Articles | Volume 13, issue 2
https://doi.org/10.5194/amt-13-429-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-429-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Determining the daytime Earth radiative flux from National Institute of Standards and Technology Advanced Radiometer (NISTAR) measurements
Wenying Su
CORRESPONDING AUTHOR
Science Directorate, NASA Langley Research Center, Hampton, Virginia, USA
Patrick Minnis
Science Systems & Applications, Inc., Hampton, Virginia, USA
Lusheng Liang
Science Systems & Applications, Inc., Hampton, Virginia, USA
David P. Duda
Science Systems & Applications, Inc., Hampton, Virginia, USA
Konstantin Khlopenkov
Science Systems & Applications, Inc., Hampton, Virginia, USA
Mandana M. Thieman
Science Systems & Applications, Inc., Hampton, Virginia, USA
Yinan Yu
L-1 Standards and Technology, Inc., New Windsor, Maryland, USA
Allan Smith
L-1 Standards and Technology, Inc., New Windsor, Maryland, USA
Steven Lorentz
L-1 Standards and Technology, Inc., New Windsor, Maryland, USA
Daniel Feldman
Lawrence Berkeley National Laboratory, MS 84R0171, Berkeley, California, USA
Francisco P. J. Valero
Scripps Institute of Oceanography, University of California, San Diego, CA, USA
Related authors
Lusheng Liang, Wenying Su, Sergio Sejas, Zachary Eitzen, and Norman G. Loeb
Atmos. Meas. Tech., 17, 2147–2163, https://doi.org/10.5194/amt-17-2147-2024, https://doi.org/10.5194/amt-17-2147-2024, 2024
Short summary
Short summary
This paper describes an updated process to obtain unfiltered radiation from CERES satellite instruments by incorporating the most recent developments in radiative transfer modeling and ancillary input datasets (e.g., realistic representation of land surface radiation and climatology of surface temperatures and aerosols) during the past 20 years. The resulting global mean of instantaneous SW and LW fluxes is changed by less than 0.5 W m−2 with regional differences as large as 2.0 W m−2.
Yuekui Yang, Kerry Meyer, Galina Wind, Yaping Zhou, Alexander Marshak, Steven Platnick, Qilong Min, Anthony B. Davis, Joanna Joiner, Alexander Vasilkov, David Duda, and Wenying Su
Atmos. Meas. Tech., 12, 2019–2031, https://doi.org/10.5194/amt-12-2019-2019, https://doi.org/10.5194/amt-12-2019-2019, 2019
Short summary
Short summary
The physical basis of the EPIC cloud product algorithms and an initial evaluation of their performance are presented. EPIC cloud products include cloud mask, effective height, and optical depth. Comparison with co-located retrievals from geosynchronous earth orbit (GEO) and low earth orbit (LEO) satellites shows that the algorithms are performing well and are consistent with theoretical expectations. These products are publicly available at the NASA Langley Atmospheric Sciences Data Center.
Wenying Su, Lusheng Liang, Walter F. Miller, and Victor E. Sothcott
Atmos. Meas. Tech., 10, 4001–4011, https://doi.org/10.5194/amt-10-4001-2017, https://doi.org/10.5194/amt-10-4001-2017, 2017
Short summary
Short summary
The footprint size of NPP CERES is larger than that of Aqua CERES, because the altitude of the NPP orbit is higher than that of the Aqua orbit. Additionally, the cloud retrievals from VIIRS and MODIS, the imagers that fly alongside NPP CERES and Aqua CERES, are also different. This paper outlined a simulation study using the MODIS pixel-level data to address the impact of these differences on the NPP CERES fluxes inverted using the Aqua CERES angular distribution models.
W. Su, J. Corbett, Z. Eitzen, and L. Liang
Atmos. Meas. Tech., 8, 3297–3313, https://doi.org/10.5194/amt-8-3297-2015, https://doi.org/10.5194/amt-8-3297-2015, 2015
J. Corbett and W. Su
Atmos. Meas. Tech., 8, 3163–3175, https://doi.org/10.5194/amt-8-3163-2015, https://doi.org/10.5194/amt-8-3163-2015, 2015
Short summary
Short summary
Sastrugi are surface roughness elements on Antarctica that modify the anisotropy of reflected shortwave solar radiation. This can create biases in the shortwave flux inverted from radiances measured by the satellite-borne Clouds and the Earths's Radiant Energy System instruments. Here we provide a detailed description of the methodology we use to account for their effect and examples of the reduction in bias from using our new method.
W. Su, J. Corbett, Z. Eitzen, and L. Liang
Atmos. Meas. Tech., 8, 611–632, https://doi.org/10.5194/amt-8-611-2015, https://doi.org/10.5194/amt-8-611-2015, 2015
Short summary
Short summary
The top-of-atmosphere (TOA) radiative fluxes are critical components to advancing our understanding of the Earth's radiative energy balance. The Clouds and Earth's Radiant Energy System (CERES) instruments provide broadband shortwave and longwave radiance measurements. These radiances are converted to fluxes by using scene-type-dependent angular distribution models (ADMs). This paper describes the next-generation CERES ADMs that are developed for TOA radiative flux inversion.
Sunny Sun-Mack, Patrick Minnis, Yan Chen, Gang Hong, and William L. Smith Jr.
Atmos. Meas. Tech., 17, 3323–3346, https://doi.org/10.5194/amt-17-3323-2024, https://doi.org/10.5194/amt-17-3323-2024, 2024
Short summary
Short summary
Multilayer clouds (MCs) affect the radiation budget differently than single-layer clouds (SCs) and need to be identified in satellite images. A neural network was trained to identify MCs by matching imagery with lidar/radar data. This method correctly identifies ~87 % SCs and MCs with a net accuracy gain of 7.5 % over snow-free surfaces. It is more accurate than most available methods and constitutes a first step in providing a reasonable 3-D characterization of the cloudy atmosphere.
Lusheng Liang, Wenying Su, Sergio Sejas, Zachary Eitzen, and Norman G. Loeb
Atmos. Meas. Tech., 17, 2147–2163, https://doi.org/10.5194/amt-17-2147-2024, https://doi.org/10.5194/amt-17-2147-2024, 2024
Short summary
Short summary
This paper describes an updated process to obtain unfiltered radiation from CERES satellite instruments by incorporating the most recent developments in radiative transfer modeling and ancillary input datasets (e.g., realistic representation of land surface radiation and climatology of surface temperatures and aerosols) during the past 20 years. The resulting global mean of instantaneous SW and LW fluxes is changed by less than 0.5 W m−2 with regional differences as large as 2.0 W m−2.
Clark Jay Weaver, Jay Herman, Alexander Marshak, Steven R. Lorentz, Yinan Yu, Allan W. Smith, and Adam Szabo
EGUsphere, https://doi.org/10.5194/egusphere-2023-638, https://doi.org/10.5194/egusphere-2023-638, 2023
Preprint archived
Short summary
Short summary
We calculate the total amount of solar energy reflected by the earth from the EPIC camera onboard the DSCOVR satellite positioned 1.5 million km from earth. We compare it with another estimate of the reflected energy from the NISTAR instrument, that is also on the DSCOVR satellite. Both energy estimates agree within the uncertainties of each instrument. Finally, we compare with a third estimate of solar reflected energy from the CERES instruments that are on board low-earth orbit satellites.
Jake J. Gristey, K. Sebastian Schmidt, Hong Chen, Daniel R. Feldman, Bruce C. Kindel, Joshua Mauss, Mathew van den Heever, Maria Z. Hakuba, and Peter Pilewskie
Atmos. Meas. Tech., 16, 3609–3630, https://doi.org/10.5194/amt-16-3609-2023, https://doi.org/10.5194/amt-16-3609-2023, 2023
Short summary
Short summary
The concept of a satellite-based camera is demonstrated for sampling the angular distribution of outgoing radiance from Earth needed to generate data products for new radiation budget spectral channels.
Zexuan Xu, Erica R. Siirila-Woodburn, Alan M. Rhoades, and Daniel Feldman
Hydrol. Earth Syst. Sci., 27, 1771–1789, https://doi.org/10.5194/hess-27-1771-2023, https://doi.org/10.5194/hess-27-1771-2023, 2023
Short summary
Short summary
The goal of this study is to understand the uncertainties of different modeling configurations for simulating hydroclimate responses in the mountainous watershed. We run a group of climate models with various configurations and evaluate them against various reference datasets. This paper integrates a climate model and a hydrology model to have a full understanding of the atmospheric-through-bedrock hydrological processes.
David Painemal, Douglas Spangenberg, William L. Smith Jr., Patrick Minnis, Brian Cairns, Richard H. Moore, Ewan Crosbie, Claire Robinson, Kenneth L. Thornhill, Edward L. Winstead, and Luke Ziemba
Atmos. Meas. Tech., 14, 6633–6646, https://doi.org/10.5194/amt-14-6633-2021, https://doi.org/10.5194/amt-14-6633-2021, 2021
Short summary
Short summary
Cloud properties derived from satellite sensors are critical for the global monitoring of climate. This study evaluates satellite-based cloud properties over the North Atlantic using airborne data collected during NAAMES. Satellite observations of droplet size and cloud optical depth tend to compare well with NAAMES data. The analysis indicates that the satellite pixel resolution and the specific viewing geometry need to be taken into account in research applications.
Michael P. Jensen, Virendra P. Ghate, Dié Wang, Diana K. Apoznanski, Mary J. Bartholomew, Scott E. Giangrande, Karen L. Johnson, and Mandana M. Thieman
Atmos. Chem. Phys., 21, 14557–14571, https://doi.org/10.5194/acp-21-14557-2021, https://doi.org/10.5194/acp-21-14557-2021, 2021
Short summary
Short summary
This work compares the large-scale meteorology, cloud, aerosol, precipitation, and thermodynamics of closed- and open-cell cloud organizations using long-term observations from the astern North Atlantic. Open-cell cases are associated with cold-air outbreaks and occur in deeper boundary layers, with stronger winds and higher rain rates compared to closed-cell cases. These results offer important benchmarks for model representation of boundary layer clouds in this climatically important region.
