Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 13, issue 9
Atmos. Meas. Tech., 13, 5129–5147, 2020
https://doi.org/10.5194/amt-13-5129-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 13, 5129–5147, 2020
https://doi.org/10.5194/amt-13-5129-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 29 Sep 2020

Research article | 29 Sep 2020

In situ cloud ground-based measurements in the Finnish sub-Arctic: intercomparison of three cloud spectrometer setups

Konstantinos-Matthaios Doulgeris et al.

Related authors

Winter atmospheric boundary layer observations over sea ice in the coastal zone of the Bothnian Bay (Baltic Sea)
Marta Wenta, David Brus, Konstantinos Doulgeris, Ville Vakkari, and Agnieszka Herman
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-153,https://doi.org/10.5194/essd-2020-153, 2020
Revised manuscript accepted for ESSD
Short summary
Design and Field Campaign Validation of a Multirotor UAV and Optical Particle Counter
Joseph Girdwood, Helen Smith, Warren Stanley, Zbigniew Ulanowski, Chris Stopford, Charles Chemel, Konstantinos-Matthaios Doulgeris, David Brus, David Campbell, and Robert Mackenzie
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-247,https://doi.org/10.5194/amt-2020-247, 2020
Revised manuscript accepted for AMT
Short summary

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Design and Field Campaign Validation of a Multirotor UAV and Optical Particle Counter
Joseph Girdwood, Helen Smith, Warren Stanley, Zbigniew Ulanowski, Chris Stopford, Charles Chemel, Konstantinos-Matthaios Doulgeris, David Brus, David Campbell, and Robert Mackenzie
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-247,https://doi.org/10.5194/amt-2020-247, 2020
Revised manuscript accepted for AMT
Short summary
Evaluation of cloud properties from reanalyses over East Asia with a radiance-based approach
Bin Yao, Chao Liu, Yan Yin, Zhiquan Liu, Chunxiang Shi, Hironobu Iwabuchi, and Fuzhong Weng
Atmos. Meas. Tech., 13, 1033–1049, https://doi.org/10.5194/amt-13-1033-2020,https://doi.org/10.5194/amt-13-1033-2020, 2020
Short summary
Laboratory and in-flight evaluation of measurement uncertainties from a commercial Cloud Droplet Probe (CDP)
Spencer Faber, Jeffrey R. French, and Robert Jackson
Atmos. Meas. Tech., 11, 3645–3659, https://doi.org/10.5194/amt-11-3645-2018,https://doi.org/10.5194/amt-11-3645-2018, 2018
Short summary
A statistical comparison of cirrus particle size distributions measured using the 2-D stereo probe during the TC4, SPARTICUS, and MACPEX flight campaigns with historical cirrus datasets
M. Christian Schwartz
Atmos. Meas. Tech., 10, 3041–3055, https://doi.org/10.5194/amt-10-3041-2017,https://doi.org/10.5194/amt-10-3041-2017, 2017
Short summary
Comparing the cloud vertical structure derived from several methods based on radiosonde profiles and ground-based remote sensing measurements
M. Costa-Surós, J. Calbó, J. A. González, and C. N. Long
Atmos. Meas. Tech., 7, 2757–2773, https://doi.org/10.5194/amt-7-2757-2014,https://doi.org/10.5194/amt-7-2757-2014, 2014

Cited articles

Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989. 
Anttila, T., Vaattovaara, P., Komppula, M., Hyvärinen, A.-P., Lihavainen, H., Kerminen, V.-M., and Laaksonen, A.: Size-dependent activation of aerosols into cloud droplets at a subarctic background site during the second Pallas Cloud Experiment (2nd PaCE): method development and data evaluation, Atmos. Chem. Phys., 9, 4841–4854, https://doi.org/10.5194/acp-9-4841-2009, 2009. 
Anttila, T., Brus, D., Jaatinen, A., Hyvärinen, A.-P., Kivekäs, N., Romakkaniemi, S., Komppula, M., and Lihavainen, H.: Relationships between particles, cloud condensation nuclei and cloud droplet activation during the third Pallas Cloud Experiment, Atmos. Chem. Phys., 12, 11435–11450, https://doi.org/10.5194/acp-12-11435-2012, 2012. 
Baumgardner, D.: An analysis and comparison of five water droplet measuring instruments, J. Appl. Meteorol., 22, 891–910, https://doi.org/10.1175/1520-0450(1983)022<0891:AAACOF>2.0.CO;2, 1983. 
Baumgardner, D. and Spowart, M.: Evaluation of the Forward Scattering Spectrometer Probe. Part III: Time Response and Laser Imhomogeneity Limitations, J. Atmos. Ocean. Technol., 7, 666–672, https://doi.org/10.1175/1520-0426(1990)007<0666:EOTFSS>2.0.CO;2 1990. 
Publications Copernicus
Download
Short summary
We intercompared three cloud spectrometers ground setups in conditions with frequently occurring supercooled clouds. The measurements were conducted during the Pallas Cloud Experiment (PaCE) in 2013, in the Finnish sub-Arctic region at Sammaltunturi station. The main meteorological parameters influencing the spectrometers' performance was the wind direction. Final recommendations and our view on the main limitations of each spectrometer ground setup are presented.
We intercompared three cloud spectrometers ground setups in conditions with frequently occurring...
Citation