Articles | Volume 12, issue 1
https://doi.org/10.5194/amt-12-371-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-12-371-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Advanced Infra-Red WAter Vapour Estimator (AIRWAVE) version 2: algorithm evolution, dataset description and performance improvements
Instituto di Scienze dell'Atmosfera e del Clima, ISAC-CNR, Via
Gobetti 101, 40129 Bologna, Italy
Enzo Papandrea
Serco s.p.a., Via Sciadonna
24–26, 00044 Frascati, Italy
Instituto di Scienze dell'Atmosfera e del Clima, ISAC-CNR, Via
Gobetti 101, 40129 Bologna, Italy
Alessio Di Roma
Dipartimento di Fisica e Astronomia,
DIFA, Universita' di Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
Bianca Maria Dinelli
Instituto di Scienze dell'Atmosfera e del Clima, ISAC-CNR, Via
Gobetti 101, 40129 Bologna, Italy
Stefano Casadio
Serco s.p.a., Via Sciadonna
24–26, 00044 Frascati, Italy
Bojan Bojkov
EUMETSAT, Eumetsat Allee 1, 64295 Darmstadt, Germany
Related authors
Pierre Gramme, Cedric Busschots, Emmanuel Dekemper, Didier Pieroux, Noel Baker, Stefano Casadio, Anna Maria Iannarelli, Nicola Ferrante, Annalisa Di Bernardino, Paolo Pettinari, Elisa Castelli, Luca Di Liberto, and Francesco Cairo
Atmos. Meas. Tech., 18, 6021–6037, https://doi.org/10.5194/amt-18-6021-2025, https://doi.org/10.5194/amt-18-6021-2025, 2025
Short summary
Short summary
We present a new remote sensing instrument using hyperspectral imaging to observe the variability in space and time of the nitrogen dioxide concentration. We also show the results of its validation campaign in a challenging urban setting in Rome, showing very good agreement with two reference instruments. Having an imaging instrument rather than the currently state-of-the-art unidirectional spectrometers brings promising capability in the context of satellite product validation.
Martina Taddia, Federico Fabiano, Stefano Della Fera, Elisa Castelli, and Bianca Maria Dinelli
EGUsphere, https://doi.org/10.5194/egusphere-2025-3750, https://doi.org/10.5194/egusphere-2025-3750, 2025
Short summary
Short summary
The time relationship between the energy emitted by the Earth system across the thermal infrared spectral region (also known as Outgoing Longwave Radiation (OLR)) and El-Niño Southern Oscillation (ENSO), shows important contribution from stratospheric temperature and ozone changes. The peak of the radiative response is wavenumber-dependent, this makes this analysis particularly suitable for climate models evaluations.
Tim Trent, Marc Schröder, Shu-Peng Ho, Steffen Beirle, Ralf Bennartz, Eva Borbas, Christian Borger, Helene Brogniez, Xavier Calbet, Elisa Castelli, Gilbert P. Compo, Wesley Ebisuzaki, Ulrike Falk, Frank Fell, John Forsythe, Hans Hersbach, Misako Kachi, Shinya Kobayashi, Robert E. Kursinski, Diego Loyola, Zhengzao Luo, Johannes K. Nielsen, Enzo Papandrea, Laurence Picon, Rene Preusker, Anthony Reale, Lei Shi, Laura Slivinski, Joao Teixeira, Tom Vonder Haar, and Thomas Wagner
Atmos. Chem. Phys., 24, 9667–9695, https://doi.org/10.5194/acp-24-9667-2024, https://doi.org/10.5194/acp-24-9667-2024, 2024
Short summary
Short summary
In a warmer future, water vapour will spend more time in the atmosphere, changing global rainfall patterns. In this study, we analysed the performance of 28 water vapour records between 1988 and 2014. We find sensitivity to surface warming generally outside expected ranges, attributed to breakpoints in individual record trends and differing representations of climate variability. The implication is that longer records are required for high confidence in assessing climate trends.
Bianca Maria Dinelli, Piera Raspollini, Marco Gai, Luca Sgheri, Marco Ridolfi, Simone Ceccherini, Flavio Barbara, Nicola Zoppetti, Elisa Castelli, Enzo Papandrea, Paolo Pettinari, Angelika Dehn, Anu Dudhia, Michael Kiefer, Alessandro Piro, Jean-Marie Flaud, Manuel López-Puertas, David Moore, John Remedios, and Massimo Bianchini
Atmos. Meas. Tech., 14, 7975–7998, https://doi.org/10.5194/amt-14-7975-2021, https://doi.org/10.5194/amt-14-7975-2021, 2021
Short summary
Short summary
The level-2 v8 database from the measurements of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), aboard the European Space Agency Envisat satellite, containing atmospheric fields of pressure, temperature, and volume mixing ratio of 21 trace gases, is described in this paper. The database covers all the measurements acquired by MIPAS (from July 2002 to April 2012). The number of species included makes it of particular importance for the studies of stratospheric chemistry.