Benjamin R. Scarino, Kristopher Bedka, Rajendra Bhatt, Konstantin Khlopenkov, David R. Doelling, and William L. Smith Jr.
Atmos. Meas. Tech., 13, 5491–5511, https://doi.org/10.5194/amt-13-5491-2020, https://doi.org/10.5194/amt-13-5491-2020, 2020
Short summary
Short summary
This paper highlights a technique for facilitating anvil cloud detection based on visible observations that relies on comparative analysis with expected cloud reflectance for a given set of angles. A 1-year database of anvil-identified pixels, as determined from IR observations, from several geostationary satellites was used to construct a bidirectional reflectance distribution function model to quantify typical anvil reflectance across almost all expected viewing, solar, and azimuth angles.
David Painemal, Fu-Lung Chang, Richard Ferrare, Sharon Burton, Zhujun Li, William L. Smith Jr., Patrick Minnis, Yan Feng, and Marian Clayton
Atmos. Chem. Phys., 20, 7167–7177, https://doi.org/10.5194/acp-20-7167-2020, https://doi.org/10.5194/acp-20-7167-2020, 2020
Short summary
Short summary
Aerosol–cloud interactions (ACIs) are the most uncertain aspect of anthropogenic forcing. Although satellites provide the observational dataset for the global ACI quantification, retrievals are limited to vertically integrated quantities (e.g., aerosol optical depth – AOD), which are typically used as an aerosol proxy. This study demonstrates that matching vertically resolved aerosol from CALIOP at the cloud-layer height with satellite cloud retrievals reduces uncertainties in ACI estimates.
Jeffrey S. Reid, Derek J. Posselt, Kathleen Kaku, Robert A. Holz, Gao Chen, Edwin W. Eloranta, Ralph E. Kuehn, Sarah Woods, Jianglong Zhang, Bruce Anderson, T. Paul Bui, Glenn S. Diskin, Patrick Minnis, Michael J. Newchurch, Simone Tanelli, Charles R. Trepte, K. Lee Thornhill, and Luke D. Ziemba
Atmos. Chem. Phys., 19, 11413–11442, https://doi.org/10.5194/acp-19-11413-2019, https://doi.org/10.5194/acp-19-11413-2019, 2019
Short summary
Short summary
The scientific community often focuses on the vertical transport of pollutants by clouds for those with bases at the planetary boundary layer (such as typical fair-weather cumulus) and the outflow from thunderstorms at their tops. We demonstrate complex aerosol and cloud features formed in mid-level thunderstorm outflow. These layers have strong relationships to mid-level tropospheric clouds, an important but difficult to model or monitor cloud regime for climate studies.
Frederik Kurzrock, Hannah Nguyen, Jerome Sauer, Fabrice Chane Ming, Sylvain Cros, William L. Smith Jr., Patrick Minnis, Rabindra Palikonda, Thomas A. Jones, Caroline Lallemand, Laurent Linguet, and Gilles Lajoie
Geosci. Model Dev., 12, 3939–3954, https://doi.org/10.5194/gmd-12-3939-2019, https://doi.org/10.5194/gmd-12-3939-2019, 2019
Short summary
Short summary
This study assesses the assimilation of cloud water path retrievals in three phases (ice, supercooled, and liquid), derived from Meteosat-8, into a limited-area model using an ensemble Kalman filter (EnKF). The ability of the method to improve cloud analyses in the southwest Indian Ocean and short-term forecasts of global horizontal irradiance on Réunion Island is demonstrated using the Data Assimilation Research Testbed (DART) and the Weather Research and Forecasting (WRF) model.
David P. Duda, Sarah T. Bedka, Patrick Minnis, Douglas Spangenberg, Konstantin Khlopenkov, Thad Chee, and William L. Smith Jr.
Atmos. Chem. Phys., 19, 5313–5330, https://doi.org/10.5194/acp-19-5313-2019, https://doi.org/10.5194/acp-19-5313-2019, 2019
Short summary
Short summary
We use one year (2012) of satellite imagery obtained from two NASA research satellites, Terra and Aqua, to detect linear contrail coverage and to estimate their physical properties over the Northern Hemisphere. The satellite-derived properties are compared with results collected from the same sensors in 2006 to estimate whether the impact of contrail coverage on climate has changed. The study is the first of its kind to measure contrail properties over a near-global scale from satellite imagery.
Yuekui Yang, Kerry Meyer, Galina Wind, Yaping Zhou, Alexander Marshak, Steven Platnick, Qilong Min, Anthony B. Davis, Joanna Joiner, Alexander Vasilkov, David Duda, and Wenying Su
Atmos. Meas. Tech., 12, 2019–2031, https://doi.org/10.5194/amt-12-2019-2019, https://doi.org/10.5194/amt-12-2019-2019, 2019
Short summary
Short summary
The physical basis of the EPIC cloud product algorithms and an initial evaluation of their performance are presented. EPIC cloud products include cloud mask, effective height, and optical depth. Comparison with co-located retrievals from geosynchronous earth orbit (GEO) and low earth orbit (LEO) satellites shows that the algorithms are performing well and are consistent with theoretical expectations. These products are publicly available at the NASA Langley Atmospheric Sciences Data Center.
Young-Hee Ryu, Alma Hodzic, Jerome Barre, Gael Descombes, and Patrick Minnis
Atmos. Chem. Phys., 18, 7509–7525, https://doi.org/10.5194/acp-18-7509-2018, https://doi.org/10.5194/acp-18-7509-2018, 2018
Short summary
Short summary
We investigate whether errors in cloud predictions can significantly impact the ability of air quality models to predict surface ozone over the US during summer 2013. The comparison with satellite data shows that the model predicts ~ 55 % of clouds in the right locations and underpredicts cloud thickness. The error in daytime ozone is estimated to be 1–5 ppb and represents ~ 40 % of the ozone bias. The accurate predictions of clouds particularly benefits ozone predictions in urban areas.
Christopher R. Yost, Kristopher M. Bedka, Patrick Minnis, Louis Nguyen, J. Walter Strapp, Rabindra Palikonda, Konstantin Khlopenkov, Douglas Spangenberg, William L. Smith Jr., Alain Protat, and Julien Delanoe
Atmos. Meas. Tech., 11, 1615–1637, https://doi.org/10.5194/amt-11-1615-2018, https://doi.org/10.5194/amt-11-1615-2018, 2018
Short summary
Short summary
Accretion of cloud ice particles upon engine or instrument probe surfaces can cause engine malfunction or even power loss, and therefore it is important for aircraft to avoid flight through clouds that may have produced large quantities of ice particles. This study introduces a method by which potentially hazardous conditions can be detected using satellite imagery. It was found that potentially hazardous conditions were often located near or beneath very cold clouds and thunderstorm updrafts.
Wenying Su, Lusheng Liang, Walter F. Miller, and Victor E. Sothcott
Atmos. Meas. Tech., 10, 4001–4011, https://doi.org/10.5194/amt-10-4001-2017, https://doi.org/10.5194/amt-10-4001-2017, 2017
Short summary
Short summary
The footprint size of NPP CERES is larger than that of Aqua CERES, because the altitude of the NPP orbit is higher than that of the Aqua orbit. Additionally, the cloud retrievals from VIIRS and MODIS, the imagers that fly alongside NPP CERES and Aqua CERES, are also different. This paper outlined a simulation study using the MODIS pixel-level data to address the impact of these differences on the NPP CERES fluxes inverted using the Aqua CERES angular distribution models.
Benjamin R. Scarino, Patrick Minnis, Thad Chee, Kristopher M. Bedka, Christopher R. Yost, and Rabindra Palikonda
Atmos. Meas. Tech., 10, 351–371, https://doi.org/10.5194/amt-10-351-2017, https://doi.org/10.5194/amt-10-351-2017, 2017
Short summary
Short summary
Global coverage of remotely sensed skin temperature, along with cloud/surface radiation parameters, produced in near-real time and from historical satellite data, is beneficial for weather and climate purposes. One key drawback is the dependence on view angle. Therefore, this article serves to validate a global, satellite-based skin temperature product, while highlighting an empirically adjusted theoretical model of satellite LST angular anisotropy, and the benefits gained from its application.
Ulrich Schumann, Robert Baumann, Darrel Baumgardner, Sarah T. Bedka, David P. Duda, Volker Freudenthaler, Jean-Francois Gayet, Andrew J. Heymsfield, Patrick Minnis, Markus Quante, Ehrhard Raschke, Hans Schlager, Margarita Vázquez-Navarro, Christiane Voigt, and Zhien Wang
Atmos. Chem. Phys., 17, 403–438, https://doi.org/10.5194/acp-17-403-2017, https://doi.org/10.5194/acp-17-403-2017, 2017
Short summary
Short summary
The initially linear clouds often seen behind aircraft are known as contrails. Contrails are prototype cirrus clouds forming under well-known conditions, but with less certain life cycle and climate effects. This paper collects contrail data from a large set of measurements and compares them among each other and with models. The observations show consistent contrail properties over a wide range of aircraft and atmosphere conditions. The dataset is available for further research.
Shuaiqi Tang, Shaocheng Xie, Yunyan Zhang, Minghua Zhang, Courtney Schumacher, Hannah Upton, Michael P. Jensen, Karen L. Johnson, Meng Wang, Maike Ahlgrimm, Zhe Feng, Patrick Minnis, and Mandana Thieman
Atmos. Chem. Phys., 16, 14249–14264, https://doi.org/10.5194/acp-16-14249-2016, https://doi.org/10.5194/acp-16-14249-2016, 2016
Short summary
Short summary
Data observed during the Green Ocean Amazon (GoAmazon2014/5) experiment are used to derive the large-scale fields in this study. The morning propagating convective systems are active during the wet season but rare during the dry season. The afternoon convections are active in both seasons, with heating and moistening in the lower level corresponding to the vertical convergence of eddy fluxes. Case study shows distinguish large-scale environments for three types of convective systems in Amazonia.
