Articles | Volume 13, issue 11
https://doi.org/10.5194/amt-13-6357-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-6357-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Three decades of tropospheric ozone lidar development at Garmisch-Partenkirchen, Germany
Thomas Trickl
CORRESPONDING AUTHOR
Karlsruher Institut für Technologie, Institut für Meteorologien und Klimaforschung (IMK-IFU), Kreuzeckbahnstr. 19, 82467
Garmisch-Partenkirchen, Germany
Helmuth Giehl
Karlsruher Institut für Technologie, Institut für Meteorologien und Klimaforschung (IMK-IFU), Kreuzeckbahnstr. 19, 82467
Garmisch-Partenkirchen, Germany
Frank Neidl
Karlsruher Institut für Technologie, Institut für Meteorologien und Klimaforschung (IMK-IFU), Kreuzeckbahnstr. 19, 82467
Garmisch-Partenkirchen, Germany
Matthias Perfahl
Karlsruher Institut für Technologie, Institut für Meteorologien und Klimaforschung (IMK-IFU), Kreuzeckbahnstr. 19, 82467
Garmisch-Partenkirchen, Germany
Hannes Vogelmann
Karlsruher Institut für Technologie, Institut für Meteorologien und Klimaforschung (IMK-IFU), Kreuzeckbahnstr. 19, 82467
Garmisch-Partenkirchen, Germany
Related authors
Thomas Trickl, Hannes Vogelmann, Michael D. Fromm, Horst Jäger, Matthias Perfahl, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 24, 1997–2021, https://doi.org/10.5194/acp-24-1997-2024, https://doi.org/10.5194/acp-24-1997-2024, 2024
Short summary
Short summary
In 2023, the lidar team at Garmisch-Partenkirchen (Germany) celebrated its 50th year of aerosol profiling. The highlight of these activities has been the lidar measurements of stratospheric aerosol carried out since 1976. The observations since 2017 are characterized by severe smoke from several big fires in North America and Siberia and three volcanic eruptions. The sudden increase in the frequency of such strong fire events is difficult to understand.
Thomas Trickl, Martin Adelwart, Dina Khordakova, Ludwig Ries, Christian Rolf, Michael Sprenger, Wolfgang Steinbrecht, and Hannes Vogelmann
Atmos. Meas. Tech., 16, 5145–5165, https://doi.org/10.5194/amt-16-5145-2023, https://doi.org/10.5194/amt-16-5145-2023, 2023
Short summary
Short summary
Tropospheric ozone have been measured for more than a century. Highly quantitative ozone measurements have been made at monitoring stations. However, deficits have been reported for vertical sounding systems. Here, we report a thorough intercomparison effort between a differential-absorption lidar system and two types of balloon-borne ozone sondes, also using ozone sensors at nearby mountain sites as references. The sondes agree very well with the lidar after offset corrections.
Thomas Trickl, Cédric Couret, Ludwig Ries, and Hannes Vogelmann
Atmos. Chem. Phys., 23, 8403–8427, https://doi.org/10.5194/acp-23-8403-2023, https://doi.org/10.5194/acp-23-8403-2023, 2023
Short summary
Short summary
Downward atmospheric transport from the stratosphere (STT) is the most important natural source of tropospheric ozone. We analyse the stratospheric influence on the long-term series of ozone and carbon monoxide measured on the Zugspitze in the Bavarian Alps (2962 m a.s.l.). Since the 1970s, there has been a pronounced ozone rise that has been ascribed to an increase in STT. We determine the stratospheric influence from the observational data alone (humidity and 7Be).
Claudio Belotti, Flavio Barbara, Marco Barucci, Giovanni Bianchini, Francesco D'Amato, Samuele Del Bianco, Gianluca Di Natale, Marco Gai, Alessio Montori, Filippo Pratesi, Markus Rettinger, Christian Rolf, Ralf Sussmann, Thomas Trickl, Silvia Viciani, Hannes Vogelmann, and Luca Palchetti
Atmos. Meas. Tech., 16, 2511–2529, https://doi.org/10.5194/amt-16-2511-2023, https://doi.org/10.5194/amt-16-2511-2023, 2023
Short summary
Short summary
FIRMOS (Far-Infrared Radiation Mobile Observation System) is a spectroradiometer measuring in the far-infrared, developed to support the preparation of the FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) satellite mission. In this paper, we describe the instrument, its data products, and the results of the comparison with a suite of observations made from a high-altitude site during a field campaign, in winter 2018–2019.
