Articles | Volume 13, issue 11
https://doi.org/10.5194/amt-13-6343-2020
https://doi.org/10.5194/amt-13-6343-2020
Research article
 | 
26 Nov 2020
Research article |  | 26 Nov 2020

Assessing the accuracy of low-cost optical particle sensors using a physics-based approach

David H. Hagan and Jesse H. Kroll

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by David Hagan on behalf of the Authors (17 Sep 2020)  Manuscript 
ED: Publish as is (12 Oct 2020) by Hartmut Herrmann
AR by David Hagan on behalf of the Authors (17 Oct 2020)
Download
Short summary
Assessing the error of low-cost particulate matter (PM) sensors has been difficult as each empirical study presents unique limitations. Here, we present a new, open-sourced, physics-based model (opcsim) and use it to understand how the properties of different particle sensors alter their accuracy. We offer a summary of likely sources of error for different sensor types, environmental conditions, and particle classes and offer recommendations for the choice of optimal calibrant.