W. Su, J. Corbett, Z. Eitzen, and L. Liang
Atmos. Meas. Tech., 8, 3297–3313, https://doi.org/10.5194/amt-8-3297-2015, https://doi.org/10.5194/amt-8-3297-2015, 2015
J. Corbett and W. Su
Atmos. Meas. Tech., 8, 3163–3175, https://doi.org/10.5194/amt-8-3163-2015, https://doi.org/10.5194/amt-8-3163-2015, 2015
Short summary
Short summary
Sastrugi are surface roughness elements on Antarctica that modify the anisotropy of reflected shortwave solar radiation. This can create biases in the shortwave flux inverted from radiances measured by the satellite-borne Clouds and the Earths's Radiant Energy System instruments. Here we provide a detailed description of the methodology we use to account for their effect and examples of the reduction in bias from using our new method.
D. R. Feldman, W. D. Collins, and J. L. Paige
Geosci. Model Dev., 8, 1943–1954, https://doi.org/10.5194/gmd-8-1943-2015, https://doi.org/10.5194/gmd-8-1943-2015, 2015
Short summary
Short summary
This work describes a new type of observational simulator for directly comparing measurements and models that takes advantage of all of the information in spectrally resolved top-of-atmosphere data. It describes how to model how the spectrum of the Earth, both in the shortwave and the long wave, changes in response to climate forcings, and provides a path towards inline observational simulation for the upcoming Coupled Model Intercomparison Project – Phase 6.
J. M. Creamean, A. P. Ault, A. B. White, P. J. Neiman, F. M. Ralph, P. Minnis, and K. A. Prather
Atmos. Chem. Phys., 15, 6535–6548, https://doi.org/10.5194/acp-15-6535-2015, https://doi.org/10.5194/acp-15-6535-2015, 2015
Short summary
Short summary
Aerosols impact how clouds and precipitation form. In the California Sierra Nevada, we found that the formation and resulting amount of rain and snow were impacted by mineral dust, bioparticles such as bacteria, and biomass burning and pollution particles during three winter seasons. Dust and bioparticles from distant sources impacted high-altitude clouds by forming ice, leading to more precipitation, whereas local biomass burning and pollution entered the base of clouds, leading to less rain.
W. Su, J. Corbett, Z. Eitzen, and L. Liang
Atmos. Meas. Tech., 8, 611–632, https://doi.org/10.5194/amt-8-611-2015, https://doi.org/10.5194/amt-8-611-2015, 2015
Short summary
Short summary
The top-of-atmosphere (TOA) radiative fluxes are critical components to advancing our understanding of the Earth's radiative energy balance. The Clouds and Earth's Radiant Energy System (CERES) instruments provide broadband shortwave and longwave radiance measurements. These radiances are converted to fluxes by using scene-type-dependent angular distribution models (ADMs). This paper describes the next-generation CERES ADMs that are developed for TOA radiative flux inversion.
C. Liu, P. Yang, P. Minnis, N. Loeb, S. Kato, A. Heymsfield, and C. Schmitt
Atmos. Chem. Phys., 14, 13719–13737, https://doi.org/10.5194/acp-14-13719-2014, https://doi.org/10.5194/acp-14-13719-2014, 2014
Short summary
Short summary
An ice cloud model is developed by assuming an ice cloud to be an ensemble of columns and aggregates with specific habit fractions at each particle size bin. The microphysical and optical properties of this two-habit model (THM) are compared with both laboratory and in situ measurements. When the THM is applied to ice cloud property retrieval, excellent spectral consistency is achieved. A comparison between observed and theoretical polarized reflectivities illustrates the applicability of THM.
T. F. Eck, B. N. Holben, J. S. Reid, A. Arola, R. A. Ferrare, C. A. Hostetler, S. N. Crumeyrolle, T. A. Berkoff, E. J. Welton, S. Lolli, A. Lyapustin, Y. Wang, J. S. Schafer, D. M. Giles, B. E. Anderson, K. L. Thornhill, P. Minnis, K. E. Pickering, C. P. Loughner, A. Smirnov, and A. Sinyuk
Atmos. Chem. Phys., 14, 11633–11656, https://doi.org/10.5194/acp-14-11633-2014, https://doi.org/10.5194/acp-14-11633-2014, 2014
U. Hamann, A. Walther, B. Baum, R. Bennartz, L. Bugliaro, M. Derrien, P. N. Francis, A. Heidinger, S. Joro, A. Kniffka, H. Le Gléau, M. Lockhoff, H.-J. Lutz, J. F. Meirink, P. Minnis, R. Palikonda, R. Roebeling, A. Thoss, S. Platnick, P. Watts, and G. Wind
Atmos. Meas. Tech., 7, 2839–2867, https://doi.org/10.5194/amt-7-2839-2014, https://doi.org/10.5194/amt-7-2839-2014, 2014
J. Fan, L. R. Leung, P. J. DeMott, J. M. Comstock, B. Singh, D. Rosenfeld, J. M. Tomlinson, A. White, K. A. Prather, P. Minnis, J. K. Ayers, and Q. Min
Atmos. Chem. Phys., 14, 81–101, https://doi.org/10.5194/acp-14-81-2014, https://doi.org/10.5194/acp-14-81-2014, 2014
D. Painemal, P. Minnis, and S. Sun-Mack
Atmos. Chem. Phys., 13, 9997–10003, https://doi.org/10.5194/acp-13-9997-2013, https://doi.org/10.5194/acp-13-9997-2013, 2013
Y. L. Roberts, P. Pilewskie, B. C. Kindel, D. R. Feldman, and W. D. Collins
Atmos. Chem. Phys., 13, 3133–3147, https://doi.org/10.5194/acp-13-3133-2013, https://doi.org/10.5194/acp-13-3133-2013, 2013
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Comparative experimental validation of microwave hyperspectral atmospheric soundings in clear-sky conditions
Global Navigation Satellite System (GNSS) radio occultation climatologies mapped by machine learning and Bayesian interpolation
Determination of low-level temperature profiles from microwave radiometer observations during rain
Aeolus lidar surface return (LSR) at 355 nm as a new Aeolus Level-2A product
Sampling the diurnal and annual cycles of the Earth's energy imbalance with constellations of satellite-borne radiometers
Retrieval of top-of-atmosphere fluxes from combined EarthCARE lidar, imager, and broadband radiometer observations: the BMA-FLX product
Analysis of the measurement uncertainty for a 3D wind lidar
Improving solution availability and temporal consistency of an optimal-estimation physical retrieval for ground-based thermodynamic boundary layer profiling
An improved geolocation methodology for spaceborne radar and lidar systems
Combining low- and high-frequency microwave radiometer measurements from the MOSAiC expedition for enhanced water vapour products
HAMSTER: Hyperspectral Albedo Maps dataset with high Spatial and TEmporal Resolution
Global-scale gravity wave analysis methodology for the ESA Earth Explorer 11 candidate CAIRT
Retrieval of pseudo-BRDF-adjusted surface reflectance at 440 nm from the Geostationary Environmental Monitoring Spectrometer (GEMS)
Benchmarking KDP in Rainfall: A Quantitative Assessment of Estimation Algorithms Using C-Band Weather Radar Observations
Drop size distribution retrieval using dual-polarization radar at C-band and S-band
An information content approach to diagnosing and improving CLIMCAPS retrievals across instruments and satellites
Thermal tides in the middle atmosphere at mid-latitudes measured with a ground-based microwave radiometer
Mitigating Radome Induced Bias in X-Band Weather Radar Polarimetric moments using Adaptive DFT Algorithm
Global sensitivity analysis of simulated remote sensing polarimetric observations over snow
Improving the Gaussianity of radar reflectivity departures between observations and simulations using symmetric rain rates
On the temperature stability requirements of free-running Nd:YAG lasers for atmospheric temperature profiling through the rotational Raman technique
Limitations in wavelet analysis of non-stationary atmospheric gravity wave signatures in temperature profiles
A new non-linearity correction method for the spectrum from the Geostationary Inferometric Infrared Sounder on board Fengyun-4 satellites and its preliminary assessments
Determination of high-precision tropospheric delays using crowdsourced smartphone GNSS data
Unfiltering of the EarthCARE Broadband Radiometer (BBR) observations: the BM-RAD product
Variance estimations in the presence of intermittent interference and their applications to incoherent scatter radar signal processing
A clustering-based method for identifying and tracking squall lines
A multi-instrument fuzzy logic boundary-layer-top detection algorithm
Sensitivity of thermodynamic profiles retrieved from ground-based microwave and infrared observations to additional input data from active remote sensing instruments and numerical weather prediction models
Scale separation for gravity wave analysis from 3D temperature observations in the mesosphere and lower thermosphere (MLT) region
Estimating the refractivity bias of FORMOSAT-7/COSMIC-2 Global Navigation Satellite System (GNSS) radio occultation in the deep troposphere
High Spectral Resolution Lidar – generation 2 (HSRL-2) retrievals of ocean surface wind speed: methodology and evaluation
Dual adaptive differential threshold method for automated detection of faint and strong echo features in radar observations of winter storms
Noise filtering options for conically scanning Doppler lidar measurements with low pulse accumulation
GNSS-RO Residual Ionospheric Error (RIE): A New Method and Assessment
Measuring rainfall using microwave links: the influence of temporal sampling
Drone-based photogrammetry combined with deep learning to estimate hail size distributions and melting of hail on the ground
Mid-Atlantic Nocturnal Low-Level Jet Characteristics: A machine learning analysis of radar wind profiles
The High lAtitude sNowfall Detection and Estimation aLgorithm for ATMS (HANDEL-ATMS): a new algorithm for snowfall retrieval at high latitudes
Next-generation radiance unfiltering process for the Clouds and the Earth's Radiant Energy System instrument
Improved rain event detection in commercial microwave link time series via combination with MSG SEVIRI data
A directional surface reflectance climatology determined from TROPOMI observations
Investigation of gravity waves using measurements from a sodium temperature/wind lidar operated in multi-direction mode
An improved BRDF hotspot model and its use in VLIDORT for studying the impact of atmospheric scattering on hotspot directional signatures in the atmosphere
A multi-decadal time series of upper stratospheric temperature profiles from Odin-OSIRIS limb-scattered spectra
Observations of Tall-Building Wakes Using a Scanning Doppler Lidar
Radar based high resolution ensemble precipitation analyses over the French Alps
Gravity waves above the Northern Atlantic and Europe during streamer events using ADM-Aeolus
CALOTRITON: a convective boundary layer height estimation algorithm from ultra-high-frequency (UHF) wind profiler data
Enhancing consistency of microphysical properties of precipitation across the melting layer in dual-frequency precipitation radar data
Lei Liu, Natalia Bliankinshtein, Yi Huang, John R. Gyakum, Philip M. Gabriel, Shiqi Xu, and Mengistu Wolde
Atmos. Meas. Tech., 18, 471–485, https://doi.org/10.5194/amt-18-471-2025, https://doi.org/10.5194/amt-18-471-2025, 2025
Short summary
Short summary
This study evaluates and compares a new microwave hyperspectrometer with an infrared hyperspectrometer for clear-sky temperature and water vapor retrievals. The analysis reveals that the information content of the infrared hyperspectrometer exceeds that of the microwave hyperspectrometer and provides higher vertical resolution in ground-based zenith measurements. Leveraging the ground–airborne synergy between the two instruments yielded optimal sounding results.