Lisa Klanner, Katharina Höveler, Dina Khordakova, Matthias Perfahl, Christian Rolf, Thomas Trickl, and Hannes Vogelmann
Atmos. Meas. Tech., 14, 531–555, https://doi.org/10.5194/amt-14-531-2021, https://doi.org/10.5194/amt-14-531-2021, 2021
Short summary
Short summary
The importance of water vapour as the most influential greenhouse gas and for air composition calls for detailed investigations. The details of the highly inhomogeneous distribution of water vapour can be determined with lidar, the very low concentrations at high altitudes imposing a major challenge. An existing water-vapour lidar in the Bavarian Alps was recently complemented by a powerful Raman lidar that provides water vapour up to 20 km and temperature up to 90 km within just 1 h.
Thomas Trickl, Hannes Vogelmann, Ludwig Ries, and Michael Sprenger
Atmos. Chem. Phys., 20, 243–266, https://doi.org/10.5194/acp-20-243-2020, https://doi.org/10.5194/acp-20-243-2020, 2020
Short summary
Short summary
Ozone transfer from the stratosphere to the troposphere seems to to have grown over the past decade, parallel to global warming. Lidar measurements, carried out in Garmisch-Partenkirchen, Germany, between 2007 and 2016 show a considerable stratospheric influence in the free troposphere over these sites, with observations of stratospheric layers in the troposphere on 84 % of the measurement days. This high fraction is almost reached also in North America, but frequently not throughout the year.
Holger Baars, Albert Ansmann, Kevin Ohneiser, Moritz Haarig, Ronny Engelmann, Dietrich Althausen, Ingrid Hanssen, Michael Gausa, Aleksander Pietruczuk, Artur Szkop, Iwona S. Stachlewska, Dongxiang Wang, Jens Reichardt, Annett Skupin, Ina Mattis, Thomas Trickl, Hannes Vogelmann, Francisco Navas-Guzmán, Alexander Haefele, Karen Acheson, Albert A. Ruth, Boyan Tatarov, Detlef Müller, Qiaoyun Hu, Thierry Podvin, Philippe Goloub, Igor Veselovskii, Christophe Pietras, Martial Haeffelin, Patrick Fréville, Michaël Sicard, Adolfo Comerón, Alfonso Javier Fernández García, Francisco Molero Menéndez, Carmen Córdoba-Jabonero, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Daniele Bortoli, Maria João Costa, Davide Dionisi, Gian Luigi Liberti, Xuan Wang, Alessia Sannino, Nikolaos Papagiannopoulos, Antonella Boselli, Lucia Mona, Giuseppe D'Amico, Salvatore Romano, Maria Rita Perrone, Livio Belegante, Doina Nicolae, Ivan Grigorov, Anna Gialitaki, Vassilis Amiridis, Ourania Soupiona, Alexandros Papayannis, Rodanthi-Elisaveth Mamouri, Argyro Nisantzi, Birgit Heese, Julian Hofer, Yoav Y. Schechner, Ulla Wandinger, and Gelsomina Pappalardo
Atmos. Chem. Phys., 19, 15183–15198, https://doi.org/10.5194/acp-19-15183-2019, https://doi.org/10.5194/acp-19-15183-2019, 2019
Ye Yuan, Ludwig Ries, Hannes Petermeier, Thomas Trickl, Michael Leuchner, Cédric Couret, Ralf Sohmer, Frank Meinhardt, and Annette Menzel
Atmos. Chem. Phys., 19, 999–1012, https://doi.org/10.5194/acp-19-999-2019, https://doi.org/10.5194/acp-19-999-2019, 2019
Short summary
Short summary
In this study, we presented a time series analysis of a 36-year composite CO2 measurement record at Mount Zugspitze in Germany. Compared with other GAW observatories, Zugspitze proves to be a highly suitable site for monitoring the background levels of air components using proper data selection procedures. Detailed analyses of long-term trends and seasonality, as well as a thorough study of combined weekly periodicity and diurnal cycles, were conducted.
Ye Yuan, Ludwig Ries, Hannes Petermeier, Martin Steinbacher, Angel J. Gómez-Peláez, Markus C. Leuenberger, Marcus Schumacher, Thomas Trickl, Cedric Couret, Frank Meinhardt, and Annette Menzel
Atmos. Meas. Tech., 11, 1501–1514, https://doi.org/10.5194/amt-11-1501-2018, https://doi.org/10.5194/amt-11-1501-2018, 2018
Short summary
Short summary
This paper presents a novel statistical method, ADVS, for baseline selection of representative CO2 data at elevated mountain measurement stations. It provides insights on how data processing techniques are critical for measurements and data analyses. Compared with other statistical methods, our method appears to be a good option as a generalized approach with improved comparability, which is important for research on measurement site characteristics and comparisons between stations.
