Articles | Volume 13, issue 11
https://doi.org/10.5194/amt-13-6343-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-6343-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the accuracy of low-cost optical particle sensors using a physics-based approach
David H. Hagan
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA
QuantAQ, Inc., Somerville, MA 02143, USA
Department of Civil and Environmental Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA
Department of Chemical Engineering, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA
Related authors
Ashley S. Bittner, Eben S. Cross, David H. Hagan, Carl Malings, Eric Lipsky, and Andrew P. Grieshop
Atmos. Meas. Tech., 15, 3353–3376, https://doi.org/10.5194/amt-15-3353-2022, https://doi.org/10.5194/amt-15-3353-2022, 2022
Short summary
Short summary
We present findings from a 1-year pilot deployment of low-cost integrated air quality sensor packages in rural Malawi using calibration models developed during collocation with US regulatory monitors. We compare the results with data from remote sensing products and previous field studies. We conclude that while the remote calibration approach can help extract useful data, great care is needed when assessing low-cost sensor data collected in regions without reference instrumentation.
Eric A. Wendt, Casey Quinn, Christian L'Orange, Daniel D. Miller-Lionberg, Bonne Ford, Jeffrey R. Pierce, John Mehaffy, Michael Cheeseman, Shantanu H. Jathar, David H. Hagan, Zoey Rosen, Marilee Long, and John Volckens
Atmos. Meas. Tech., 14, 6023–6038, https://doi.org/10.5194/amt-14-6023-2021, https://doi.org/10.5194/amt-14-6023-2021, 2021
Short summary
Short summary
Fine particulate matter air pollution is one of the leading contributors to adverse health outcomes on the planet. Here, we describe the design and validation of a low-cost, compact, and autonomous instrument capable of measuring particulate matter levels directly, via mass sampling, and optically, via mass and sunlight extinction measurements. We demonstrate the instrument's accuracy relative to reference measurements and its potential for community-level sampling.
Matthew B. Goss and Jesse H. Kroll
Atmos. Chem. Phys., 24, 1299–1314, https://doi.org/10.5194/acp-24-1299-2024, https://doi.org/10.5194/acp-24-1299-2024, 2024
Short summary
Short summary
The chemistry driving dimethyl sulfide (DMS) oxidation and subsequent sulfate particle formation in the atmosphere is poorly constrained. We oxidized two related compounds (dimethyl sulfoxide and dimethyl disulfide) in the laboratory under varied NOx conditions and measured the gas- and particle-phase products. These results demonstrate that both the OH addition and OH abstraction pathways for DMS oxidation contribute to particle formation via mechanisms that do not involve the SO2 intermediate.
Kevin J. Nihill, Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Bin Yuan, Jordan E. Krechmer, Kanako Sekimoto, Jose L. Jimenez, Joost de Gouw, Christopher D. Cappa, Colette L. Heald, Carsten Warneke, and Jesse H. Kroll
Atmos. Chem. Phys., 23, 7887–7899, https://doi.org/10.5194/acp-23-7887-2023, https://doi.org/10.5194/acp-23-7887-2023, 2023
Short summary
Short summary
In this work, we collect emissions from controlled burns of biomass fuels that can be found in the western United States into an environmental chamber in order to simulate their oxidation as they pass through the atmosphere. These findings provide a detailed characterization of the composition of the atmosphere downwind of wildfires. In turn, this will help to explore the effects of these changing emissions on downwind populations and will also directly inform atmospheric and climate models.
Qing Ye, Matthew B. Goss, Jordan E. Krechmer, Francesca Majluf, Alexander Zaytsev, Yaowei Li, Joseph R. Roscioli, Manjula Canagaratna, Frank N. Keutsch, Colette L. Heald, and Jesse H. Kroll
Atmos. Chem. Phys., 22, 16003–16015, https://doi.org/10.5194/acp-22-16003-2022, https://doi.org/10.5194/acp-22-16003-2022, 2022
Short summary
Short summary
The atmospheric oxidation of dimethyl sulfide (DMS) is a major natural source of sulfate particles in the atmosphere. However, its mechanism is poorly constrained. In our work, laboratory measurements and mechanistic modeling were conducted to comprehensively investigate DMS oxidation products and key reaction rates. We find that the peroxy radical (RO2) has a controlling effect on product distribution and aerosol yield, with the isomerization of RO2 leading to the suppression of aerosol yield.