Pierre Gramme, Cedric Busschots, Emmanuel Dekemper, Didier Pieroux, Noel Baker, Stefano Casadio, Anna Maria Iannarelli, Nicola Ferrante, Annalisa Di Bernardino, Paolo Pettinari, Elisa Castelli, Luca Di Liberto, and Francesco Cairo
Atmos. Meas. Tech., 18, 6021–6037, https://doi.org/10.5194/amt-18-6021-2025, https://doi.org/10.5194/amt-18-6021-2025, 2025
Short summary
Short summary
We present a new remote sensing instrument using hyperspectral imaging to observe the variability in space and time of the nitrogen dioxide concentration. We also show the results of its validation campaign in a challenging urban setting in Rome, showing very good agreement with two reference instruments. Having an imaging instrument rather than the currently state-of-the-art unidirectional spectrometers brings promising capability in the context of satellite product validation.
Martina Taddia, Federico Fabiano, Stefano Della Fera, Elisa Castelli, and Bianca Maria Dinelli
EGUsphere, https://doi.org/10.5194/egusphere-2025-3750, https://doi.org/10.5194/egusphere-2025-3750, 2025
Short summary
Short summary
The time relationship between the energy emitted by the Earth system across the thermal infrared spectral region (also known as Outgoing Longwave Radiation (OLR)) and El-Niño Southern Oscillation (ENSO), shows important contribution from stratospheric temperature and ozone changes. The peak of the radiative response is wavenumber-dependent, this makes this analysis particularly suitable for climate models evaluations.
Tim Trent, Marc Schröder, Shu-Peng Ho, Steffen Beirle, Ralf Bennartz, Eva Borbas, Christian Borger, Helene Brogniez, Xavier Calbet, Elisa Castelli, Gilbert P. Compo, Wesley Ebisuzaki, Ulrike Falk, Frank Fell, John Forsythe, Hans Hersbach, Misako Kachi, Shinya Kobayashi, Robert E. Kursinski, Diego Loyola, Zhengzao Luo, Johannes K. Nielsen, Enzo Papandrea, Laurence Picon, Rene Preusker, Anthony Reale, Lei Shi, Laura Slivinski, Joao Teixeira, Tom Vonder Haar, and Thomas Wagner
Atmos. Chem. Phys., 24, 9667–9695, https://doi.org/10.5194/acp-24-9667-2024, https://doi.org/10.5194/acp-24-9667-2024, 2024
Short summary
Short summary
In a warmer future, water vapour will spend more time in the atmosphere, changing global rainfall patterns. In this study, we analysed the performance of 28 water vapour records between 1988 and 2014. We find sensitivity to surface warming generally outside expected ranges, attributed to breakpoints in individual record trends and differing representations of climate variability. The implication is that longer records are required for high confidence in assessing climate trends.
Michael Kiefer, Dale F. Hurst, Gabriele P. Stiller, Stefan Lossow, Holger Vömel, John Anderson, Faiza Azam, Jean-Loup Bertaux, Laurent Blanot, Klaus Bramstedt, John P. Burrows, Robert Damadeo, Bianca Maria Dinelli, Patrick Eriksson, Maya García-Comas, John C. Gille, Mark Hervig, Yasuko Kasai, Farahnaz Khosrawi, Donal Murtagh, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Takafumi Sugita, Thomas von Clarmann, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 16, 4589–4642, https://doi.org/10.5194/amt-16-4589-2023, https://doi.org/10.5194/amt-16-4589-2023, 2023
Short summary
Short summary
We quantify biases and drifts (and their uncertainties) between the stratospheric water vapor measurement records of 15 satellite-based instruments (SATs, with 31 different retrievals) and balloon-borne frost point hygrometers (FPs) launched at 27 globally distributed stations. These comparisons of measurements during the period 2000–2016 are made using robust, consistent statistical methods. With some exceptions, the biases and drifts determined for most SAT–FP pairs are < 10 % and < 1 % yr−1.