Thomas Trickl, Hannes Vogelmann, Ludwig Ries, Hans-Eckhart Scheel, and Michael Sprenger
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1192, https://doi.org/10.5194/acp-2017-1192, 2018
Revised manuscript not accepted
Petra Hausmann, Ralf Sussmann, Thomas Trickl, and Matthias Schneider
Atmos. Chem. Phys., 17, 7635–7651, https://doi.org/10.5194/acp-17-7635-2017, https://doi.org/10.5194/acp-17-7635-2017, 2017
Short summary
Short summary
We present FTIR soundings (2005–15) of water vapor (H2O) and its isotope ratio (δD) at Zugspitze. Significant {H2O, δD} signatures are found for intercontinental transport events and stratospheric air intrusions to central Europe using backward trajectories and validation by lidar and in situ data. Our results show that {H2O, δD} observations at Zugspitze can serve as indicators for moisture pathways and long-range-transport events, potentially impacting central European climate and air quality.
Thierry Leblanc, Robert J. Sica, Joanna A. E. van Gijsel, Sophie Godin-Beekmann, Alexander Haefele, Thomas Trickl, Guillaume Payen, and Frank Gabarrot
Atmos. Meas. Tech., 9, 4029–4049, https://doi.org/10.5194/amt-9-4029-2016, https://doi.org/10.5194/amt-9-4029-2016, 2016
Short summary
Short summary
This article prescribes two standardized formulations for the reporting of vertical resolution of lidar ozone and temperature profiles across an entire atmospheric observation network. Thanks to these standardized definitions, profiles from various instruments and techniques can be compared without ambiguity when interpreting their ability to resolve vertically fine geophysical structures.
Thierry Leblanc, Robert J. Sica, Joanna A. E. van Gijsel, Sophie Godin-Beekmann, Alexander Haefele, Thomas Trickl, Guillaume Payen, and Gianluigi Liberti
Atmos. Meas. Tech., 9, 4051–4078, https://doi.org/10.5194/amt-9-4051-2016, https://doi.org/10.5194/amt-9-4051-2016, 2016
Short summary
Short summary
This article proposes a standardized approach for the treatment of uncertainty in the ozone differential absorption lidar data processing algorithms. The recommendations are designed to be used homogeneously across large atmospheric observation networks such as NDACC, and allow a clear understanding of the uncertainty budget of multiple lidar datasets for a large spectrum of ozone-related science applications (e.g., climatology, long-term trends, air quality).
Thomas Trickl, Hannes Vogelmann, Andreas Fix, Andreas Schäfler, Martin Wirth, Bertrand Calpini, Gilbert Levrat, Gonzague Romanens, Arnoud Apituley, Keith M. Wilson, Robert Begbie, Jens Reichardt, Holger Vömel, and Michael Sprenger
Atmos. Chem. Phys., 16, 8791–8815, https://doi.org/10.5194/acp-16-8791-2016, https://doi.org/10.5194/acp-16-8791-2016, 2016
Short summary
Short summary
A rather homogeneous deep stratospheric intrusion event was mapped by vertical sounding over central Europe and by model calculations along the transport path. The very low minimum H2O mixing ratios demonstrate almost negligible mixing with tropospheric air during the downward transport. The vertical distributions of O3 and aerosol were transferred from the source region to Europe without major change. A rather shallow outflow from the stratosphere was found.
Ulla Wandinger, Volker Freudenthaler, Holger Baars, Aldo Amodeo, Ronny Engelmann, Ina Mattis, Silke Groß, Gelsomina Pappalardo, Aldo Giunta, Giuseppe D'Amico, Anatoli Chaikovsky, Fiodor Osipenko, Alexander Slesar, Doina Nicolae, Livio Belegante, Camelia Talianu, Ilya Serikov, Holger Linné, Friedhelm Jansen, Arnoud Apituley, Keith M. Wilson, Martin de Graaf, Thomas Trickl, Helmut Giehl, Mariana Adam, Adolfo Comerón, Constantino Muñoz-Porcar, Francesc Rocadenbosch, Michaël Sicard, Sergio Tomás, Diego Lange, Dhiraj Kumar, Manuel Pujadas, Francisco Molero, Alfonso J. Fernández, Lucas Alados-Arboledas, Juan Antonio Bravo-Aranda, Francisco Navas-Guzmán, Juan Luis Guerrero-Rascado, María José Granados-Muñoz, Jana Preißler, Frank Wagner, Michael Gausa, Ivan Grigorov, Dimitar Stoyanov, Marco Iarlori, Vincenco Rizi, Nicola Spinelli, Antonella Boselli, Xuan Wang, Teresa Lo Feudo, Maria Rita Perrone, Ferdinando De Tomasi, and Pasquale Burlizzi
Atmos. Meas. Tech., 9, 1001–1023, https://doi.org/10.5194/amt-9-1001-2016, https://doi.org/10.5194/amt-9-1001-2016, 2016
Short summary
Short summary
We introduce the quality-assurance efforts of the European Aerosol Research Lidar Network (EARLINET) at instrument level. Within several campaigns, 21 EARLINET systems from 18 EARLINET stations were intercompared. A comprehensive strategy for campaign setup and data evaluation was established. The intercomparisons have reinforced our confidence in the EARLINET data quality and allowed us to draw conclusions on necessary system improvements and to identify major challenges for our future work.