Endrit Shehaj, Stephen Leroy, Kerri Cahoy, Alain Geiger, Laura Crocetti, Gregor Moeller, Benedikt Soja, and Markus Rothacher
Atmos. Meas. Tech., 18, 57–72, https://doi.org/10.5194/amt-18-57-2025, https://doi.org/10.5194/amt-18-57-2025, 2025
Short summary
Short summary
This work investigates whether machine learning (ML) can offer an alternative to existing methods to map radio occultation (RO) products, allowing the extraction of information not visible in direct observations. ML can further improve the results of Bayesian interpolation, a state-of-the-art method to map RO observations. The results display improvements in horizontal and temporal domains, at heights ranging from the planetary boundary layer up to the lower stratosphere, and for all seasons.
Andreas Foth, Moritz Lochmann, Pablo Saavedra Garfias, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 7169–7181, https://doi.org/10.5194/amt-17-7169-2024, https://doi.org/10.5194/amt-17-7169-2024, 2024
Short summary
Short summary
Microwave radiometers are usually not able to provide atmospheric quantities such as temperature profiles during rain. We present a method based on a selection of specific frequencies and elevation angles from microwave radiometer observations. A comparison with a numerical weather prediction model shows the presented method allows low-level temperature profiles during rain to be resolved, with rain rates of up to 2.5 mm h−1,, which was not possible before with state-of-the-art retrievals.
Lev D. Labzovskii, Gerd-Jan van Zadelhoff, David P. Donovan, Jos de Kloe, L. Gijsbert Tilstra, Ad Stoffelen, Damien Josset, and Piet Stammes
Atmos. Meas. Tech., 17, 7183–7208, https://doi.org/10.5194/amt-17-7183-2024, https://doi.org/10.5194/amt-17-7183-2024, 2024
Short summary
Short summary
The Atmospheric Laser Doppler Instrument (ALADIN) on the Aeolus satellite was the first of its kind to measure high-resolution vertical profiles of aerosols and cloud properties from space. We present an algorithm that produces Aeolus lidar surface returns (LSRs), containing useful information for measuring UV reflectivity. Aeolus LSRs matched well with existing UV reflectivity data from other satellites, like GOME-2 and TROPOMI, and demonstrated excellent sensitivity to modeled snow cover.
Thomas Hocking, Thorsten Mauritsen, and Linda Megner
Atmos. Meas. Tech., 17, 7077–7095, https://doi.org/10.5194/amt-17-7077-2024, https://doi.org/10.5194/amt-17-7077-2024, 2024
Short summary
Short summary
The imbalance between the energy the Earth absorbs from the Sun and the energy the Earth emits back into space gives rise to climate change, but measuring the small imbalance is challenging. We simulate satellites in various orbits to investigate how well they sample the imbalance and find that the best option is to combine at least two satellites that see complementary parts of the Earth and cover the daily and annual cycles. This information is useful when planning future satellite missions.
Almudena Velázquez Blázquez, Carlos Domenech, Edward Baudrez, Nicolas Clerbaux, Carla Salas Molar, and Nils Madenach
Atmos. Meas. Tech., 17, 7007–7026, https://doi.org/10.5194/amt-17-7007-2024, https://doi.org/10.5194/amt-17-7007-2024, 2024
Short summary
Short summary
This paper focuses on the BMA-FLX processor, in which thermal and solar top-of-atmosphere radiative fluxes are obtained from longwave and shortwave radiances measured along track by the EarthCARE Broadband Radiometer (BBR). The BBR measurements, at three fixed viewing angles (fore, nadir, aft), are co-registered either at the surface or at a reference level. A combined flux from the three BRR views is obtained. The algorithm has been successfully validated against test scenes.
Wolf Knöller, Gholamhossein Bagheri, Philipp von Olshausen, and Michael Wilczek
Atmos. Meas. Tech., 17, 6913–6931, https://doi.org/10.5194/amt-17-6913-2024, https://doi.org/10.5194/amt-17-6913-2024, 2024
Short summary
Short summary
Three-dimensional (3D) wind velocity measurements are of major importance for the characterization of atmospheric turbulence. This paper presents a detailed study of the measurement uncertainty of a three-beam wind lidar designed for mounting on airborne platforms. Considering the geometrical constraints, the analysis provides quantitative estimates for the measurement uncertainty of all components of the 3D wind vector. As a result, we propose optimized post-processing for error reduction.
Bianca Adler, David D. Turner, Laura Bianco, Irina V. Djalalova, Timothy Myers, and James M. Wilczak
Atmos. Meas. Tech., 17, 6603–6624, https://doi.org/10.5194/amt-17-6603-2024, https://doi.org/10.5194/amt-17-6603-2024, 2024
Short summary
Short summary
Continuous profile observations of temperature and humidity in the lowest part of the atmosphere are essential for the evaluation of numerical weather prediction models and data assimilation for better weather forecasts. Such profiles can be retrieved from passive ground-based remote sensing instruments like infrared spectrometers and microwave radiometers. In this study, we describe three recent modifications to the retrieval framework TROPoe for improved temperature and humidity profiles.
Bernat Puigdomènech Treserras and Pavlos Kollias
Atmos. Meas. Tech., 17, 6301–6314, https://doi.org/10.5194/amt-17-6301-2024, https://doi.org/10.5194/amt-17-6301-2024, 2024
Short summary
Short summary
The paper presents a comprehensive approach to improve the geolocation accuracy of spaceborne radar and lidar systems, crucial for the successful interpretation of data from the upcoming EarthCARE mission. The paper details the technical background of the presented methods and various examples of geolocation analyses, including a short period of CloudSat observations when the star tracker was not operating properly and lifetime statistics from the CloudSat and CALIPSO missions.
Andreas Walbröl, Hannes J. Griesche, Mario Mech, Susanne Crewell, and Kerstin Ebell
Atmos. Meas. Tech., 17, 6223–6245, https://doi.org/10.5194/amt-17-6223-2024, https://doi.org/10.5194/amt-17-6223-2024, 2024
Short summary
Short summary
We developed retrievals of integrated water vapour (IWV), temperature profiles, and humidity profiles from ground-based passive microwave remote sensing measurements gathered during the MOSAiC expedition. We demonstrate and quantify the benefit of combining low- and high-frequency microwave radiometers to improve humidity profiling and IWV estimates by comparing the retrieved quantities to single-instrument retrievals and reference datasets (radiosondes).
Giulia Roccetti, Luca Bugliaro, Felix Gödde, Claudia Emde, Ulrich Hamann, Mihail Manev, Michael Fritz Sterzik, and Cedric Wehrum
Atmos. Meas. Tech., 17, 6025–6046, https://doi.org/10.5194/amt-17-6025-2024, https://doi.org/10.5194/amt-17-6025-2024, 2024
Short summary
Short summary
The amount of sunlight reflected by the Earth’s surface (albedo) is vital for the Earth's radiative system. While satellite instruments offer detailed spatial and temporal albedo maps, they only cover seven wavelength bands. We generate albedo maps that fully span the visible and near-infrared range using a machine learning algorithm. These maps reveal how the reflectivity of different land surfaces varies throughout the year. Our dataset enhances the understanding of the Earth's energy balance.
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024, https://doi.org/10.5194/amt-17-5785-2024, 2024
Short summary
Short summary
We investigate the capabilities of a proposed satellite mission, CAIRT, for observing gravity waves throughout the middle atmosphere and present the necessary methodology for in-depth wave analysis. Our findings suggest that such a satellite mission is highly capable of resolving individual wave parameters and could give new insights into the role of gravity waves in general atmospheric circulation and atmospheric processes.
Suyoung Sim, Sungwon Choi, Daeseong Jung, Jongho Woo, Nayeon Kim, Sungwoo Park, Honghee Kim, Ukkyo Jeong, Hyunkee Hong, and Kyung-Soo Han
Atmos. Meas. Tech., 17, 5601–5618, https://doi.org/10.5194/amt-17-5601-2024, https://doi.org/10.5194/amt-17-5601-2024, 2024
Short summary
Short summary
This study evaluates the use of background surface reflectance (BSR) derived from a semi-empirical bidirectional reflectance distribution function (BRDF) model based on GEMS satellite images. Analysis shows that BSR provides improved accuracy and stability compared to Lambertian-equivalent reflectivity (LER). These results indicate that BSR can significantly enhance climate analysis and air quality monitoring, making it a promising tool for accurate environmental satellite applications.