William G. Read, Gabriele Stiller, Stefan Lossow, Michael Kiefer, Farahnaz Khosrawi, Dale Hurst, Holger Vömel, Karen Rosenlof, Bianca M. Dinelli, Piera Raspollini, Gerald E. Nedoluha, John C. Gille, Yasuko Kasai, Patrick Eriksson, Christopher E. Sioris, Kaley A. Walker, Katja Weigel, John P. Burrows, and Alexei Rozanov
Atmos. Meas. Tech., 15, 3377–3400, https://doi.org/10.5194/amt-15-3377-2022, https://doi.org/10.5194/amt-15-3377-2022, 2022
Short summary
Short summary
This paper attempts to provide an assessment of the accuracy of 21 satellite-based instruments that remotely measure atmospheric humidity in the upper troposphere of the Earth's atmosphere. The instruments made their measurements from 1984 to the present time; however, most of these instruments began operations after 2000, and only a few are still operational. The objective of this study is to quantify the accuracy of each satellite humidity data set.
Piera Raspollini, Enrico Arnone, Flavio Barbara, Massimo Bianchini, Bruno Carli, Simone Ceccherini, Martyn P. Chipperfield, Angelika Dehn, Stefano Della Fera, Bianca Maria Dinelli, Anu Dudhia, Jean-Marie Flaud, Marco Gai, Michael Kiefer, Manuel López-Puertas, David P. Moore, Alessandro Piro, John J. Remedios, Marco Ridolfi, Harjinder Sembhi, Luca Sgheri, and Nicola Zoppetti
Atmos. Meas. Tech., 15, 1871–1901, https://doi.org/10.5194/amt-15-1871-2022, https://doi.org/10.5194/amt-15-1871-2022, 2022
Short summary
Short summary
The MIPAS instrument onboard the ENVISAT satellite provided 10 years of measurements of the atmospheric emission al limb that allow for the retrieval of latitude- and altitude-resolved atmospheric composition. We describe the improvements implemented in the retrieval algorithm used for the full mission reanalysis, which allows for the generation of the global distributions of 21 atmospheric constituents plus temperature with increased accuracy with respect to previously generated data.
Bianca Maria Dinelli, Piera Raspollini, Marco Gai, Luca Sgheri, Marco Ridolfi, Simone Ceccherini, Flavio Barbara, Nicola Zoppetti, Elisa Castelli, Enzo Papandrea, Paolo Pettinari, Angelika Dehn, Anu Dudhia, Michael Kiefer, Alessandro Piro, Jean-Marie Flaud, Manuel López-Puertas, David Moore, John Remedios, and Massimo Bianchini
Atmos. Meas. Tech., 14, 7975–7998, https://doi.org/10.5194/amt-14-7975-2021, https://doi.org/10.5194/amt-14-7975-2021, 2021
Short summary
Short summary
The level-2 v8 database from the measurements of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), aboard the European Space Agency Envisat satellite, containing atmospheric fields of pressure, temperature, and volume mixing ratio of 21 trace gases, is described in this paper. The database covers all the measurements acquired by MIPAS (from July 2002 to April 2012). The number of species included makes it of particular importance for the studies of stratospheric chemistry.
Paolo Pettinari, Flavio Barbara, Simone Ceccherini, Bianca Maria Dinelli, Marco Gai, Piera Raspollini, Luca Sgheri, Massimo Valeri, Gerald Wetzel, Nicola Zoppetti, and Marco Ridolfi
Atmos. Meas. Tech., 14, 7959–7974, https://doi.org/10.5194/amt-14-7959-2021, https://doi.org/10.5194/amt-14-7959-2021, 2021
Short summary
Short summary
Phosgene (COCl2) is a toxic gas whose presence is a consequence of human activity. Besides its direct injection in the troposphere, stratospheric COCl2 is produced from the decomposition of CCl4, an anthropogenic gas regulated by the Montreal Protocol. As a consequence, COCl2 negative trends characterize the lower and part of the middle stratosphere. However, we find positive trends in the upper troposphere, demonstrating the non-negligible role of other Cl-containing species not yet regulated.
Henri Diémoz, Anna Maria Siani, Stefano Casadio, Anna Maria Iannarelli, Giuseppe Rocco Casale, Vladimir Savastiouk, Alexander Cede, Martin Tiefengraber, and Moritz Müller
Earth Syst. Sci. Data, 13, 4929–4950, https://doi.org/10.5194/essd-13-4929-2021, https://doi.org/10.5194/essd-13-4929-2021, 2021
Short summary
Short summary
A 20-year (1996–2017) record of nitrogen dioxide column densities collected in Rome by a Brewer spectrophotometer is presented, together with the novel algorithm employed to re-evaluate the series. The high quality of the data is demonstrated by comparison with reference instrumentation, including a co-located Pandora spectrometer. The data can be used for satellite validation and identification of NO2 trends. The method can be replicated on other instruments of the international Brewer network.