M. Iarlori, F. Madonna, V. Rizi, T. Trickl, and A. Amodeo
Atmos. Meas. Tech., 8, 5157–5176, https://doi.org/10.5194/amt-8-5157-2015, https://doi.org/10.5194/amt-8-5157-2015, 2015
Short summary
Short summary
Smoothing filters applied on lidar profiles reduce the resolution to a value indicated as the effective resolution (ERes). Several approaches to ERes estimation are investigated. The key result is an operative ERes calculation by ready-to-use equations. The presented procedures to assess the ERes are of general validity. The ERes equations are deemed to be used in automatic tools like the Single Calculus Chain. Several filters already employed in the lidar community are also critically analyzed.
T. Trickl, H. Vogelmann, H. Flentje, and L. Ries
Atmos. Chem. Phys., 15, 9631–9649, https://doi.org/10.5194/acp-15-9631-2015, https://doi.org/10.5194/acp-15-9631-2015, 2015
H. Vogelmann, R. Sussmann, T. Trickl, and A. Reichert
Atmos. Chem. Phys., 15, 3135–3148, https://doi.org/10.5194/acp-15-3135-2015, https://doi.org/10.5194/acp-15-3135-2015, 2015
Short summary
Short summary
We quantitatively analyzed the spatiotemporal variability (minutes to hours, 500m to 10km) of water vapor (IWV and profiles) in the free troposphere recorded at the Zugspitze (Germany) with lidar and solar FTIR. We found that long-range transport of heterogeneous air masses may cause relative short-term variations of the water-vapor density which exceed the impact of local convection by 1 order of magnitude. Our results could be useful for issues of model parametrization and co-location.
T. Trickl, H. Vogelmann, H. Giehl, H.-E. Scheel, M. Sprenger, and A. Stohl
Atmos. Chem. Phys., 14, 9941–9961, https://doi.org/10.5194/acp-14-9941-2014, https://doi.org/10.5194/acp-14-9941-2014, 2014
T. Trickl, H. Giehl, H. Jäger, and H. Vogelmann
Atmos. Chem. Phys., 13, 5205–5225, https://doi.org/10.5194/acp-13-5205-2013, https://doi.org/10.5194/acp-13-5205-2013, 2013
G. Pappalardo, L. Mona, G. D'Amico, U. Wandinger, M. Adam, A. Amodeo, A. Ansmann, A. Apituley, L. Alados Arboledas, D. Balis, A. Boselli, J. A. Bravo-Aranda, A. Chaikovsky, A. Comeron, J. Cuesta, F. De Tomasi, V. Freudenthaler, M. Gausa, E. Giannakaki, H. Giehl, A. Giunta, I. Grigorov, S. Groß, M. Haeffelin, A. Hiebsch, M. Iarlori, D. Lange, H. Linné, F. Madonna, I. Mattis, R.-E. Mamouri, M. A. P. McAuliffe, V. Mitev, F. Molero, F. Navas-Guzman, D. Nicolae, A. Papayannis, M. R. Perrone, C. Pietras, A. Pietruczuk, G. Pisani, J. Preißler, M. Pujadas, V. Rizi, A. A. Ruth, J. Schmidt, F. Schnell, P. Seifert, I. Serikov, M. Sicard, V. Simeonov, N. Spinelli, K. Stebel, M. Tesche, T. Trickl, X. Wang, F. Wagner, M. Wiegner, and K. M. Wilson
Atmos. Chem. Phys., 13, 4429–4450, https://doi.org/10.5194/acp-13-4429-2013, https://doi.org/10.5194/acp-13-4429-2013, 2013
Johannes Speidel, Hannes Vogelmann, Andreas Behrendt, Diego Lange, Matthias Mauder, Jens Reichardt, and Kevin Wolz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-168, https://doi.org/10.5194/amt-2024-168, 2024
Preprint under review for AMT
Short summary
Short summary
Humidity transport from the Earth's surface into the atmosphere is relevant for many processes. However, knowledge on the actual distribution of humidity concentrations is sparse – mainly due to technological limitations. With the herein presented lidar, it is possible to measure humidity concentrations and their vertical fluxes up to altitudes of >3 km with high spatio-temporal resolution, opening new possibilities for detailed process understanding and, ultimately, better model representation.