Miguel Aldana, Seppo Pulkkinen, Annakaisa von Lerber, Matthew R. Kumjian, and Dmitri Moisseev
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-155, https://doi.org/10.5194/amt-2024-155, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Accurate KDP estimates are crucial in radar-based applications. We quantify the uncertainties of several publicly available KDP estimation methods for multiple rainfall intensities. We use C-band weather radar observations and employed a self-consistency KDP, estimated from reflectivity and differential reflectivity, as framework for the examination. Our study provides guidance in the performance, uncertainties and optimisation of the methods, focusing mainly on accuracy and robustness.
Daniel Durbin, Yadong Wang, and Pao-Liang Chang
Atmos. Meas. Tech., 17, 5397–5411, https://doi.org/10.5194/amt-17-5397-2024, https://doi.org/10.5194/amt-17-5397-2024, 2024
Short summary
Short summary
A method for determining drop size distributions (DSDs) for rain using radar measurements from two frequencies at two polarizations is presented. Following some preprocessing and quality control, radar measurements are incorporated into a model that uses swarm intelligence to seek the most suitable DSD to produce the input measurements.
Nadia Smith and Christopher D. Barnet
EGUsphere, https://doi.org/10.5194/egusphere-2024-2448, https://doi.org/10.5194/egusphere-2024-2448, 2024
Short summary
Short summary
CLIMCAPS extends the Aqua AIRS+AMSU record with retrievals from CrIS+ATMS on Suomi National Polar-orbiting Partnership (SNPP) and Joint Polar Satellite System series (JPSS-1 to JPSS-4). With “continuous” we mean a data record that is consistent in its characterization of natural variation despite changes in source instrumentation. Here we investigate how sounding continuity can improved across the full CLIMCAPS record (2002 to present day) spanning multiple instruments and satellites.
Witali Krochin, Axel Murk, and Gunter Stober
Atmos. Meas. Tech., 17, 5015–5028, https://doi.org/10.5194/amt-17-5015-2024, https://doi.org/10.5194/amt-17-5015-2024, 2024
Short summary
Short summary
Atmospheric tides are global-scale oscillations with periods of a fraction of a day. Their observation in the middle atmosphere is challenging and rare, as it requires continuous measurements with a high temporal resolution. In this paper, temperature time series of a ground-based microwave radiometer were analyzed with a spectral filter to derive thermal tide amplitudes and phases in an altitude range of 25–50 km at the geographical locations of Payerne and Bern (Switzerland).
Thiruvengadam Padmanabhan, Guillaume Lesage, Ambinintsoa Volatiana Ramanamahefa, and Joël Van Baelen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-117, https://doi.org/10.5194/amt-2024-117, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This study explores how the joints in a weather radar's protective cover affect its measurements. We developed a new method to correct these errors, improving the accuracy of the radar's data. Our method was tested during an intense cyclone on Reunion Island, demonstrating significant improvements in data accuracy. This research is crucial for enhancing weather predictions and understanding, particularly in challenging terrains.
Matteo Ottaviani, Gabriel Harris Myers, and Nan Chen
Atmos. Meas. Tech., 17, 4737–4756, https://doi.org/10.5194/amt-17-4737-2024, https://doi.org/10.5194/amt-17-4737-2024, 2024
Short summary
Short summary
We analyze simulated polarization observations over snow to investigate the capabilities of remote sensing to determine surface and atmospheric properties in snow-covered regions. Polarization measurements are demonstrated to aid in the determination of snow grain shape, ice crystal roughness, and the vertical distribution of impurities in the snow–atmosphere system, data that are critical for estimating snow albedo for use in climate models.
Yudong Gao, Lidou Huyan, Zheng Wu, and Bojun Liu
Atmos. Meas. Tech., 17, 4675–4686, https://doi.org/10.5194/amt-17-4675-2024, https://doi.org/10.5194/amt-17-4675-2024, 2024
Short summary
Short summary
A symmetric error model built by symmetric rain rates handles the non-Gaussian error structure of the reflectivity error. The accuracy and linearization of rain rates can further improve the Gaussianity.
José Alex Zenteno-Hernández, Adolfo Comerón, Federico Dios, Alejandro Rodríguez-Gómez, Constantino Muñoz-Porcar, Michaël Sicard, Noemi Franco, Andreas Behrendt, and Paolo Di Girolamo
Atmos. Meas. Tech., 17, 4687–4694, https://doi.org/10.5194/amt-17-4687-2024, https://doi.org/10.5194/amt-17-4687-2024, 2024
Short summary
Short summary
We study how the spectral characteristics of a solid-state laser in an atmospheric temperature profiling lidar using the Raman technique impact the temperature retrieval accuracy. We find that the spectral widening, with respect to a seeded laser, has virtually no impact, while crystal-rod temperature variations in the laser must be kept within a range of 1 K for the uncertainty in the atmospheric temperature below 1 K. The study is carried out through spectroscopy simulations.
Robert Reichert, Natalie Kaifler, and Bernd Kaifler
Atmos. Meas. Tech., 17, 4659–4673, https://doi.org/10.5194/amt-17-4659-2024, https://doi.org/10.5194/amt-17-4659-2024, 2024
Short summary
Short summary
Imagine you want to determine how quickly the pitch of a passing ambulance’s siren changes. If the vehicle is traveling slowly, the pitch changes only slightly, but if it is traveling fast, the pitch also changes rapidly. In a similar way, the wind in the middle atmosphere modulates the wavelength of atmospheric gravity waves. We have investigated the question of how strong the maximum wind may be so that the change in wavelength can still be determined with the help of wavelet transformation.
Qiang Guo, Yuning Liu, Xin Wang, and Wen Hui
Atmos. Meas. Tech., 17, 4613–4627, https://doi.org/10.5194/amt-17-4613-2024, https://doi.org/10.5194/amt-17-4613-2024, 2024
Short summary
Short summary
Non-linearity (NL) correction is a critical procedure to guarantee that the calibration accuracy of a spaceborne sensor approaches a reasonable level. Different from the classical method, a new NL correction method for a spaceborne Fourier transform spectrometer is proposed. To overcome the inaccurate linear coefficient from two-point calibration influencing NL correction, an iteration algorithm is established that is suitable for NL correction of both infrared and microwave sensors.
Yuanxin Pan, Grzegorz Kłopotek, Laura Crocetti, Rudi Weinacker, Tobias Sturn, Linda See, Galina Dick, Gregor Möller, Markus Rothacher, Ian McCallum, Vicente Navarro, and Benedikt Soja
Atmos. Meas. Tech., 17, 4303–4316, https://doi.org/10.5194/amt-17-4303-2024, https://doi.org/10.5194/amt-17-4303-2024, 2024
Short summary
Short summary
Crowdsourced smartphone GNSS data were processed with a dedicated data processing pipeline and could produce millimeter-level accurate estimates of zenith total delay (ZTD) – a critical atmospheric variable. This breakthrough not only demonstrates the feasibility of using ubiquitous devices for high-precision atmospheric monitoring but also underscores the potential for a global, cost-effective tropospheric monitoring network.
Almudena Velázquez Blázquez, Edward Baudrez, Nicolas Clerbaux, and Carlos Domenech
Atmos. Meas. Tech., 17, 4245–4256, https://doi.org/10.5194/amt-17-4245-2024, https://doi.org/10.5194/amt-17-4245-2024, 2024
Short summary
Short summary
The Broadband Radiometer measures shortwave and total-wave radiances filtered by the spectral response of the instrument. To obtain unfiltered solar and thermal radiances, the effect of the spectral response needs to be corrected for, done within the BM-RAD processor. Errors in the unfiltering are propagated into fluxes; thus, accurate unfiltering is required for their proper estimation (within BMA-FLX). Unfiltering errors are estimated to be <0.5 % for the shortwave and <0.1 % for the longwave.
Qihou Zhou, Yanlin Li, and Yun Gong
Atmos. Meas. Tech., 17, 4197–4209, https://doi.org/10.5194/amt-17-4197-2024, https://doi.org/10.5194/amt-17-4197-2024, 2024
Short summary
Short summary
We discuss several robust estimators to compute the variance of a normally distributed random variable to deal with interference. Compared to rank-based estimators, the methods based on the geometric mean are more accurate and are computationally more efficient. We apply three robust estimators to incoherent scatter power and velocity processing, along with the traditional sample mean estimator. The best estimator is a hybrid estimator that combines the sample mean and a robust estimator.
Zhao Shi, Yuxiang Wen, and Jianxin He
Atmos. Meas. Tech., 17, 4121–4135, https://doi.org/10.5194/amt-17-4121-2024, https://doi.org/10.5194/amt-17-4121-2024, 2024
Short summary
Short summary
The squall line is a type of convective system. Squall lines are often associated with damaging weather, so identifying and tracking squall lines plays an important role in early meteorological disaster warnings. A clustering-based method is proposed in this article. It can identify the squall lines within the radar scanning range with an accuracy rate of 95.93 %. It can also provide the three-dimensional structure and movement tracking results for each squall line.
Elizabeth N. Smith and Jacob T. Carlin
Atmos. Meas. Tech., 17, 4087–4107, https://doi.org/10.5194/amt-17-4087-2024, https://doi.org/10.5194/amt-17-4087-2024, 2024
Short summary
Short summary
Boundary-layer height observations remain sparse in time and space. In this study we create a new fuzzy logic method for synergistically combining boundary-layer height estimates from a suite of instruments. These estimates generally compare well to those from radiosondes; plus, the approach offers near-continuous estimates through the entire diurnal cycle. Suspected reasons for discrepancies are discussed. The code for the newly presented fuzzy logic method is provided for the community to use.