Cited articles
Allan, R. P., Liu, C., Zahn, M., Lavers, D., Koukouvagias, E., and
Bodas-Salcedo, A.: Physically Consistent Responses of the Global Atmospheric
Hydrological Cycle in Models and Observations, Surv. Geophys., 35, 533–552,
https://doi.org/10.1007/s10712-012-9213-z, 2014. a
Aoki, S., Nakazawa, T., Machida, T., Sugawara, S., Morimoto, S., Hashida, G.,
Yamanouchi, T., Kawamura, K., and Honda,H.: Carbon dioxide variations in the
stratosphere over Japan, Scandinavia and Antarctica, Tellus B, 55, 178–186,
2003. a
ARSA (Analyzed RadioSoundings Archive), available at: http://ara.abct.lmd.polytechnique.fr/index.php?page=arsa,
last access: 17 March 2018. a
Berk, A., Acharya, P. K., Bernstein, L. S., Anderson, G. P., Lewis, P.,
Chetwynd, J. H., and Hoke, M. L.: Band model method for modeling atmospheric
propagation at arbitrarily fine spectral resolution, US Patent no. 7433806,
2008. a
Casadio, S., Castelli, E., Papandrea, E., Dinelli, B. M., Pisacane, G., and
Bojkov, B.: Total column water vapour from along track scanning radiometer
series using thermal infrared dual view ocean cloud free measurements: The
Advanced Infra-Red WAter Vapour Estimator (AIRWAVE) algorithm, Remote Sens. Environ., 172, 1–14, 2016. a, b, c, d, e, f, g, h, i, j
Castelli, E., Papandrea, E., Valeri, M., Greco F. P., Ventrucci, M., Casadio,
S., and Dinelli, B. M.: ITCZ trend analysis via Geodesic P-spline smoothing of
the AIRWAVE TCWV and cloud frequency datasets, Atmos.
Res., 214, 228–238, 2018. a
Delderfield, J., Llewellyn-Jones, D. T., Bernard, R., de Javel, Y.,
Williamson, E. J., Mason, I., Pick, D. R., and Barton, I. J.: The Along Track
Scanning Radiometer (ATSR) for ERS-1, Proc. SPIE, 589, 114–120, 1986. a
Diedrich, H., Preusker, R., Lindstrot, R., and Fischer, J.: Retrieval of
daytime total columnar water vapour from MODIS measurements over land
surfaces, Atmos. Meas. Tech., 8, 823–836, https://doi.org/10.5194/amt-8-823-2015, 2015. a
Donlon, C., Berruti, B., Buongiorno, A., Ferreira, M.-H., Féménias,
P., Frerick, J., Goryl, P., Klein, U., Laur, H., Mavrocordatos, C., Nieke,
J., Rebhan, H., Seitz, B., Stroede, J., and Sciarra, R.: The Global
Monitoring for Environment and Security (GMES) Sentinel-3 mission, Remote
Sens. Environ., 120, 27–57, https://doi.org/10.1016/j.rse.2011.07.024, 2012. a
Embury, O., Merchant, C., and Filipiak, M.: Refractive indices (500–3500 cm−1) and emissivity (600–3350 cm−1) of pure water and
seawater,
https://doi.org/10.7488/ds/162, 2008. a
GEWEX G-VAP: GEWEX water vapour assessment, available at: http://gewex-vap.org/, last access: 17 March
2018. a
Global Monitoring Division: Trends in atmospheric Carbon dioxide, https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html, last access: 21 December
2018. a
Li, Z.-L., Jia, L., Su, Z., Wan, Z., and Zhang, R.: A new approach for retrieving
precipitable water from ATSR2 split-window channel data over land area,
Int. J. Remote Sens., 24, 5095–5117, https://doi.org/10.1080/0143116031000096014, 2003. a
Lindstrot, R., Stengel, M., Schröder, M., Schneider, N., Preusker,
R., and Fischer, J.: Combined SSM/I and MERIS Water Vapour Products from the
ESA GlobVapour project, in: AGU Fall Meeting Abstracts, Vol. 1, p. 0217,
2010. a
Lindstrot, R., Preusker, R., Diedrich, H., Doppler, L., Bennartz, R., and
Fischer, J.: 1D-Var retrieval of daytime total columnar water vapour from
MERIS measurements, Atmos. Meas. Tech., 5, 631–646,
https://doi.org/10.5194/amt-5-631-2012, 2012. a
Lindstrot, R., Stengel, M., Schröder, M., Fischer, J., Preusker, R.,