Thomas Trickl, Hannes Vogelmann, Michael D. Fromm, Horst Jäger, Matthias Perfahl, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 24, 1997–2021, https://doi.org/10.5194/acp-24-1997-2024, https://doi.org/10.5194/acp-24-1997-2024, 2024
Short summary
Short summary
In 2023, the lidar team at Garmisch-Partenkirchen (Germany) celebrated its 50th year of aerosol profiling. The highlight of these activities has been the lidar measurements of stratospheric aerosol carried out since 1976. The observations since 2017 are characterized by severe smoke from several big fires in North America and Siberia and three volcanic eruptions. The sudden increase in the frequency of such strong fire events is difficult to understand.
Thomas Trickl, Martin Adelwart, Dina Khordakova, Ludwig Ries, Christian Rolf, Michael Sprenger, Wolfgang Steinbrecht, and Hannes Vogelmann
Atmos. Meas. Tech., 16, 5145–5165, https://doi.org/10.5194/amt-16-5145-2023, https://doi.org/10.5194/amt-16-5145-2023, 2023
Short summary
Short summary
Tropospheric ozone have been measured for more than a century. Highly quantitative ozone measurements have been made at monitoring stations. However, deficits have been reported for vertical sounding systems. Here, we report a thorough intercomparison effort between a differential-absorption lidar system and two types of balloon-borne ozone sondes, also using ozone sensors at nearby mountain sites as references. The sondes agree very well with the lidar after offset corrections.
Thomas Trickl, Cédric Couret, Ludwig Ries, and Hannes Vogelmann
Atmos. Chem. Phys., 23, 8403–8427, https://doi.org/10.5194/acp-23-8403-2023, https://doi.org/10.5194/acp-23-8403-2023, 2023
Short summary
Short summary
Downward atmospheric transport from the stratosphere (STT) is the most important natural source of tropospheric ozone. We analyse the stratospheric influence on the long-term series of ozone and carbon monoxide measured on the Zugspitze in the Bavarian Alps (2962 m a.s.l.). Since the 1970s, there has been a pronounced ozone rise that has been ascribed to an increase in STT. We determine the stratospheric influence from the observational data alone (humidity and 7Be).
Claudio Belotti, Flavio Barbara, Marco Barucci, Giovanni Bianchini, Francesco D'Amato, Samuele Del Bianco, Gianluca Di Natale, Marco Gai, Alessio Montori, Filippo Pratesi, Markus Rettinger, Christian Rolf, Ralf Sussmann, Thomas Trickl, Silvia Viciani, Hannes Vogelmann, and Luca Palchetti
Atmos. Meas. Tech., 16, 2511–2529, https://doi.org/10.5194/amt-16-2511-2023, https://doi.org/10.5194/amt-16-2511-2023, 2023
Short summary
Short summary
FIRMOS (Far-Infrared Radiation Mobile Observation System) is a spectroradiometer measuring in the far-infrared, developed to support the preparation of the FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) satellite mission. In this paper, we describe the instrument, its data products, and the results of the comparison with a suite of observations made from a high-altitude site during a field campaign, in winter 2018–2019.
Peng Yuan, Roeland Van Malderen, Xungang Yin, Hannes Vogelmann, Weiping Jiang, Joseph Awange, Bernhard Heck, and Hansjörg Kutterer
Atmos. Chem. Phys., 23, 3517–3541, https://doi.org/10.5194/acp-23-3517-2023, https://doi.org/10.5194/acp-23-3517-2023, 2023
Short summary
Short summary
Water vapour plays an important role in various weather and climate processes. However, due to its large spatiotemporal variability, its high-accuracy quantification remains a challenge. In this study, 20+ years of GPS-derived integrated water vapour (IWV) retrievals in Europe were obtained. They were then used to characterise the temporal features of Europe's IWV and assess six atmospheric reanalyses. Results show that ERA5 outperforms the other reanalyses at most temporal scales.
Lisa Klanner, Katharina Höveler, Dina Khordakova, Matthias Perfahl, Christian Rolf, Thomas Trickl, and Hannes Vogelmann
Atmos. Meas. Tech., 14, 531–555, https://doi.org/10.5194/amt-14-531-2021, https://doi.org/10.5194/amt-14-531-2021, 2021
Short summary
Short summary
The importance of water vapour as the most influential greenhouse gas and for air composition calls for detailed investigations. The details of the highly inhomogeneous distribution of water vapour can be determined with lidar, the very low concentrations at high altitudes imposing a major challenge. An existing water-vapour lidar in the Bavarian Alps was recently complemented by a powerful Raman lidar that provides water vapour up to 20 km and temperature up to 90 km within just 1 h.