Laura Bianco, Bianca Adler, Ludovic Bariteau, Irina V. Djalalova, Timothy Myers, Sergio Pezoa, David D. Turner, and James M. Wilczak
Atmos. Meas. Tech., 17, 3933–3948, https://doi.org/10.5194/amt-17-3933-2024, https://doi.org/10.5194/amt-17-3933-2024, 2024
Short summary
Short summary
The Tropospheric Remotely Observed Profiling via Optimal Estimation physical retrieval is used to retrieve temperature and humidity profiles from various combinations of passive and active remote sensing instruments, surface platforms, and numerical weather prediction models. The retrieved profiles are assessed against collocated radiosonde in non-cloudy conditions to assess the sensitivity of the retrievals to different input combinations. Case studies with cloudy conditions are also inspected.
Björn Linder, Peter Preusse, Qiuyu Chen, Ole Martin Christensen, Lukas Krasauskas, Linda Megner, Manfred Ern, and Jörg Gumbel
Atmos. Meas. Tech., 17, 3829–3841, https://doi.org/10.5194/amt-17-3829-2024, https://doi.org/10.5194/amt-17-3829-2024, 2024
Short summary
Short summary
The Swedish research satellite MATS (Mesospheric Airglow/Aerosol Tomography and Spectroscopy) is designed to study atmospheric waves in the mesosphere and lower thermosphere. These waves perturb the temperature field, and thus, by observing three-dimensional temperature fluctuations, their properties can be quantified. This pre-study uses synthetic MATS data generated from a general circulation model to investigate how well wave properties can be retrieved.
Gia Huan Pham, Shu-Chih Yang, Chih-Chien Chang, Shu-Ya Chen, and Cheng Yung Huang
Atmos. Meas. Tech., 17, 3605–3623, https://doi.org/10.5194/amt-17-3605-2024, https://doi.org/10.5194/amt-17-3605-2024, 2024
Short summary
Short summary
This research examines the characteristics of low-level GNSS radio occultation (RO) refractivity bias over ocean and land and its dependency on the RO retrieval uncertainty, atmospheric temperature, and moisture. We propose methods for estimating the region-dependent refractivity bias. Our methods can be applied to calibrate the refractivity bias under different atmospheric conditions and thus improve the applications of the GNSS RO data in the deep troposphere.
Sanja Dmitrovic, Johnathan W. Hair, Brian L. Collister, Ewan Crosbie, Marta A. Fenn, Richard A. Ferrare, David B. Harper, Chris A. Hostetler, Yongxiang Hu, John A. Reagan, Claire E. Robinson, Shane T. Seaman, Taylor J. Shingler, Kenneth L. Thornhill, Holger Vömel, Xubin Zeng, and Armin Sorooshian
Atmos. Meas. Tech., 17, 3515–3532, https://doi.org/10.5194/amt-17-3515-2024, https://doi.org/10.5194/amt-17-3515-2024, 2024
Short summary
Short summary
This study introduces and evaluates a new ocean surface wind speed product from the NASA Langley Research Center (LARC) airborne High-Spectral-Resolution Lidar – Generation 2 (HSRL-2) during the NASA ACTIVATE mission. We show that HSRL-2 surface wind speed data are accurate when compared to ground-truth dropsonde measurements. Therefore, the HSRL-2 instrument is able obtain accurate, high-resolution surface wind speed data in airborne field campaigns.
Laura M. Tomkins, Sandra E. Yuter, and Matthew A. Miller
Atmos. Meas. Tech., 17, 3377–3399, https://doi.org/10.5194/amt-17-3377-2024, https://doi.org/10.5194/amt-17-3377-2024, 2024
Short summary
Short summary
We have created a new method to better identify enhanced features in radar data from winter storms. Unlike the clear-cut features seen in warm-season storms, features in winter storms are often fuzzier with softer edges. Our technique is unique because it uses two adaptive thresholds that change based on the background radar values. It can identify both strong and subtle features in the radar data and takes into account uncertainties in the detection process.
Eileen Päschke and Carola Detring
Atmos. Meas. Tech., 17, 3187–3217, https://doi.org/10.5194/amt-17-3187-2024, https://doi.org/10.5194/amt-17-3187-2024, 2024
Short summary
Short summary
Little noise in radial velocity Doppler lidar measurements can contribute to large errors in retrieved turbulence variables. In order to distinguish between plausible and erroneous measurements we developed new filter techniques that work independently of the choice of a specific threshold for the signal-to-noise ratio. The performance of these techniques is discussed both by means of assessing the filter results and by comparing retrieved turbulence variables versus independent measurements.
Dong L. Wu, Valery A. Yudin, Kyu-Myong Kim, Mohar Chattopadhyay, Lawrence Coy, Ruth S. Lieberman, C. C. Jude H. Salinas, Jae H. Lee, Jie Gong, and Guiping Liu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-51, https://doi.org/10.5194/amt-2024-51, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Radio occultation (RO) observations play an important role in monitoring climate changes and numerical weather forecasts. The residual ionospheric error (RIE) in RO measurements is critical to accurately retrieve atmospheric temperature and refractivity. This study shows that RIF impacts on temperature analysis are mainly confined to the polar stratosphere with amplitude of 1–4 K. These results further highlight the need for RO RIE correction in the modern data assimilation systems.
Luuk D. van der Valk, Miriam Coenders-Gerrits, Rolf W. Hut, Aart Overeem, Bas Walraven, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 2811–2832, https://doi.org/10.5194/amt-17-2811-2024, https://doi.org/10.5194/amt-17-2811-2024, 2024
Short summary
Short summary
Microwave links, often part of mobile phone networks, can be used to measure rainfall along the link path by determining the signal loss caused by rainfall. We use high-frequency data of multiple microwave links to recreate commonly used sampling strategies. For time intervals up to 1 min, the influence of sampling strategies on estimated rainfall intensities is relatively little, while for intervals longer than 5–15 min, the sampling strategy can have significant influences on the estimates.
Martin Lainer, Killian P. Brennan, Alessandro Hering, Jérôme Kopp, Samuel Monhart, Daniel Wolfensberger, and Urs Germann
Atmos. Meas. Tech., 17, 2539–2557, https://doi.org/10.5194/amt-17-2539-2024, https://doi.org/10.5194/amt-17-2539-2024, 2024
Short summary
Short summary
This study uses deep learning (the Mask R-CNN model) on drone-based photogrammetric data of hail on the ground to estimate hail size distributions (HSDs). Traditional hail sensors' limited areas complicate the full HSD retrieval. The HSD of a supercell event on 20 June 2021 is retrieved and contains > 18 000 hailstones. The HSD is compared to automatic hail sensor measurements and those of weather-radar-based MESHS. Investigations into ground hail melting are performed by five drone flights.
Maurice Roots, John T. Sullivan, and Belay Demoz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-37, https://doi.org/10.5194/amt-2024-37, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This paper introduces a machine-learning approach to automatically isolate Nocturnal Low-Level Jets (NLLJs) using observations from Maryland’s Radar Wind Profiler (RWP) network. Initial findings identify 90 south-westerly NLLJs from May to September 2017–2021, showcasing core parameters and jet morphology. The research aims to establish a foundation for understanding the formation mechanisms of Mid-Atlantic NLLJs and their impact on air quality.
Andrea Camplani, Daniele Casella, Paolo Sanò, and Giulia Panegrossi
Atmos. Meas. Tech., 17, 2195–2217, https://doi.org/10.5194/amt-17-2195-2024, https://doi.org/10.5194/amt-17-2195-2024, 2024
Short summary
Short summary
The paper describes a new machine-learning-based snowfall retrieval algorithm for Advanced Technology Microwave Sounder observations developed to retrieve high-latitude snowfall events. The main novelty of the approach is the radiometric characterization of the background surface at the time of the overpass, which is ancillary to the retrieval process. The algorithm shows a unique capability to retrieve snowfall in the environmental conditions typical of high latitudes.
Lusheng Liang, Wenying Su, Sergio Sejas, Zachary Eitzen, and Norman G. Loeb
Atmos. Meas. Tech., 17, 2147–2163, https://doi.org/10.5194/amt-17-2147-2024, https://doi.org/10.5194/amt-17-2147-2024, 2024
Short summary
Short summary
This paper describes an updated process to obtain unfiltered radiation from CERES satellite instruments by incorporating the most recent developments in radiative transfer modeling and ancillary input datasets (e.g., realistic representation of land surface radiation and climatology of surface temperatures and aerosols) during the past 20 years. The resulting global mean of instantaneous SW and LW fluxes is changed by less than 0.5 W m−2 with regional differences as large as 2.0 W m−2.
Maximilian Graf, Andreas Wagner, Julius Polz, Llorenç Lliso, José Alberto Lahuerta, Harald Kunstmann, and Christian Chwala
Atmos. Meas. Tech., 17, 2165–2182, https://doi.org/10.5194/amt-17-2165-2024, https://doi.org/10.5194/amt-17-2165-2024, 2024
Short summary
Short summary
Commercial microwave links (CMLs) can be used for rainfall retrieval. The detection of rainy periods in their attenuation time series is a crucial processing step. We investigate the usage of rainfall data from MSG SEVIRI for this task, compare this approach with existing methods, and introduce a novel combined approach. The results show certain advantages for SEVIRI-based methods, particularly for CMLs where existing methods perform poorly. Our novel combination yields the best performance.
Lieuwe G. Tilstra, Martin de Graaf, Victor J. H. Trees, Pavel Litvinov, Oleg Dubovik, and Piet Stammes
Atmos. Meas. Tech., 17, 2235–2256, https://doi.org/10.5194/amt-17-2235-2024, https://doi.org/10.5194/amt-17-2235-2024, 2024
Short summary
Short summary
This paper introduces a new surface albedo climatology of directionally dependent Lambertian-equivalent reflectivity (DLER) observed by TROPOMI on the Sentinel-5 Precursor satellite. The database contains monthly fields of DLER for 21 wavelength bands at a relatively high spatial resolution of 0.125 by 0.125 degrees. The anisotropy of the surface reflection is handled by parameterisation of the viewing angle dependence.
