct 2018
Research article |  | 24 Oct 2018

Averaging bias correction for the future space-borne methane IPDA lidar mission MERLIN

Yoann Tellier, Clémence Pierangelo, Martin Wirth, Fabien Gibert, and Fabien Marnas

Related authors

Computation of longwave radiative flux and vertical heating rate with 4A-Flux v1.0 as an integral part of the radiative transfer code 4A/OP v1.5
Yoann Tellier, Cyril Crevoisier, Raymond Armante, Jean-Louis Dufresne, and Nicolas Meilhac
Geosci. Model Dev., 15, 5211–5231, https://doi.org/10.5194/gmd-15-5211-2022,https://doi.org/10.5194/gmd-15-5211-2022, 2022
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
NitroNet – a machine learning model for the prediction of tropospheric NO2 profiles from TROPOMI observations
Leon Kuhn, Steffen Beirle, Sergey Osipov, Andrea Pozzer, and Thomas Wagner
Atmos. Meas. Tech., 17, 6485–6516, https://doi.org/10.5194/amt-17-6485-2024,https://doi.org/10.5194/amt-17-6485-2024, 2024
Short summary
Improved convective cloud differential (CCD) tropospheric ozone from S5P-TROPOMI satellite data using local cloud fields
Swathi Maratt Satheesan, Kai-Uwe Eichmann, John P. Burrows, Mark Weber, Ryan Stauffer, Anne M. Thompson, and Debra Kollonige
Atmos. Meas. Tech., 17, 6459–6484, https://doi.org/10.5194/amt-17-6459-2024,https://doi.org/10.5194/amt-17-6459-2024, 2024
Short summary
Atmospheric propane (C3H8) column retrievals from ground-based FTIR observations in Xianghe, China
Minqiang Zhou, Pucai Wang, Bart Dils, Bavo Langerock, Geoff Toon, Christian Hermans, Weidong Nan, Qun Cheng, and Martine De Mazière
Atmos. Meas. Tech., 17, 6385–6396, https://doi.org/10.5194/amt-17-6385-2024,https://doi.org/10.5194/amt-17-6385-2024, 2024
Short summary
Can the remote sensing of combustion phase improve estimates of landscape fire smoke emission rate and composition?
Farrer Owsley-Brown, Martin J. Wooster, Mark J. Grosvenor, and Yanan Liu
Atmos. Meas. Tech., 17, 6247–6264, https://doi.org/10.5194/amt-17-6247-2024,https://doi.org/10.5194/amt-17-6247-2024, 2024
Short summary
Tropospheric NO2 retrieval algorithm for geostationary satellite instruments: applications to GEMS
Sora Seo, Pieter Valks, Ronny Lutz, Klaus-Peter Heue, Pascal Hedelt, Víctor Molina García, Diego Loyola, Hanlim Lee, and Jhoon Kim
Atmos. Meas. Tech., 17, 6163–6191, https://doi.org/10.5194/amt-17-6163-2024,https://doi.org/10.5194/amt-17-6163-2024, 2024
Short summary

Cited articles

Bösenberg, J.: Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology, Appl. Optics, 37, 3845–3860, https://doi.org/10.1364/AO.37.003845, 1998. 
Chéruy, F., Scott, N. A., Armante, R., Tournier, B., and Chedin, A.: Contribution to the development of radiative transfer models for high spectral resolution observations in the infrared, J. Quant. Spectrosc. Ra., 53, 597–611, https://doi.org/10.1016/0022-4073(95)00026-H, 1995. 
Chevallier, F., Chédin, A., Chéruy, F., and Morcrette, J.-J.: TIGR-like atmospheric-profile databases for accurate radiative-flux computation, Q. J. Roy. Meteor. Soc., 126, 777–785, https://doi.org/10.1002/qj.49712656319, 2000. 
Chevallier, F., Broquet, G., Pierangelo, C., and Crisp, D.: Probabilistic global maps of the CO2 column at daily and monthly scales from sparse satellite measurements, J. Geophys. Res., 122, 7614–7629, https://doi.org/10.1002/2017JD026453, 2017. 
Ehret, G., Kiemle, C., Wirth, M., Amediek, A., Fix, A., and Houweling, S.: Space-borne remote sensing of CO2,CH4,and N2O by integrated path differential absorption lidar: a sensitivity analysis, Appl. Phys. B.-Lasers O., 90, 593–608, https://doi.org/10.1007/s00340-007-2892-3, 2008. 
Download
Short summary
The French and German space agencies (CNES, DLR) are currently developing MERLIN, a satellite that will measure atmospheric concentration of methane, a powerful greenhouse gas. To reach the desired precision, horizontally averaging the measurements along the satellite track is performed but leads to a processing bias due to non-linear equations. This article studies the processing biases for several averaging schemes and bias correction algorithms and recommends a best approach to limit biases.