Thomas Trickl, Hannes Vogelmann, Ludwig Ries, and Michael Sprenger
Atmos. Chem. Phys., 20, 243–266, https://doi.org/10.5194/acp-20-243-2020, https://doi.org/10.5194/acp-20-243-2020, 2020
Short summary
Short summary
Ozone transfer from the stratosphere to the troposphere seems to to have grown over the past decade, parallel to global warming. Lidar measurements, carried out in Garmisch-Partenkirchen, Germany, between 2007 and 2016 show a considerable stratospheric influence in the free troposphere over these sites, with observations of stratospheric layers in the troposphere on 84 % of the measurement days. This high fraction is almost reached also in North America, but frequently not throughout the year.
Holger Baars, Albert Ansmann, Kevin Ohneiser, Moritz Haarig, Ronny Engelmann, Dietrich Althausen, Ingrid Hanssen, Michael Gausa, Aleksander Pietruczuk, Artur Szkop, Iwona S. Stachlewska, Dongxiang Wang, Jens Reichardt, Annett Skupin, Ina Mattis, Thomas Trickl, Hannes Vogelmann, Francisco Navas-Guzmán, Alexander Haefele, Karen Acheson, Albert A. Ruth, Boyan Tatarov, Detlef Müller, Qiaoyun Hu, Thierry Podvin, Philippe Goloub, Igor Veselovskii, Christophe Pietras, Martial Haeffelin, Patrick Fréville, Michaël Sicard, Adolfo Comerón, Alfonso Javier Fernández García, Francisco Molero Menéndez, Carmen Córdoba-Jabonero, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Daniele Bortoli, Maria João Costa, Davide Dionisi, Gian Luigi Liberti, Xuan Wang, Alessia Sannino, Nikolaos Papagiannopoulos, Antonella Boselli, Lucia Mona, Giuseppe D'Amico, Salvatore Romano, Maria Rita Perrone, Livio Belegante, Doina Nicolae, Ivan Grigorov, Anna Gialitaki, Vassilis Amiridis, Ourania Soupiona, Alexandros Papayannis, Rodanthi-Elisaveth Mamouri, Argyro Nisantzi, Birgit Heese, Julian Hofer, Yoav Y. Schechner, Ulla Wandinger, and Gelsomina Pappalardo
Atmos. Chem. Phys., 19, 15183–15198, https://doi.org/10.5194/acp-19-15183-2019, https://doi.org/10.5194/acp-19-15183-2019, 2019
Ye Yuan, Ludwig Ries, Hannes Petermeier, Thomas Trickl, Michael Leuchner, Cédric Couret, Ralf Sohmer, Frank Meinhardt, and Annette Menzel
Atmos. Chem. Phys., 19, 999–1012, https://doi.org/10.5194/acp-19-999-2019, https://doi.org/10.5194/acp-19-999-2019, 2019
Short summary
Short summary
In this study, we presented a time series analysis of a 36-year composite CO2 measurement record at Mount Zugspitze in Germany. Compared with other GAW observatories, Zugspitze proves to be a highly suitable site for monitoring the background levels of air components using proper data selection procedures. Detailed analyses of long-term trends and seasonality, as well as a thorough study of combined weekly periodicity and diurnal cycles, were conducted.
Ye Yuan, Ludwig Ries, Hannes Petermeier, Martin Steinbacher, Angel J. Gómez-Peláez, Markus C. Leuenberger, Marcus Schumacher, Thomas Trickl, Cedric Couret, Frank Meinhardt, and Annette Menzel
Atmos. Meas. Tech., 11, 1501–1514, https://doi.org/10.5194/amt-11-1501-2018, https://doi.org/10.5194/amt-11-1501-2018, 2018
Short summary
Short summary
This paper presents a novel statistical method, ADVS, for baseline selection of representative CO2 data at elevated mountain measurement stations. It provides insights on how data processing techniques are critical for measurements and data analyses. Compared with other statistical methods, our method appears to be a good option as a generalized approach with improved comparability, which is important for research on measurement site characteristics and comparisons between stations.