Therese S. Carter, Colette L. Heald, Jesse H. Kroll, Eric C. Apel, Donald Blake, Matthew Coggon, Achim Edtbauer, Georgios Gkatzelis, Rebecca S. Hornbrook, Jeff Peischl, Eva Y. Pfannerstill, Felix Piel, Nina G. Reijrink, Akima Ringsdorf, Carsten Warneke, Jonathan Williams, Armin Wisthaler, and Lu Xu
Atmos. Chem. Phys., 22, 12093–12111, https://doi.org/10.5194/acp-22-12093-2022, https://doi.org/10.5194/acp-22-12093-2022, 2022
Short summary
Short summary
Fires emit many gases which can contribute to smog and air pollution. However, the amount and properties of these chemicals are not well understood, so this work updates and expands their representation in a global atmospheric model, including by adding new chemicals. We confirm that this updated representation generally matches measurements taken in several fire regions. We then show that fires provide ~15 % of atmospheric reactivity globally and more than 75 % over fire source regions.
Ashley S. Bittner, Eben S. Cross, David H. Hagan, Carl Malings, Eric Lipsky, and Andrew P. Grieshop
Atmos. Meas. Tech., 15, 3353–3376, https://doi.org/10.5194/amt-15-3353-2022, https://doi.org/10.5194/amt-15-3353-2022, 2022
Short summary
Short summary
We present findings from a 1-year pilot deployment of low-cost integrated air quality sensor packages in rural Malawi using calibration models developed during collocation with US regulatory monitors. We compare the results with data from remote sensing products and previous field studies. We conclude that while the remote calibration approach can help extract useful data, great care is needed when assessing low-cost sensor data collected in regions without reference instrumentation.
Ka Ming Fung, Colette L. Heald, Jesse H. Kroll, Siyuan Wang, Duseong S. Jo, Andrew Gettelman, Zheng Lu, Xiaohong Liu, Rahul A. Zaveri, Eric C. Apel, Donald R. Blake, Jose-Luis Jimenez, Pedro Campuzano-Jost, Patrick R. Veres, Timothy S. Bates, John E. Shilling, and Maria Zawadowicz
Atmos. Chem. Phys., 22, 1549–1573, https://doi.org/10.5194/acp-22-1549-2022, https://doi.org/10.5194/acp-22-1549-2022, 2022
Short summary
Short summary
Understanding the natural aerosol burden in the preindustrial era is crucial for us to assess how atmospheric aerosols affect the Earth's radiative budgets. Our study explores how a detailed description of dimethyl sulfide (DMS) oxidation (implemented in the Community Atmospheric Model version 6 with chemistry, CAM6-chem) could help us better estimate the present-day and preindustrial concentrations of sulfate and other relevant chemicals, as well as the resulting aerosol radiative impacts.
Eric A. Wendt, Casey Quinn, Christian L'Orange, Daniel D. Miller-Lionberg, Bonne Ford, Jeffrey R. Pierce, John Mehaffy, Michael Cheeseman, Shantanu H. Jathar, David H. Hagan, Zoey Rosen, Marilee Long, and John Volckens
Atmos. Meas. Tech., 14, 6023–6038, https://doi.org/10.5194/amt-14-6023-2021, https://doi.org/10.5194/amt-14-6023-2021, 2021
Short summary
Short summary
Fine particulate matter air pollution is one of the leading contributors to adverse health outcomes on the planet. Here, we describe the design and validation of a low-cost, compact, and autonomous instrument capable of measuring particulate matter levels directly, via mass sampling, and optically, via mass and sunlight extinction measurements. We demonstrate the instrument's accuracy relative to reference measurements and its potential for community-level sampling.
