Articles | Volume 11, issue 11
Atmos. Meas. Tech., 11, 6339–6350, 2018
https://doi.org/10.5194/amt-11-6339-2018
Atmos. Meas. Tech., 11, 6339–6350, 2018
https://doi.org/10.5194/amt-11-6339-2018
Research article
27 Nov 2018
Research article | 27 Nov 2018

Comparison of methods to derive radial wind speed from a continuous-wave coherent lidar Doppler spectrum

Dominique P. Held and Jakob Mann

Related authors

Lidar estimation of rotor-effective wind speed – an experimental comparison
Dominique P. Held and Jakob Mann
Wind Energ. Sci., 4, 421–438, https://doi.org/10.5194/wes-4-421-2019,https://doi.org/10.5194/wes-4-421-2019, 2019
Short summary
Detection of wakes in the inflow of turbines using nacelle lidars
Dominique P. Held and Jakob Mann
Wind Energ. Sci., 4, 407–420, https://doi.org/10.5194/wes-4-407-2019,https://doi.org/10.5194/wes-4-407-2019, 2019
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Estimation of refractivity uncertainties and vertical error correlations in collocated radio occultations, radiosondes, and model forecasts
Johannes K. Nielsen, Hans Gleisner, Stig Syndergaard, and Kent B. Lauritsen
Atmos. Meas. Tech., 15, 6243–6256, https://doi.org/10.5194/amt-15-6243-2022,https://doi.org/10.5194/amt-15-6243-2022, 2022
Short summary
DeepPrecip: a deep neural network for precipitation retrievals
Fraser King, George Duffy, Lisa Milani, Christopher G. Fletcher, Claire Pettersen, and Kerstin Ebell
Atmos. Meas. Tech., 15, 6035–6050, https://doi.org/10.5194/amt-15-6035-2022,https://doi.org/10.5194/amt-15-6035-2022, 2022
Short summary
Machine learning-based prediction of Alpine foehn events using GNSS troposphere products: first results for Altdorf, Switzerland
Matthias Aichinger-Rosenberger, Elmar Brockmann, Laura Crocetti, Benedikt Soja, and Gregor Moeller
Atmos. Meas. Tech., 15, 5821–5839, https://doi.org/10.5194/amt-15-5821-2022,https://doi.org/10.5194/amt-15-5821-2022, 2022
Short summary
Meteor radar vertical wind observation biases and mathematical debiasing strategies including the 3DVAR+DIV algorithm
Gunter Stober, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Ales Kuchar, Christoph Jacobi, Chris Meek, Diego Janches, Guiping Liu, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Meas. Tech., 15, 5769–5792, https://doi.org/10.5194/amt-15-5769-2022,https://doi.org/10.5194/amt-15-5769-2022, 2022
Short summary
Adaptive thermal image velocimetry of spatial wind movement on landscapes using near-target infrared cameras
Benjamin Schumacher, Marwan Katurji, Jiawei Zhang, Peyman Zawar-Reza, Benjamin Adams, and Matthias Zeeman
Atmos. Meas. Tech., 15, 5681–5700, https://doi.org/10.5194/amt-15-5681-2022,https://doi.org/10.5194/amt-15-5681-2022, 2022
Short summary

Cited articles

Angelou, N., Mann, J., Sjöholm, M., and Courtney, M. S.: Direct measurement of the spectral transfer function of a laser based anemometer, Rev. Sci. Instrum., 83, 033111, 2012. a, b, c
Banakh, V. A. and Smalikho, I. N.: Measurements of turbulent energy dissipation rate with a CW Doppler lidar in the atmospheric boundary layer, J. Atmos. Ocean. Technol., 16, 1044–1061, 1999. a
Bechmann, A., Berg, J., Courtney, M. S., Jørgensen, H. E., Mann, J., and Sørensen, N. N.: The Bolund Experiment: Overview and Background, Tech. rep., Risø-R-1658(EN), DTU, available at: http://orbit.dtu.dk/files/4321515/ris-r-1658.pdf (last access: 22 November 2018), 2009. a
Borraccino, A., Courtney, M. S., and Wagner, R.: Remotely measuring the wind using turbine-mounted lidars: Application to power performance testing, PhD thesis, Technical University of Denmark, Lyngby, Denmark, 2017. a
Branlard, E., Pedersen, A. T., Mann, J., Angelou, N., Fischer, A., Mikkelsen, T., Harris, M., Slinger, C., and Montes, B. F.: Retrieving wind statistics from average spectrum of continuous-wave lidar, Atmos. Meas. Tech., 6, 1673–1683, https://doi.org/10.5194/amt-6-1673-2013, 2013. a, b
Download
Short summary
In this paper we study the effect of different methods to derive the radial wind speed from a lidar Doppler spectrum. Numerical simulations and experimental results both indicate that the median method has slight improvements over the centroid method in terms of turbulent attenuation and also showed the lowest root mean squared error. Thus, when the aim is to reduce the volume averaging effect and obtain time series with a high temporal resolution, we recommend using the median method.