Thomas Trickl, Hannes Vogelmann, Ludwig Ries, Hans-Eckhart Scheel, and Michael Sprenger
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1192, https://doi.org/10.5194/acp-2017-1192, 2018
Revised manuscript not accepted
Petra Hausmann, Ralf Sussmann, Thomas Trickl, and Matthias Schneider
Atmos. Chem. Phys., 17, 7635–7651, https://doi.org/10.5194/acp-17-7635-2017, https://doi.org/10.5194/acp-17-7635-2017, 2017
Short summary
Short summary
We present FTIR soundings (2005–15) of water vapor (H2O) and its isotope ratio (δD) at Zugspitze. Significant {H2O, δD} signatures are found for intercontinental transport events and stratospheric air intrusions to central Europe using backward trajectories and validation by lidar and in situ data. Our results show that {H2O, δD} observations at Zugspitze can serve as indicators for moisture pathways and long-range-transport events, potentially impacting central European climate and air quality.
Thierry Leblanc, Robert J. Sica, Joanna A. E. van Gijsel, Sophie Godin-Beekmann, Alexander Haefele, Thomas Trickl, Guillaume Payen, and Frank Gabarrot
Atmos. Meas. Tech., 9, 4029–4049, https://doi.org/10.5194/amt-9-4029-2016, https://doi.org/10.5194/amt-9-4029-2016, 2016
Short summary
Short summary
This article prescribes two standardized formulations for the reporting of vertical resolution of lidar ozone and temperature profiles across an entire atmospheric observation network. Thanks to these standardized definitions, profiles from various instruments and techniques can be compared without ambiguity when interpreting their ability to resolve vertically fine geophysical structures.
Thierry Leblanc, Robert J. Sica, Joanna A. E. van Gijsel, Sophie Godin-Beekmann, Alexander Haefele, Thomas Trickl, Guillaume Payen, and Gianluigi Liberti
Atmos. Meas. Tech., 9, 4051–4078, https://doi.org/10.5194/amt-9-4051-2016, https://doi.org/10.5194/amt-9-4051-2016, 2016
Short summary
Short summary
This article proposes a standardized approach for the treatment of uncertainty in the ozone differential absorption lidar data processing algorithms. The recommendations are designed to be used homogeneously across large atmospheric observation networks such as NDACC, and allow a clear understanding of the uncertainty budget of multiple lidar datasets for a large spectrum of ozone-related science applications (e.g., climatology, long-term trends, air quality).
Thomas Trickl, Hannes Vogelmann, Andreas Fix, Andreas Schäfler, Martin Wirth, Bertrand Calpini, Gilbert Levrat, Gonzague Romanens, Arnoud Apituley, Keith M. Wilson, Robert Begbie, Jens Reichardt, Holger Vömel, and Michael Sprenger
Atmos. Chem. Phys., 16, 8791–8815, https://doi.org/10.5194/acp-16-8791-2016, https://doi.org/10.5194/acp-16-8791-2016, 2016
Short summary
Short summary
A rather homogeneous deep stratospheric intrusion event was mapped by vertical sounding over central Europe and by model calculations along the transport path. The very low minimum H2O mixing ratios demonstrate almost negligible mixing with tropospheric air during the downward transport. The vertical distributions of O3 and aerosol were transferred from the source region to Europe without major change. A rather shallow outflow from the stratosphere was found.
Ulla Wandinger, Volker Freudenthaler, Holger Baars, Aldo Amodeo, Ronny Engelmann, Ina Mattis, Silke Groß, Gelsomina Pappalardo, Aldo Giunta, Giuseppe D'Amico, Anatoli Chaikovsky, Fiodor Osipenko, Alexander Slesar, Doina Nicolae, Livio Belegante, Camelia Talianu, Ilya Serikov, Holger Linné, Friedhelm Jansen, Arnoud Apituley, Keith M. Wilson, Martin de Graaf, Thomas Trickl, Helmut Giehl, Mariana Adam, Adolfo Comerón, Constantino Muñoz-Porcar, Francesc Rocadenbosch, Michaël Sicard, Sergio Tomás, Diego Lange, Dhiraj Kumar, Manuel Pujadas, Francisco Molero, Alfonso J. Fernández, Lucas Alados-Arboledas, Juan Antonio Bravo-Aranda, Francisco Navas-Guzmán, Juan Luis Guerrero-Rascado, María José Granados-Muñoz, Jana Preißler, Frank Wagner, Michael Gausa, Ivan Grigorov, Dimitar Stoyanov, Marco Iarlori, Vincenco Rizi, Nicola Spinelli, Antonella Boselli, Xuan Wang, Teresa Lo Feudo, Maria Rita Perrone, Ferdinando De Tomasi, and Pasquale Burlizzi
Atmos. Meas. Tech., 9, 1001–1023, https://doi.org/10.5194/amt-9-1001-2016, https://doi.org/10.5194/amt-9-1001-2016, 2016
Short summary
Short summary
We introduce the quality-assurance efforts of the European Aerosol Research Lidar Network (EARLINET) at instrument level. Within several campaigns, 21 EARLINET systems from 18 EARLINET stations were intercompared. A comprehensive strategy for campaign setup and data evaluation was established. The intercomparisons have reinforced our confidence in the EARLINET data quality and allowed us to draw conclusions on necessary system improvements and to identify major challenges for our future work.