Alexander Zaytsev, Martin Breitenlechner, Anna Novelli, Hendrik Fuchs, Daniel A. Knopf, Jesse H. Kroll, and Frank N. Keutsch
Atmos. Meas. Tech., 14, 2501–2513, https://doi.org/10.5194/amt-14-2501-2021, https://doi.org/10.5194/amt-14-2501-2021, 2021
Short summary
Short summary
We have developed an online method for speciated measurements of organic peroxy radicals and stabilized Criegee intermediates using chemical derivatization combined with chemical ionization mass spectrometry. Chemical derivatization prevents secondary radical reactions and eliminates potential interferences. Comparison between our measurements and results from numeric modeling shows that the method can be used for the quantification of a wide range of atmospheric radicals and intermediates.
Cited articles
Abu-Rahmah, A., Arnott, W. P., and Moosmüller, H.: Integrating
nephelometer with a low truncation angle and an extended calibration scheme,
Meas. Sci. Technol., 17, 1723–1732, https://doi.org/10.1088/0957-0233/17/7/010,
2006.
Ahlquist, N. C. and Charlson, R. J.: A new instrument for evaluating the
visual quality of air, Japca J. Air Waste Ma., 17, 467–469, 1967.
Anderson, T. L., Covert, D. S., Marshall, S. F., Laucks, M. L., Charlson, R.
J., Waggoner, A. P., Ogren, J. A., Caldow, R., Holm, R. L., Quant, F. R.,
Sem, G. J., Wiedensohler, A., Ahlquist, N. A. and Bates, T. S.: Performance
Characteristics of a High-Sensitivity, Three-Wavelength, Total
Scatter/Backscatter Nephelometer, J. Atmos. Ocean. Tech., 13,
967–986, https://doi.org/10.1175/1520-0426(1996)013<0967:PCOAHS>2.0.CO;2, 1996.
Antonini, J. M., Lewis, A. B., Roberts, J. R., and Whaley, D. A.: Pulmonary
effects of welding fumes: Review of worker and experimental animal studies,
Am. J. Ind. Med., 43, 350–360, https://doi.org/10.1002/ajim.10194, 2003.
Apte, J. S., Brauer, M., Cohen, A. J., Ezzati, M., and Pope, C. A.: Ambient
PM2.5 Reduces Global and Regional Life Expectancy, Environ. Sci. Technol.
Lett., 5, 546–551, https://doi.org/10.1021/acs.estlett.8b00360, 2018.
Bhandari, S., Gani, S., Patel, K., Wang, D. S., Soni, P., Arub, Z., Habib, G., Apte, J. S., and Hildebrandt Ruiz, L.: Sources and atmospheric dynamics of organic aerosol in New Delhi, India: insights from receptor modeling, Atmos. Chem. Phys., 20, 735–752, https://doi.org/10.5194/acp-20-735-2020, 2020.
Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light by
small particles, John Wiley & Sons, New York, USA, 1983.
Bond, T. C. and Bergstrom, R. W.: Light Absorption by Carbonaceous
Particles: An Investigative Review, Aerosol Sci. Tech., 40,
27–67, https://doi.org/10.1080/02786820500421521, 2006.
Bond, T. C., Covert, D. S., Kramlich, J. C., Larson, T. V., and Charlson, R.
J.: Primary particle emissions from residential coal burning: Optical
properties and size distributions, J. Geophys. Res.-Atmos., 107, ICC9-1–ICC9-14, https://doi.org/10.1029/2001JD000571, 2002.
Bougiatioti, A., Bezantakos, S., Stavroulas, I., Kalivitis, N., Kokkalis, P., Biskos, G., Mihalopoulos, N., Papayannis, A., and Nenes, A.: Biomass-burning impact on CCN number, hygroscopicity and cloud formation during summertime in the eastern Mediterranean, Atmos. Chem. Phys., 16, 7389–7409, https://doi.org/10.5194/acp-16-7389-2016, 2016.
Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A.,
Apte, J. S., Brauer, M., Cohen, A., Weichenthal, S., Coggins, J., Di, Q.,
Brunekreef, B., Frostad, J., Lim, S. S., Kan, H., Walker, K. D., Thurston,
G. D., Hayes, R. B., Lim, C. C., Turner, M. C., Jerrett, M., Krewski, D.,
Gapstur, S. M., Diver, W. R., Ostro, B., Goldberg, D., Crouse, D. L.,
Martin, R. V., Peters, P., Pinault, L., Tjepkema, M., Donkelaar, A. van,
Villeneuve, P. J., Miller, A. B., Yin, P., Zhou, M., Wang, L., Janssen, N.
A. H., Marra, M., Atkinson, R. W., Tsang, H., Thach, T. Q., Cannon, J. B.,
Allen, R. T., Hart, J. E., Laden, F., Cesaroni, G., Forastiere, F.,
Weinmayr, G., Jaensch, A., Nagel, G., Concin, H., and Spadaro, J. V.: Global
estimates of mortality associated with long-term exposure to outdoor fine
particulate matter, P. Natl. Acad. Sci. USA, 115, 9592–9597, https://doi.org/10.1073/pnas.1803222115, 2018.
Cerni, T. A.: Determination of the Size and Concentration of Cloud Drops
with an FSSP, J. Climate Appl. Meteor., 22, 1346–1355,
https://doi.org/10.1175/1520-0450(1983)022<1346:DOTSAC>2.0.CO;2, 1983.
Chang, M.-C. O., Chow, J. C., Watson, J. G., Hopke, P. K., Yi, S.-M., and
England, G. C.: Measurement of Ultrafine Particle Size Distributions from
Coal-, Oil-, and Gas-Fired Stationary Combustion Sources, Japca J. Air Waste Ma. , 54, 1494–1505, https://doi.org/10.1080/10473289.2004.10471010, 2004.
Chen, J., Li, Z., Lv, M., Wang, Y., Wang, W., Zhang, Y., Wang, H., Yan, X., Sun, Y., and Cribb, M.: Aerosol hygroscopic growth, contributing factors, and impact on haze events in a severely polluted region in northern China, Atmos. Chem. Phys., 19, 1327–1342, https://doi.org/10.5194/acp-19-1327-2019, 2019.
Cheung, H. C., Chou, C. C.-K., Lee, C. S. L., Kuo, W.-C., and Chang, S.-C.: Hygroscopic properties and cloud condensation nuclei activity of atmospheric aerosols under the influences of Asian continental outflow and new particle formation at a coastal site in eastern Asia, Atmos. Chem. Phys., 20, 5911–5922, https://doi.org/10.5194/acp-20-5911-2020, 2020.
Chow, J. C. and Watson, J. G.: Guideline on Speciated Particulate
Monitoring, available at: https://www3.epa.gov/ttn/amtic/files/ambient/pm25/spec/drispec.pdf (last access: 1 May 2020), 1998.
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep,
K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V.,
Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y.,
Martin, R., Morawska, L., Pope, C. A., Shin, H., Straif, K., Shaddick, G.,
Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J. L.,
and Forouzanfar, M. H.: Estimates and 25-year trends of the global burden of
disease attributable to ambient air pollution: an analysis of data from the
Global Burden of Diseases Study 2015, Lancet, 389, 1907–1918,
https://doi.org/10.1016/S0140-6736(17)30505-6, 2017.
Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C., and Pope, F. D.: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring, Atmos. Meas. Tech., 11, 709–720, https://doi.org/10.5194/amt-11-709-2018, 2018.
