Articles | Volume 11, issue 10
Atmos. Meas. Tech., 11, 5865–5884, 2018
https://doi.org/10.5194/amt-11-5865-2018
Atmos. Meas. Tech., 11, 5865–5884, 2018
https://doi.org/10.5194/amt-11-5865-2018

Research article 24 Oct 2018

Research article | 24 Oct 2018

Averaging bias correction for the future space-borne methane IPDA lidar mission MERLIN

Yoann Tellier et al.

Related authors

Computation of longwave radiative flux and vertical heating rate with 4A-Flux v1.0 as integral part of the radiative transfer code 4A/OP v1.5
Yoann Tellier, Cyril Crevoisier, Raymond Armante, Jean-Louis Dufresne, and Nicolas Meilhac
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-325,https://doi.org/10.5194/gmd-2021-325, 2021
Preprint under review for GMD
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
A minimum curvature algorithm for tomographic reconstruction of atmospheric chemicals based on optical remote sensing
Sheng Li and Ke Du
Atmos. Meas. Tech., 14, 7355–7368, https://doi.org/10.5194/amt-14-7355-2021,https://doi.org/10.5194/amt-14-7355-2021, 2021
Short summary
An improved TROPOMI tropospheric NO2 research product over Europe
Song Liu, Pieter Valks, Gaia Pinardi, Jian Xu, Ka Lok Chan, Athina Argyrouli, Ronny Lutz, Steffen Beirle, Ehsan Khorsandi, Frank Baier, Vincent Huijnen, Alkiviadis Bais, Sebastian Donner, Steffen Dörner, Myrto Gratsea, François Hendrick, Dimitris Karagkiozidis, Kezia Lange, Ankie J. M. Piters, Julia Remmers, Andreas Richter, Michel Van Roozendael, Thomas Wagner, Mark Wenig, and Diego G. Loyola
Atmos. Meas. Tech., 14, 7297–7327, https://doi.org/10.5194/amt-14-7297-2021,https://doi.org/10.5194/amt-14-7297-2021, 2021
Short summary
Neural-network-based estimation of regional-scale anthropogenic CO2 emissions using an Orbiting Carbon Observatory-2 (OCO-2) dataset over East and West Asia
Farhan Mustafa, Lingbing Bu, Qin Wang, Na Yao, Muhammad Shahzaman, Muhammad Bilal, Rana Waqar Aslam, and Rashid Iqbal
Atmos. Meas. Tech., 14, 7277–7290, https://doi.org/10.5194/amt-14-7277-2021,https://doi.org/10.5194/amt-14-7277-2021, 2021
Short summary
Are elevated moist layers a blind spot for hyperspectral infrared sounders? A model study
Marc Prange, Manfred Brath, and Stefan A. Buehler
Atmos. Meas. Tech., 14, 7025–7044, https://doi.org/10.5194/amt-14-7025-2021,https://doi.org/10.5194/amt-14-7025-2021, 2021
Short summary
GFIT3: a full physics retrieval algorithm for remote sensing of greenhouse gases in the presence of aerosols
Zhao-Cheng Zeng, Vijay Natraj, Feng Xu, Sihe Chen, Fang-Ying Gong, Thomas J. Pongetti, Keeyoon Sung, Geoffrey Toon, Stanley P. Sander, and Yuk L. Yung
Atmos. Meas. Tech., 14, 6483–6507, https://doi.org/10.5194/amt-14-6483-2021,https://doi.org/10.5194/amt-14-6483-2021, 2021
Short summary

Cited articles

Bösenberg, J.: Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology, Appl. Optics, 37, 3845–3860, https://doi.org/10.1364/AO.37.003845, 1998. 
Chéruy, F., Scott, N. A., Armante, R., Tournier, B., and Chedin, A.: Contribution to the development of radiative transfer models for high spectral resolution observations in the infrared, J. Quant. Spectrosc. Ra., 53, 597–611, https://doi.org/10.1016/0022-4073(95)00026-H, 1995. 
Chevallier, F., Chédin, A., Chéruy, F., and Morcrette, J.-J.: TIGR-like atmospheric-profile databases for accurate radiative-flux computation, Q. J. Roy. Meteor. Soc., 126, 777–785, https://doi.org/10.1002/qj.49712656319, 2000. 
Chevallier, F., Broquet, G., Pierangelo, C., and Crisp, D.: Probabilistic global maps of the CO2 column at daily and monthly scales from sparse satellite measurements, J. Geophys. Res., 122, 7614–7629, https://doi.org/10.1002/2017JD026453, 2017. 
Ehret, G., Kiemle, C., Wirth, M., Amediek, A., Fix, A., and Houweling, S.: Space-borne remote sensing of CO2,CH4,and N2O by integrated path differential absorption lidar: a sensitivity analysis, Appl. Phys. B.-Lasers O., 90, 593–608, https://doi.org/10.1007/s00340-007-2892-3, 2008. 
Download
Short summary
The French and German space agencies (CNES, DLR) are currently developing MERLIN, a satellite that will measure atmospheric concentration of methane, a powerful greenhouse gas. To reach the desired precision, horizontally averaging the measurements along the satellite track is performed but leads to a processing bias due to non-linear equations. This article studies the processing biases for several averaging schemes and bias correction algorithms and recommends a best approach to limit biases.