Articles | Volume 13, issue 2
https://doi.org/10.5194/amt-13-429-2020
https://doi.org/10.5194/amt-13-429-2020
Research article
 | 
05 Feb 2020
Research article |  | 05 Feb 2020

Determining the daytime Earth radiative flux from National Institute of Standards and Technology Advanced Radiometer (NISTAR) measurements

Wenying Su, Patrick Minnis, Lusheng Liang, David P. Duda, Konstantin Khlopenkov, Mandana M. Thieman, Yinan Yu, Allan Smith, Steven Lorentz, Daniel Feldman, and Francisco P. J. Valero

Related authors

Next-generation radiance unfiltering process for the Clouds and Earth’s Radiant Energy System instrument
Lusheng Liang, Wenying Su, Sergio Sejas, Zachary A. Eitzen, and Norman G. Loeb
EGUsphere, https://doi.org/10.5194/egusphere-2023-1670,https://doi.org/10.5194/egusphere-2023-1670, 2023
Short summary
Cloud products from the Earth Polychromatic Imaging Camera (EPIC): algorithms and initial evaluation
Yuekui Yang, Kerry Meyer, Galina Wind, Yaping Zhou, Alexander Marshak, Steven Platnick, Qilong Min, Anthony B. Davis, Joanna Joiner, Alexander Vasilkov, David Duda, and Wenying Su
Atmos. Meas. Tech., 12, 2019–2031, https://doi.org/10.5194/amt-12-2019-2019,https://doi.org/10.5194/amt-12-2019-2019, 2019
Short summary
The effects of different footprint sizes and cloud algorithms on the top-of-atmosphere radiative flux calculation from the Clouds and Earth's Radiant Energy System (CERES) instrument on Suomi National Polar-orbiting Partnership (NPP)
Wenying Su, Lusheng Liang, Walter F. Miller, and Victor E. Sothcott
Atmos. Meas. Tech., 10, 4001–4011, https://doi.org/10.5194/amt-10-4001-2017,https://doi.org/10.5194/amt-10-4001-2017, 2017
Short summary
Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: validation
W. Su, J. Corbett, Z. Eitzen, and L. Liang
Atmos. Meas. Tech., 8, 3297–3313, https://doi.org/10.5194/amt-8-3297-2015,https://doi.org/10.5194/amt-8-3297-2015, 2015
Accounting for the effects of sastrugi in the CERES clear-sky Antarctic shortwave angular distribution models
J. Corbett and W. Su
Atmos. Meas. Tech., 8, 3163–3175, https://doi.org/10.5194/amt-8-3163-2015,https://doi.org/10.5194/amt-8-3163-2015, 2015
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Forward operator for polarimetric radio occultation measurements
Daisuke Hotta, Katrin Lonitz, and Sean Healy
Atmos. Meas. Tech., 17, 1075–1089, https://doi.org/10.5194/amt-17-1075-2024,https://doi.org/10.5194/amt-17-1075-2024, 2024
Short summary
Assessing atmospheric gravity wave spectra in the presence of observational gaps
Mohamed Mossad, Irina Strelnikova, Robin Wing, and Gerd Baumgarten
Atmos. Meas. Tech., 17, 783–799, https://doi.org/10.5194/amt-17-783-2024,https://doi.org/10.5194/amt-17-783-2024, 2024
Short summary
Joint 1DVar retrievals of tropospheric temperature and water vapor from Global Navigation Satellite System radio occultation (GNSS-RO) and microwave radiometer observations
Kuo-Nung Wang, Chi O. Ao, Mary G. Morris, George A. Hajj, Marcin J. Kurowski, Francis J. Turk, and Angelyn W. Moore
Atmos. Meas. Tech., 17, 583–599, https://doi.org/10.5194/amt-17-583-2024,https://doi.org/10.5194/amt-17-583-2024, 2024
Short summary
Mispointing characterization and Doppler velocity correction for the conically scanning WIVERN Doppler radar
Filippo Emilio Scarsi, Alessandro Battaglia, Frederic Tridon, Paolo Martire, Ranvir Dhillon, and Anthony Illingworth
Atmos. Meas. Tech., 17, 499–514, https://doi.org/10.5194/amt-17-499-2024,https://doi.org/10.5194/amt-17-499-2024, 2024
Short summary
Radar and environment-based hail damage estimates using machine learning
Luis Ackermann, Joshua Soderholm, Alain Protat, Rhys Whitley, Lisa Ye, and Nina Ridder
Atmos. Meas. Tech., 17, 407–422, https://doi.org/10.5194/amt-17-407-2024,https://doi.org/10.5194/amt-17-407-2024, 2024
Short summary

Cited articles

Carlson, B. E., Lacis, A. A., Colose, C., Marshak, A., Su, W., and Lorentz, S.: Spectral Signature of the Biosphere: NISTAR finds it in our solar system from the Lagrangia L-1 point, Geophys. Res. Lett., 46, https://doi.org/10.1029/2019GL083736, 2019. a, b
Doelling, D. R., Loeb, N. G., Keyes, D. F., Nordeen, M. L., Morstad, D., Wielicki, B. A., Young, D. F., and Sun, M.: Geostationary enhanced temporal interpolation for CERES flux products, J. Atmos. Ocean. Tech., 30, 1072–1090, https://doi.org/10.1175/JTECH-D-12-00136.1, 2013. a, b, c, d
House, F. B., Gruber, A., Hunt, G. E., and Mecherikunnel, A. T.: History of satellite missions and measurements of the Earth radiation budget (1957–1984), Rev. Geophys., 24, 357–377, 1986. a
Kato, S., Loeb, N. G., and Rutledge, K.: Estimate of top-of-atmosphere albedo for a molecular atmosphere over ocean using Clouds and the Earth's Radiant Energy System measurements, J. Geophys. Res., 107, 4396, https://doi.org/10.1029/2001JD001309, 2002. a
Download
Short summary
The Deep Space Climate Observatory (DSCOVR) provides continuous full-disk global broadband irradiance measurements over most of the sunlit side of the Earth. The three active cavity radiometers measure the total radiant energy from the sunlit side of the Earth in shortwave (SW; 0.2–4 µm), total (0.4–100 µm), and near-infrared (NIR; 0.7–4 µm) channels. In this paper, the algorithm used to derive daytime shortwave and longwave fluxes from NISTAR measurements is presented.