Dacunto, P. J., Klepeis, N. E., Cheng, K.-C., Acevedo-Bolton, V., Jiang,
R.-T., Repace, J. L., Ott, W. R., and Hildemann, L. M.: Determining PM2.5
calibration curves for a low-cost particle monitor: common indoor
residential aerosols, Environ Sci.-Proc. Imp., 17, 1959–1966,
https://doi.org/10.1039/c5em00365b, 2015.
Di Antonio, A., Popoola, O., Ouyang, B., Saffell, J., Jones, R., Di Antonio,
A., Popoola, O. A. M., Ouyang, B., Saffell, J., and Jones, R. L.: Developing
a Relative Humidity Correction for Low-Cost Sensors Measuring Ambient
Particulate Matter, Sensors, 18, 2790, https://doi.org/10.3390/s18092790, 2018.
Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M.
E., Ferris, B. G., and Speizer, F. E.: An Association between Air Pollution
and Mortality in Six U.S. Cities, New Engl. J. Med., 329,
1753–1759, https://doi.org/10.1056/NEJM199312093292401, 1993.
Gani, S., Bhandari, S., Seraj, S., Wang, D. S., Patel, K., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, L., and Apte, J. S.: Submicron aerosol composition in the world's most polluted megacity: the Delhi Aerosol Supersite study, Atmos. Chem. Phys., 19, 6843–6859, https://doi.org/10.5194/acp-19-6843-2019, 2019.
Gani, S., Bhandari, S., Patel, K., Seraj, S., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, L., and Apte, J. S.: Particle number concentrations and size distribution in a polluted megacity: the Delhi Aerosol Supersite study, Atmos. Chem. Phys., 20, 8533–8549, https://doi.org/10.5194/acp-20-8533-2020, 2020.
Gao, R. S., Perring, A. E., Thornberry, T. D., Rollins, A. W., Schwarz, J.
P., Ciciora, S. J., and Fahey, D. W.: A High-Sensitivity Low-Cost Optical
Particle Counter Design, Aerosol Sci. Tech., 47, 137–145,
https://doi.org/10.1080/02786826.2012.733039, 2013.
Gucker, F. T., O'Konski, C. T., Pickard, H. B., and Pitts, J. N.: A
Photoelectronic Counter for Colloidal Particles, J. Am. Chem. Soc., 69,
2422–2431, https://doi.org/10.1021/ja01202a053, 1947.
Hagan, D. H. and Kroll, J. H.: dhhagan/opcsim, Python, available at: https://github.com/dhhagan/opcsim (last access: 10 March 2020), 2019.
Hagan, D. H. and Kroll, J. H.: opcsim, Zenodo, https://doi.org/10.5281/zenodo.3905043, 2020.
Hart, J., Eisen, E., and Laden, F.: Occupational diesel exhaust exposure as a
risk factor for chronic obstructive pulmonary disease, Curr. Opin. Pulm. Med., 18, 151–154, https://doi.org/10.1097/MCP.0b013e32834f0eaa, 2012.
He, M., Kuerbanjiang, N., and Dhaniyala, S.: Performance characteristics of
the low-cost Plantower PMS optical sensor, Aerosol Sci. Tech.,
54, 232–241, https://doi.org/10.1080/02786826.2019.1696015, 2020.
Henneberger, P. K. and Attfield, M. D.: Respiratory symptoms and spirometry
in experienced coal miners: effects of both distant and recent coal mine
dust exposures, Am. J. Ind. Med., 32, 268–274,
https://doi.org/10.1002/(sici)1097-0274(199709)32:3<268::aid-ajim13>3.0.co;2-t, 1997.
Holstius, D. M., Pillarisetti, A., Smith, K. R., and Seto, E.: Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California, Atmos. Meas. Tech., 7, 1121–1131, https://doi.org/10.5194/amt-7-1121-2014, 2014.
Hussein, T., Puustinen, A., Aalto, P. P., Mäkelä, J. M., Hämeri, K., and Kulmala, M.: Urban aerosol number size distributions, Atmos. Chem. Phys., 4, 391–411, https://doi.org/10.5194/acp-4-391-2004, 2004.