Bing Cao and Alan Z. Liu
Atmos. Meas. Tech., 17, 2123–2146, https://doi.org/10.5194/amt-17-2123-2024, https://doi.org/10.5194/amt-17-2123-2024, 2024
Short summary
Short summary
A narrow-band sodium lidar measures atmospheric waves but is limited to vertical variations. We propose to utilize phase shifts among observations from different laser beams to derive horizontal wave information. Two gravity wave packets were identified by this method. Both waves were found to interact with thin evanescent layers, partially reflected, but transmitted energy to higher altitudes. The method can detect more medium-frequency gravity waves for similar lidar systems worldwide.
Xiaozhen Xiong, Xu Liu, Robert Spurr, Ming Zhao, Qiguang Yang, Wan Wu, and Liqiao Lei
Atmos. Meas. Tech., 17, 1965–1978, https://doi.org/10.5194/amt-17-1965-2024, https://doi.org/10.5194/amt-17-1965-2024, 2024
Short summary
Short summary
The term “hotspot” refers to the sharp increase in reflectance occurring when incident (solar) and reflected (viewing) directions coincide in the backscatter direction. The accurate simulation of hotspot directional signatures is important for many remote sensing applications, but current models typically require large values of computations to represent the hotspot accurately. This paper provides a numerically improved hotspot BRDF model that converges much faster and is used in VLIDORT.
Daniel Zawada, Kimberlee Dubé, Taran Warnock, Adam Bourassa, Susann Tegtmeier, and Douglas Degenstein
Atmos. Meas. Tech., 17, 1995–2010, https://doi.org/10.5194/amt-17-1995-2024, https://doi.org/10.5194/amt-17-1995-2024, 2024
Short summary
Short summary
There remain large uncertainties in long-term changes of stratospheric–atmospheric temperatures. We have produced a time series of more than 20 years of satellite-based temperature measurements from the OSIRIS instrument in the upper–middle stratosphere. The dataset is publicly available and intended to be used for a better understanding of changes in stratospheric temperatures.
Natalie E. Theeuwes, Janet F. Barlow, Antti Mannisenaho, Denise Hertwig, Ewan O'Connor, and Alan Robins
EGUsphere, https://doi.org/10.5194/egusphere-2024-937, https://doi.org/10.5194/egusphere-2024-937, 2024
Short summary
Short summary
A doppler lidar was placed in highly built-up area in London to measure wakes from tall buildings during a period of one year. We were able to detect wakes and assess their dependence on wind speed, wind direction, and atmospheric stability.
Matthieu Vernay, Matthieu Lafaysse, and Clotilde Augros
EGUsphere, https://doi.org/10.5194/egusphere-2024-668, https://doi.org/10.5194/egusphere-2024-668, 2024
Short summary
Short summary
This paper provides a comprehensive evaluation of the quality of radar-based precipitation estimation in mountainous areas and presents a method to mitigate the main shortcomings identified. It then compares three different ensemble analysis methods that combine radar-based precipitation estimates with forecasts from an ensemble numerical weather prediction model.
Sabine Wüst, Lisa Küchelbacher, Franziska Trinkl, and Michael Bittner
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-18, https://doi.org/10.5194/amt-2024-18, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Information about the energy of gravity waves (GWs) is crucial for improving atmosphere models. Most space-based studies report on the potential energy. We use ADM-Aeolus wind data to derive a lower limit of the kinetic energy density. However, the data quality is a challenge for such analyses, as the accuracy of the data is in the range of typical GW amplitudes. We find a temporal coincidence between enhanced or breaking planetary waves and enhanced gravity wave kinetic energy density.
Alban Philibert, Marie Lothon, Julien Amestoy, Pierre-Yves Meslin, Solène Derrien, Yannick Bezombes, Bernard Campistron, Fabienne Lohou, Antoine Vial, Guylaine Canut-Rocafort, Joachim Reuder, and Jennifer K. Brooke
Atmos. Meas. Tech., 17, 1679–1701, https://doi.org/10.5194/amt-17-1679-2024, https://doi.org/10.5194/amt-17-1679-2024, 2024
Short summary
Short summary
We present a new algorithm, CALOTRITON, for the retrieval of the convective boundary layer depth with ultra-high-frequency radar measurements. CALOTRITON is partly based on the principle that the top of the convective boundary layer is associated with an inversion and a decrease in turbulence. It is evaluated using ceilometer and radiosonde data. It is able to qualify the complexity of the vertical structure of the low troposphere and detect internal or residual layers.
Kamil Mroz, Alessandro Battaglia, and Ann M. Fridlind
Atmos. Meas. Tech., 17, 1577–1597, https://doi.org/10.5194/amt-17-1577-2024, https://doi.org/10.5194/amt-17-1577-2024, 2024
Short summary
Short summary
In this study, we examine the extent to which radar measurements from space can inform us about the properties of clouds and precipitation. Surprisingly, our analysis showed that the amount of ice turning into rain was lower than expected in the current product. To improve on this, we came up with a new way to extract information about the size and concentration of particles from radar data. As long as we use this method in the right conditions, we can even estimate how dense the ice is.
Cited articles
Carlson, B. E., Lacis, A. A., Colose, C., Marshak, A., Su, W., and Lorentz, S.:
Spectral Signature of the Biosphere: NISTAR finds it in our solar system
from the Lagrangia L-1 point, Geophys. Res. Lett., 46,
https://doi.org/10.1029/2019GL083736, 2019. a, b
Doelling, D. R., Loeb, N. G., Keyes, D. F., Nordeen, M. L., Morstad, D.,
Wielicki, B. A., Young, D. F., and Sun, M.: Geostationary enhanced temporal
interpolation for CERES flux products, J. Atmos. Ocean. Tech., 30,
1072–1090, https://doi.org/10.1175/JTECH-D-12-00136.1, 2013. a, b, c, d
Harries, J. E., Russell, J. E., Hanafin, J. A., Brindley, H., Futyan, J., Rufus, J., Kellock, S., Matthews, G., Wrigley, R., Last, A., Mueller, J., Mossavati, R., Ashmall, J., Sawyer, E., Parker, D., Caldwell, M., Allan, P. M., Smith, A., Bates, M. J., Coan, B., Stewart, B. C., Lepine, D. R., Cornwall, L. A., Corney, D. R., Ricketts, M. J., Drummond, D., Smart, D., Cutler, R., Dewitte, S., Clerbaux, N., Gonzales, L., Ipe, A., Bertrand, C., Joukoff, A., Crommelynck, D., Nelms, N., Llewwllyn-Jones, D. T., Butcher, G., Smith, G. L., Szewczyk, Z. P., Mlynczak, P. E., Slingo, A., Allan, R. P., and Ringer, M. A.: The Geostationary Earth radiation budget project,
B. Am. Meteorol. Soc., 86, 945–960, 2005. a
House, F. B., Gruber, A., Hunt, G. E., and Mecherikunnel, A. T.: History of
satellite missions and measurements of the Earth radiation budget
(1957–1984), Rev. Geophys., 24, 357–377, 1986. a
Kato, S., Loeb, N. G., and Rutledge, K.: Estimate of top-of-atmosphere albedo
for a molecular atmosphere over ocean using Clouds and the Earth's Radiant
Energy System measurements, J. Geophys. Res., 107, 4396,
https://doi.org/10.1029/2001JD001309, 2002. a
Kato, S., Rose, F. G., Sun-Mack, S., Miller, W. F., Chen, Y., Rutan, D. A.,
Stephens, G. L., Loeb, N. G., Minnis, P., Wielicki, B. A., Winker, D. M.,
Charlock, T. P., Stackhouse Jr., P. W., Xu, K.-M., and Collins, W. D.: Improvements of
top-of-atmosphere and surface irradiance computation with CALIPSO-, and
MODIS-derived cloud and aerosol properties, J. Geophys. Res., 116,
D19209, https://doi.org/10.1029/2011JD016050, 2011. a
Khlopenkov, K., Duda, D., Thieman, M., Minnis, P., Su, W., and Bedka, K.:
Development of Multi-sensor global cloud and radiance composites for Earth
radiation budget monitoring from DSCOVR, in: Remote sensing of clouds and
the atmosphere XXII, edited by: Comeron, A., Kassianov, E. I., Schafer, K.,
Picard, R. H., and Weber, K., vol. 10424K (2 October 2017), Proc. SPIE 10424,
Warsaw, Poland, https://doi.org/10.1117/12.2278645, 2017. a, b
Loeb, N. G. and Manalo-Smith, N.: Top-of-atmosphere direct radiative effect of
aerosols over global oceans from merged CERES and MODIS observations, J.