Schneider, N., Steenbergen, T., and Bojkov, B. R.: A global climatology of
total columnar water vapour from SSM/I and MERIS, Earth Syst. Sci. Data, 6,
221–233, https://doi.org/10.5194/essd-6-221-2014, 2014. a
Minschwaner, K., Hoffmann, L., Brown, A., Riese, M., Müller, R., and
Bernath, P. F.: Stratospheric loss and atmospheric lifetimes of CFC-11 and
CFC-12 derived from satellite observations, Atmos. Chem. Phys., 13,
4253–4263, https://doi.org/10.5194/acp-13-4253-2013, 2013. a
Papandrea, E., Casadio, S., De Grandis, E., Castelli, E., Dinelli, B. M., and
Bojkov, B.: Validation of the Advanced Infra-Red Water Vapour Estimator
(AIRWAVE) Total Column Water Vapour using Satellite and Radiosonde products,
Ann. Geophys., 61, 1–8, https://doi.org/10.4401/ag-7524,
2018. a, b, c, d, e, f, g, h
Remedios, J. J., Leigh, R. J., Waterfall, A. M., Moore, D. P., Sembhi, H.,
Parkes, I., Greenhough, J., Chipperfield, M. P., and Hauglustaine, D.: MIPAS
reference atmospheres and comparisons to V4.61/V4.62 MIPAS level 2
geophysical data sets, Atmos. Chem. Phys. Discuss., 7, 9973–10017,
https://doi.org/10.5194/acpd-7-9973-2007, 2007. a, b
Rothman, L. S., Gordon, I. E., Barbe, A., Benner, D., Chris, Bernath, P. E.,
Birk, M., Boudon, V., Brown, L. R., Campargue, A., Champion, J.-P., Chance,
K., Coudert, L. H., Dana, V., Devi, V. M., Fally, S., Flaud, J.-M., Gamache,
R. R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W. J.,
Mandin, J.-Y., Massie, S. T., Mikhailenko, S. N., Miller, C. E.,
Moazzen-Ahmadi, N., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov,
V. I., Perrin, A., Predoi-Cross, A., Rinsland, C. P., Rotger, M., Simeckova,
M., Smith, M. A. H., Sung, K., Tashkun, S. A., Tennyson, J., Toth, R. A.,
Vandaele, A. C., and Vander Auwera, J.: The HITRAN 2008 molecular
spectroscopic database, J. Quant. Spectrosc. Ra., 110, 533–572,
https://doi.org/10.1016/j.jqsrt.2009.02.013, 2009. a
Schr der, M., Lockhoff, M., Fell, F., Forsythe, J., Trent, T.,
Bennartz, R., Borbas, E., Bosilovich, M. G., Castelli, E., Hersbach, H.,
Kachi, M., Kobayashi, S., Kursinski, E. R., Loyola, D., Mears, C., Preusker,
R., Rossow, W. B., and Saha, S.: The GEWEX Water Vapor Assessment archive of
water vapour products from satellite observations and reanalyses, Earth Syst.
Sci. Data, 10, 1093–1117, https://doi.org/10.5194/essd-10-1093-2018, 2018.
a
Seemann, S., Li, J., Menzel, W. P., and Gumley, L.: Operational retrieval of
atmospheric temperature, moisture, and ozone from MODIS infrared radiances,
J. Appl. Meteorol., 42, 1072–1091, 2003. a
Smith, D., Mutlow, C., Delderfield, J., Watkins, B., and Mason, G.: ATSR
infrared radiometric calibration and in-orbit performance, Remote Sens.
Environ., 116, 4–16, 2012. a
Sobrino, J. A., Coll, C., and Caselles, V.: Atmospheric corrections for land
surface temperature using AVHRR channel 4 and 5, Remote Sens. Environ., 38,
19–34, 1991. a
Wentz, F. J.: A well-calibrated ocean algorithm for SSM/I, J. Geophys. Res.,
102, 8703–8718, 1997. a
Short summary
The total column water vapour (TCWV) is a key atmospheric variable. The AIRWAVE (Advanced Infra-Red WAter Vapour Estimator) v1 algorithm was developed to retrieve TCWV from satellite measurements. Comparisons with independent TCWV show good agreement with an overall bias of 0.72 kg m−2 due to the polar and coastal regions. Here, we describe the AIRWAVEv2 dataset, which shows significant improvements with a global bias of 0.02 kg m−2. This dataset was used to produce a climatology from 1991 to 2012.
The total column water vapour (TCWV) is a key atmospheric variable. The AIRWAVE (Advanced...