Jaenicke, R. and Hanusch, T.: Simulation of the Optical Particle Counter
Forward Scattering Spectrometer Probe 100 (FSSP-100), Aerosol Sci.
Tech., 18, 309–322, https://doi.org/10.1080/02786829308959607, 1993.
Jurányi, Z., Tritscher, T., Gysel, M., Laborde, M., Gomes, L., Roberts, G., Baltensperger, U., and Weingartner, E.: Hygroscopic mixing state of urban aerosol derived from size-resolved cloud condensation nuclei measurements during the MEGAPOLI campaign in Paris, Atmos. Chem. Phys., 13, 6431–6446, https://doi.org/10.5194/acp-13-6431-2013, 2013.
Koehler, K., Good, N., Wilson, A., Mölter, A., Moore, B. F., Carpenter,
T., Peel, J. L., and Volckens, J.: The Fort Collins commuter study:
Variability in personal exposure to air pollutants by microenvironment,
Indoor Air, 29, 231–241, https://doi.org/10.1111/ina.12533, 2019.
Koehler, K. A., Kreidenweis, S. M., DeMott, P. J., Petters, M. D., Prenni,
A. J., and Carrico, C. M.: Hygroscopicity and cloud droplet activation of
mineral dust aerosol, Geophys. Res. Lett., 36, L08805, https://doi.org/10.1029/2009GL037348, 2009.
Laing, J. R., Jaffe, D. A., and Hee, J. R.: Physical and optical properties of aged biomass burning aerosol from wildfires in Siberia and the Western USA at the Mt. Bachelor Observatory, Atmos. Chem. Phys., 16, 15185–15197, https://doi.org/10.5194/acp-16-15185-2016, 2016.
Levoni, C., Cervino, M., Guzzi, R., and Torricella, F.: Atmospheric aerosol
optical properties: a database of radiative characteristics for different
components and classes, Appl. Opt., AO, 36, 8031–8041,
https://doi.org/10.1364/AO.36.008031, 1997.
Levy Zamora, M., Xiong, F., Gentner, D., Kerkez, B., Kohrman-Glaser, J., and
Koehler, K.: Field and Laboratory Evaluations of the Low-Cost Plantower
Particulate Matter Sensor, Environ. Sci. Technol., 53, 838–849,
https://doi.org/10.1021/acs.est.8b05174, 2019.
Lipsett, M. and Campleman, S.: Occupational exposure to diesel exhaust and
lung cancer: a meta-analysis., Am. J. Public He., 89, 1009–1017,
https://doi.org/10.2105/AJPH.89.7.1009, 1999.
Malings, C., Tanzer, R., Hauryliuk, A., Saha, P. K., Robinson, A. L.,
Presto, A. A., and Subramanian, R.: Fine particle mass monitoring with
low-cost sensors: Corrections and long-term performance evaluation, Aerosol
Sci. Tech., 54, 160–174, https://doi.org/10.1080/02786826.2019.1623863,
2020.
McMeeking, G. R.: Size Distribution Measurements of Wildfire
Smoke-Influenced Aerosol at Yosemite National Park, Master's thesis, Colorado State University, Fort Collins, CO, USA, 2004.
Northcross, A. L., Edwards, R. J., Johnson, M. A., Wang, Z.-M., Zhu, K.,
Allen, T. and Smith, K. R.: A low-cost particle counter as a realtime
fine-particle mass monitor, Environ Sci.-Proc. Imp., 15, 433–439,
https://doi.org/10.1039/c2em30568b, 2013.
Osborne, S. R., Johnson, B. T., Haywood, J. M., Baran, A. J., Harrison, M.
A. J., and McConnell, C. L.: Physical and optical properties of mineral dust
aerosol during the Dust and Biomass-burning Experiment, J.