Climate, 18, 3506–3526, 2005. a
Loeb, N. G. and Schuster, G. L.: An observational study of the relationship
between cloud, aerosol and meteorology in broken low-level cloud conditions,
J. Geophys. Res., 113, D14214, https://doi.org/10.1029/2007JD009763, 2008. a
Loeb, N. G., Kato, S., Loukachine, K., and Manalo-Smith, N.: Angular
Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the
Clouds and the Earth's Radiant Energy System Instrument on the Terra
Satellite. Part I: Methodology, J. Atmos. Ocean. Tech., 22, 338–351,
2005. a
Loeb, N. G., Wielicki, B. A., Doelling, D. R., Smith, G. L., Keyes, D. F.,
Kato, S., Manalo-Smith, N., and Wong, T.: Towards optimal closure of the
Earth's top-of-atmosphere radiation budget, J. Climate, 22, 748–766,
https://doi.org/10.1175/2008JCLI2637.1, 2009. a
Loeb, N. G., Lyman, J. M., Johnson, G. C., Allan, R. P., Doelling, D. R., Wong,
T., Soden, B. J., and Stephens, G. L.: Observed changes in
top-of-the-atmosphere radiation and upper-ocean heating consistent within
uncertainty, Nat. Geosci., 5, 110–113, https://doi.org/10.1038/NGEO1375, 2012. a
Loeb, N. G., Manalo-Smith, N., Su, W., Shankar, M., and Thomas, S.: CERES
top-of-atmosphere Earth radiation budget climate data record: Accounting
for in-orbit changes in instrument calibration, Remote Sens., 8, 182,
https://doi.org/10.3390/rs8030182, 2016. a
Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J., Liang,
L., Mitrescu, C., Rose, F. G., and Kato, S.: Clouds and the Earth's
Radiant Energy System (CERES) Energy Balanced and Filled (EBAF)
Top-of-Atmosphere (TOA) Edition-4.0 Data Product, J. Climate, 31, 895–918,
https://doi.org/10.1175/JCLI-D-17-0208.1, 2018. a, b, c
McCarthy, J. M., Bitting, H., Evert, T. A., Frink, M. E., Hedman, T. R.,
Skaguchi, P., and folkman, M.: A summary of the performance and long-term
stability of the pre-launch radiometric calibration facility for the Clouds
and the Earth's Radiant Energy System (CERES) instruments, in: 2011 IEEE
International Geoscience and Remote Sensing Symposium, 1009–1012,
https://doi.org/10.1109/IGARSS.2011.6049304, 2011. a
Meyer, K., Yang, Y., and Platnick, S.: Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC), Atmos. Meas. Tech., 9, 1785–1797, https://doi.org/10.5194/amt-9-1785-2016, 2016. a
Minnis, P., Gambheer, A. V., and Doelling, D. R.: Azimuthal anisotropy of
longwave and infrared window radiances from the Clouds and the Earth's
Radiant Energy System on the Tropical Rainfall Measuring Mission on Terra
satellites, J. Geophys. Res., 109, D08202, https://doi.org/10.1029/2003JD004471, 2004. a
Minnis, P., Nguyen, L., Palikonda, R., Heck, P. W., Spangenberg, D. A.,
Doelling, D. R., Ayers, J. K., Smith, W. L. J., Khaiyer, M. M., Trepte,
Q. Z., Avey, L. A., Chang, F.-L., Yost, C. R., Chee, T. L., and Sun-Mack, S.:
Near-real time cloud retrievals from operational and research meteorological
satellites, in: Proc. SPIE 7108, Remote Sens. Clouds Atmos. XIII, Cardiff,
Wales, UK, https://doi.org/10.1117/12.800344, 2008a. a, b
Minnis, P., Trepte, Q. Z., Sun-Mack, S., Chen, Y., Doelling, D. R., Young,
D. F., Spangenberg, D. A., Miller, W. F., Wielicki, B. A., Brown, R. R.,
Gibson, S. C., and Geier, E. B.: Cloud detection in nonpolar regions for
CERES using TRMM VIRS and TERRA and AQUA MODIS data, IEEE T.
Geosci. Remote, 46, 3857–3884, 2008b. a
Minnis, P., Sun-Mack, S. Young, D. F., Heck, P. W., Garber, D. P., Chen, Y.,
Spangenberg, D. A., Arduini, R. F., Trepte, Q. Z., Smith, W. L. J., Ayers,
J. K., Gibson, S. C., Miller, W. F., Chakrapani, V., Takano, Y., Liou, K.,
and Xie, Y.: CERES Edition-2 cloud property retrievals using TRMM VIRS
and TERRA and AQUA MODIS data, Part I: Algorithms, IEEE T.
Geosci. Remote, 49, 4374–4400, https://doi.org/10.1109/TGRS.2011.2144601,
2011. a, b
Minnis, P., Bedka, K., Trepte, Q. Z., Yost, C. R., Bedka, S. T., Scarino, B.,
Khlopenkov, K. V., and Khaiyer, M. M.: A consistent long-term cloud and
clear-sky radiation property dataset from the Advanced Very High Resolution
Radiometer (AVHRR). Climate Algorithm Theoretical Basis Document (C-ATBD),
CDRP-ATBD-0826 Rev 1–NASA,NOAA CDR Program, https://doi.org/10.7289/V5HT2M8T, 2016. a
Pincus, R., Batstone, C. P., Hofmann, R. J. P., Taylor, K. E., and Glecker,
P. J.: Evaluating the present-day simulation of clouds, precipitation, and
radiation in climate models, J. Geophys. Res., 113, D14209,
https://doi.org/10.1029/2007JD009334, 2008. a
Priestley, K. J., Smith, G. L., Thomas, S., Cooper, D., Lee, R. B., Walikainen,
D., Hess, P., Szewczyk, Z. P., and Wilson, R.: Radiometric performance of the
CERES Earth radiation budget climate record sensors on the EOS Aqua and
Terra spacecraft through April 2007, J. Atmos. Ocean. Tech., 28, 3–21,
https://doi.org/10.1175/2010JTECHA1521.1, 2011. a
Quaas, J., Boucher, O., Bellouin, N., and Kinne, S.: Satellite-based estimate
of the direct and indirect aerosol climate forcing, J. Geophys. Res., 113,
D05204, https://doi.org/10.1029/2007JD008962, 2008. a
Satheesh, S. K. and Ramanathan, V.: Large differences in tropcial aerosol
forcing at the top of the atmosphere and Earth's surface, Nature, 405,
60–63, 2000. a
Smith, G. L.: Effects of time response on the point spread function of a
scanning radiometer, Appl. Optics, 33, 7031–7037, 1994. a
Stephens, G. L., Li, J.-L., Wild, M., Clayson, C. A., Loeb, N. G., Kato, S.,
L'Ecuyer, T., Stackhouse., P. W., Lebsock, M., and Andrews, T.: An update on
Earth's energy balance in light of the latest global observations, Nat.
Geosci., 5, 691–696, https://doi.org/10.1038/NGEO1580, 2012. a
Su, W., Bodas-Salcedo, A., Xu, K.-M., and Charlock, T. P.: Comparison of the
tropical radiative flux and cloud radiative effect profiles in a climate
model with Clouds and the Earth's Radiant Energy System (CERES)
data, J. Geophys. Res., 115, D01105, https://doi.org/10.1029/2009JD012490,
2010a. a
Su, W., Loeb, N. G., Xu, K., Schuster, G. L., and Eitzen, Z. A.: An estimate of
aerosol indirect effect from satellite measurements with concurrent
meteorological analysis, J. Geophys. Res., 115, D18219,
https://doi.org/10.1029/2010JD013948, 2010b. a
Su, W., Loeb, N. G., Schuster, G. L., Chin, M., and Rose, F. G.: Global all-sky
shortwave direct radiative forcing of anthropogenic aerosols from combined
satellite observations and GOCART simulations, J. Geophys. Res., 118,
1–15, https://doi.org/10.1029/2012JD018294, 2013. a
Su, W., Corbett, J., Eitzen, Z., and Liang, L.: Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: methodology, Atmos. Meas. Tech., 8, 611–632, https://doi.org/10.5194/amt-8-611-2015, 2015. a, b, c, d
Su, W., Liang, L., Doelling, D. R., Minnis, P., Duda, D. P., Khlopenkov, K. V.,
Thieman, M., Loeb, N. G., Kato, S., Valero, F. P. J., Wang, H., and Rose,
F. G.: Determining the Shortwave Radiative Flux from Earth Polychromatic
Imaging Camera, J. Geophys. Res., 123, https://doi.org/10.1029/2018JD029390, 2018. a, b, c, d, e, f
Trenberth, K. E., Fasullo, J. T., and Kiehl, J.: Earth's global energy budget,
B. Am. Meteorol. Soc., 90, 311–323, https://doi.org/10.1175/2008BAMS2634.1, 2009. a
Wang, H. and Su, W.: Evaluating and understanding top of the atmosphere cloud
radiative effects in Intergovernmental Panel on Climate Change
(IPCC) fifth assessment report (AR5) cloupled model intercomparison
project phase 5 (CMIP5) models using satellite observations, J. Geophys.
Res., 118, 1–17, https://doi.org/10.1029/2012JD018619, 2013. a
Wielicki, B. A., Barkstrom, B. R., Harrison, E. F., Lee, R. B., Smith, G. L.,
and Cooper, J. E.: Clouds and the Earth's Radiant Energy System
(CERES): An Earth Observing System Experiment, B. Am. Meteorol.
Soc., 77, 853–868, 1996. a
Wild, M., Folini, D., Schar, C., Loeb, N. G., Dutton, E. G., and Konig-Langlo,
G.: The global energy balance from a surface perspective, Clim. Dynam., 40,
3107–3134, https://doi.org/10.1007/s00382-012-1569-8, 2013. a
Yang, Y., Meyer, K., Wind, G., Zhou, Y., Marshak, A., Platnick, S., Min, Q., Davis, A. B., Joiner, J., Vasilkov, A., Duda, D., and Su, W.: Cloud products from the Earth Polychromatic Imaging Camera (EPIC): algorithms and initial evaluation, Atmos. Meas. Tech., 12, 2019–2031, https://doi.org/10.5194/amt-12-2019-2019, 2019.
a
Zhang, J., Christopher, S. A., Remer, L. A., and Kaufman, Y. J.: Shortwave
aerosol radiative forcing over cloud-free oceans from Terra: 2. Seasonal
and global distributions, J. Geophys. Res., 110, D10S24,
https://doi.org/10.1029/2004JD005009, 2005. a
Short summary
The Deep Space Climate Observatory (DSCOVR) provides continuous full-disk global broadband irradiance measurements over most of the sunlit side of the Earth. The three active cavity radiometers measure the total radiant energy from the sunlit side of the Earth in shortwave (SW; 0.2–4 µm), total (0.4–100 µm), and near-infrared (NIR; 0.7–4 µm) channels. In this paper, the algorithm used to derive daytime shortwave and longwave fluxes from NISTAR measurements is presented.
The Deep Space Climate Observatory (DSCOVR) provides continuous full-disk global broadband...