Articles | Volume 13, issue 3
https://doi.org/10.5194/amt-13-1227-2020
https://doi.org/10.5194/amt-13-1227-2020
Research article
 | 
13 Mar 2020
Research article |  | 13 Mar 2020

Unsupervised classification of vertical profiles of dual polarization radar variables

Jussi Tiira and Dmitri Moisseev

Related authors

Towards the connection between snow microphysics and melting layer: insights from multifrequency and dual-polarization radar observations during BAECC
Haoran Li, Jussi Tiira, Annakaisa von Lerber, and Dmitri Moisseev
Atmos. Chem. Phys., 20, 9547–9562, https://doi.org/10.5194/acp-20-9547-2020,https://doi.org/10.5194/acp-20-9547-2020, 2020
Short summary
Disk and circumsolar radiances in the presence of ice clouds
Päivi Haapanala, Petri Räisänen, Greg M. McFarquhar, Jussi Tiira, Andreas Macke, Michael Kahnert, John DeVore, and Timo Nousiainen
Atmos. Chem. Phys., 17, 6865–6882, https://doi.org/10.5194/acp-17-6865-2017,https://doi.org/10.5194/acp-17-6865-2017, 2017
Short summary
Ensemble mean density and its connection to other microphysical properties of falling snow as observed in Southern Finland
Jussi Tiira, Dmitri N. Moisseev, Annakaisa von Lerber, Davide Ori, Ali Tokay, Larry F. Bliven, and Walter Petersen
Atmos. Meas. Tech., 9, 4825–4841, https://doi.org/10.5194/amt-9-4825-2016,https://doi.org/10.5194/amt-9-4825-2016, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Improving solution availability and temporal consistency of an optimal-estimation physical retrieval for ground-based thermodynamic boundary layer profiling
Bianca Adler, David D. Turner, Laura Bianco, Irina V. Djalalova, Timothy Myers, and James M. Wilczak
Atmos. Meas. Tech., 17, 6603–6624, https://doi.org/10.5194/amt-17-6603-2024,https://doi.org/10.5194/amt-17-6603-2024, 2024
Short summary
An improved geolocation methodology for spaceborne radar and lidar systems
Bernat Puigdomènech Treserras and Pavlos Kollias
Atmos. Meas. Tech., 17, 6301–6314, https://doi.org/10.5194/amt-17-6301-2024,https://doi.org/10.5194/amt-17-6301-2024, 2024
Short summary
Combining low- and high-frequency microwave radiometer measurements from the MOSAiC expedition for enhanced water vapour products
Andreas Walbröl, Hannes J. Griesche, Mario Mech, Susanne Crewell, and Kerstin Ebell
Atmos. Meas. Tech., 17, 6223–6245, https://doi.org/10.5194/amt-17-6223-2024,https://doi.org/10.5194/amt-17-6223-2024, 2024
Short summary
HAMSTER: Hyperspectral Albedo Maps dataset with high Spatial and TEmporal Resolution
Giulia Roccetti, Luca Bugliaro, Felix Gödde, Claudia Emde, Ulrich Hamann, Mihail Manev, Michael Fritz Sterzik, and Cedric Wehrum
Atmos. Meas. Tech., 17, 6025–6046, https://doi.org/10.5194/amt-17-6025-2024,https://doi.org/10.5194/amt-17-6025-2024, 2024
Short summary
Global-scale gravity wave analysis methodology for the ESA Earth Explorer 11 candidate CAIRT
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024,https://doi.org/10.5194/amt-17-5785-2024, 2024
Short summary

Cited articles

Andrić, J., Kumjian, M. R., Zrnić, D. S., Straka, J. M., and Melnikov, V. M.: Polarimetric Signatures above the Melting Layer in Winter Storms: An Observational and Modeling Study, J. Appl. Meteorol. Clim., 52, 682–700, https://doi.org/10.1175/JAMC-D-12-028.1, 2013. a
Arthur, D. and Vassilvitskii, S.: k-means++: The advantages of careful seeding, 1027–1035, Society for Industrial and Applied Mathematics, 2007. a
Bechini, R. and Chandrasekar, V.: A Semisupervised Robust Hydrometeor Classification Method for Dual-Polarization Radar Applications, J. Atmos. Ocean. Tech., 32, 22–47, https://doi.org/10.1175/JTECH-D-14-00097.1, 2015. a
Bechini, R., Baldini, L., and Chandrasekar, V.: Polarimetric Radar Observations in the Ice Region of Precipitating Clouds at C-Band and X-Band Radar Frequencies, J. Appl. Meteorol. Clim., 52, 1147–1169, https://doi.org/10.1175/JAMC-D-12-055.1, 2013. a, b
Cattell, R. B.: The Scree Test For The Number Of Factors, Multivar. Behav. Res., 1, 245–276, 1966. a
Download
Short summary
Modern weather radars are sensitive for properties of precipitating snow particles, such as their sizes, shapes and number concentration. Vertical profiles of such radar measurements can be used for studying the processes through which snow is formed. We created a profile classification method for this purpose, and we show how it can be used for automatic identification of snow growth processes. Being able to identify the processes is expected to improve radar-based precipitation estimation.