Geophys. Res.-Atmos., 113, D00C03, https://doi.org/10.1029/2007JD009551, 2008.
Patterson, H. S., Gray, R. W., and Sidgwick, N. V.: The scattering of light
by the individual particles in smokes, P. R. Soc. Lond. A-Conta., 113, 312–322, https://doi.org/10.1098/rspa.1926.0157, 1926.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Petzold, A., Rasp, K., Weinzierl, B., Esselborn, M., Hamburger, T.,
Dörnbrack, A., Kandler, K., Schütz, L., Knippertz, P., Fiebig, M.,
and Virkkula, A.: Saharan dust absorption and refractive index from
aircraft-based observations during SAMUM 2006, Tellus B, 61, 118–130,
https://doi.org/10.1111/j.1600-0889.2008.00383.x, 2009.
Pinnick, R. G., Garvey, D. M., and Duncan, L. D.: Calibration of Knollenberg
FSSP Light-Scattering Counters for Measurement of Cloud Droplets, J. Appl.
Meteorol., 20, 1049–1057, https://doi.org/10.1175/1520-0450(1981)020<1049:COKFLS>2.0.CO;2, 1981.
Raut, J.-C. and Chazette, P.: Retrieval of aerosol complex refractive index from a synergy between lidar, sunphotometer and in situ measurements during LISAIR experiment, Atmos. Chem. Phys., 7, 2797–2815, https://doi.org/10.5194/acp-7-2797-2007, 2007.
Rissler, J., Nordin, E. Z., Eriksson, A. C., Nilsson, P. T., Frosch, M.,
Sporre, M. K., Wierzbicka, A., Svenningsson, B., Löndahl, J., Messing,
M. E., Sjogren, S., Hemmingsen, J. G., Loft, S., Pagels, J. H., and
Swietlicki, E.: Effective Density and Mixing State of Aerosol Particles in a
Near-Traffic Urban Environment, Environ. Sci. Tech.,
48, 6300–6308, https://doi.org/10.1021/es5000353, 2014.
Rocha-Lima, A., Martins, J. V., Remer, L. A., Todd, M., Marsham, J. H., Engelstaedter, S., Ryder, C. L., Cavazos-Guerra, C., Artaxo, P., Colarco, P., and Washington, R.: A detailed characterization of the Saharan dust collected during the Fennec campaign in 2011: in situ ground-based and laboratory measurements, Atmos. Chem. Phys., 18, 1023–1043, https://doi.org/10.5194/acp-18-1023-2018, 2018.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From
Air Pollution to Climate Change, John Wiley & Sons, New York, USA, 2006.
Shepherd, R. H., King, M. D., Marks, A. A., Brough, N., and Ward, A. D.: Determination of the refractive index of insoluble organic extracts from atmospheric aerosol over the visible wavelength range using optical tweezers, Atmos. Chem. Phys., 18, 5235–5252, https://doi.org/10.5194/acp-18-5235-2018, 2018
Sousan, S., Koehler, K., Hallett, L., and Peters, T. M.: Evaluation of the
Alphasense Optical Particle Counter (OPC-N2) and the Grimm Portable Aerosol
Spectrometer (PAS-1.108), Aerosol Sci. Tech., 50, 1352–1365,
https://doi.org/10.1080/02786826.2016.1232859, 2016a.
Sousan, S., Koehler, K., Thomas, G., Park, J. H., Hillman, M., Halterman, A.,
and Peters, T. M.: Inter-comparison of low-cost sensors for measuring the
mass concentration of occupational aerosols, Aerosol Sci. Tech.,
50, 462–473, https://doi.org/10.1080/02786826.2016.1162901, 2016b.
Sumlin, B. J., Heinson, W. R., and Chakrabarty, R. K.: Retrieving the aerosol
complex refractive index using PyMieScatt: A Mie computational package with
visualization capabilities, J. Quant. Spectrosc. Ra., 205, 127–134, https://doi.org/10.1016/j.jqsrt.2017.10.012, 2018.
Tryner, J., Quinn, C., C. Windom, B., and Volckens, J.: Design and evaluation
of a portable PM2.5 monitor featuring a low-cost sensor in line with an
active filter sampler, Environ Sci.-Proc. Imp., 21,
1403–1415, https://doi.org/10.1039/C9EM00234K, 2019a.
Tryner, J., Good, N., Wilson, A., Clark, M. L., Peel, J. L., and Volckens,
J.: Variation in gravimetric correction factors for nephelometer-derived
estimates of personal exposure to PM2.5, Environ. Poll., 250,
251–261, https://doi.org/10.1016/j.envpol.2019.03.121, 2019b.
Ueda, S., Miura, K., Kawata, R., Furutani, H., Uematsu, M., Omori, Y., and
Tanimoto, H.: Number–size distribution of aerosol particles and new
particle formation events in tropical and subtropical Pacific Oceans,
Atmos. Environ., 142, 324–339, https://doi.org/10.1016/j.atmosenv.2016.07.055,
2016.
Walser, A., Sauer, D., Spanu, A., Gasteiger, J., and Weinzierl, B.: On the parametrization of optical particle counter response including instrument-induced broadening of size spectra and a self-consistent evaluation of calibration measurements, Atmos. Meas. Tech., 10, 4341–4361, https://doi.org/10.5194/amt-10-4341-2017, 2017.
Wang, Y., Li, J., Jing, H., Zhang, Q., Jiang, J., and Biswas, P.: Laboratory
Evaluation and Calibration of Three Low-Cost Particle Sensors for
Particulate Matter Measurement, Aerosol Sci. Tech., 49,
1063–1077, https://doi.org/10.1080/02786826.2015.1100710, 2015.
Wang, Z. B., Hu, M., Zeng, L. W., Xue, L., He, L. Y., Huang, X. F., and Zhu,
T.: Measurements of particle number size distributions and optical
properties in urban Shanghai during 2010 World Expo: relation to air mass
history, Tellus B, 66, 22319, https://doi.org/10.3402/tellusb.v66.22319, 2014.
Wehner, B. and Wiedensohler, A.: Long term measurements of submicrometer urban aerosols: statistical analysis for correlations with meteorological conditions and trace gases, Atmos. Chem. Phys., 3, 867–879, https://doi.org/10.5194/acp-3-867-2003, 2003.
Yin, Z., Ye, X., Jiang, S., Tao, Y., Shi, Y., Yang, X., and Chen, J.:
Size-resolved effective density of urban aerosols in Shanghai, Atmos.
Environ., 100, 133–140, https://doi.org/10.1016/j.atmosenv.2014.10.055, 2015.
Zheng, T., Bergin, M. H., Johnson, K. K., Tripathi, S. N., Shirodkar, S., Landis, M. S., Sutaria, R., and Carlson, D. E.: Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments, Atmos. Meas. Tech., 11, 4823–4846, https://doi.org/10.5194/amt-11-4823-2018, 2018.
Zieger, P., Väisänen, O., Corbin, J. C., Partridge, D. G.,
Bastelberger, S., Mousavi-Fard, M., Rosati, B., Gysel, M., Krieger, U. K.,
Leck, C., Nenes, A., Riipinen, I., Virtanen, A., and Salter, M. E.: Revising
the hygroscopicity of inorganic sea salt particles, Nat. Commun.,
8, 15883, https://doi.org/10.1038/ncomms15883, 2017.
Short summary
Assessing the error of low-cost particulate matter (PM) sensors has been difficult as each empirical study presents unique limitations. Here, we present a new, open-sourced, physics-based model (opcsim) and use it to understand how the properties of different particle sensors alter their accuracy. We offer a summary of likely sources of error for different sensor types, environmental conditions, and particle classes and offer recommendations for the choice of optimal calibrant.
Assessing the error of low-cost particulate matter (PM) sensors has been difficult as each...