M. Iarlori, F. Madonna, V. Rizi, T. Trickl, and A. Amodeo
Atmos. Meas. Tech., 8, 5157–5176, https://doi.org/10.5194/amt-8-5157-2015, https://doi.org/10.5194/amt-8-5157-2015, 2015
Short summary
Short summary
Smoothing filters applied on lidar profiles reduce the resolution to a value indicated as the effective resolution (ERes). Several approaches to ERes estimation are investigated. The key result is an operative ERes calculation by ready-to-use equations. The presented procedures to assess the ERes are of general validity. The ERes equations are deemed to be used in automatic tools like the Single Calculus Chain. Several filters already employed in the lidar community are also critically analyzed.
T. Trickl, H. Vogelmann, H. Flentje, and L. Ries
Atmos. Chem. Phys., 15, 9631–9649, https://doi.org/10.5194/acp-15-9631-2015, https://doi.org/10.5194/acp-15-9631-2015, 2015
H. Vogelmann, R. Sussmann, T. Trickl, and A. Reichert
Atmos. Chem. Phys., 15, 3135–3148, https://doi.org/10.5194/acp-15-3135-2015, https://doi.org/10.5194/acp-15-3135-2015, 2015
Short summary
Short summary
We quantitatively analyzed the spatiotemporal variability (minutes to hours, 500m to 10km) of water vapor (IWV and profiles) in the free troposphere recorded at the Zugspitze (Germany) with lidar and solar FTIR. We found that long-range transport of heterogeneous air masses may cause relative short-term variations of the water-vapor density which exceed the impact of local convection by 1 order of magnitude. Our results could be useful for issues of model parametrization and co-location.
T. Trickl, H. Vogelmann, H. Giehl, H.-E. Scheel, M. Sprenger, and A. Stohl
Atmos. Chem. Phys., 14, 9941–9961, https://doi.org/10.5194/acp-14-9941-2014, https://doi.org/10.5194/acp-14-9941-2014, 2014
T. Trickl, H. Giehl, H. Jäger, and H. Vogelmann
Atmos. Chem. Phys., 13, 5205–5225, https://doi.org/10.5194/acp-13-5205-2013, https://doi.org/10.5194/acp-13-5205-2013, 2013
G. Pappalardo, L. Mona, G. D'Amico, U. Wandinger, M. Adam, A. Amodeo, A. Ansmann, A. Apituley, L. Alados Arboledas, D. Balis, A. Boselli, J. A. Bravo-Aranda, A. Chaikovsky, A. Comeron, J. Cuesta, F. De Tomasi, V. Freudenthaler, M. Gausa, E. Giannakaki, H. Giehl, A. Giunta, I. Grigorov, S. Groß, M. Haeffelin, A. Hiebsch, M. Iarlori, D. Lange, H. Linné, F. Madonna, I. Mattis, R.-E. Mamouri, M. A. P. McAuliffe, V. Mitev, F. Molero, F. Navas-Guzman, D. Nicolae, A. Papayannis, M. R. Perrone, C. Pietras, A. Pietruczuk, G. Pisani, J. Preißler, M. Pujadas, V. Rizi, A. A. Ruth, J. Schmidt, F. Schnell, P. Seifert, I. Serikov, M. Sicard, V. Simeonov, N. Spinelli, K. Stebel, M. Tesche, T. Trickl, X. Wang, F. Wagner, M. Wiegner, and K. M. Wilson
Atmos. Chem. Phys., 13, 4429–4450, https://doi.org/10.5194/acp-13-4429-2013, https://doi.org/10.5194/acp-13-4429-2013, 2013
Related subject area
Subject: Gases | Technique: Remote Sensing | Topic: Instruments and Platforms
A novel, balloon-borne UV–Vis spectrometer for direct sun measurements of stratospheric bromine
Design Study for an Airborne N2O Lidar
Stability requirements of satellites to detect long-term stratospheric ozone trends based upon Monte Carlo simulations
Martian column CO2 and pressure measurement with spaceborne differential absorption lidar at 1.96 µm
The Pyrenean Platform for Observation of the Atmosphere: Site, long-term dataset and science
Offshore methane detection and quantification from space using sun glint measurements with the GHGSat constellation
Novel use of an adapted ultraviolet double monochromator for measurements of global and direct irradiance, ozone, and aerosol
Geostationary Environment Monitoring Spectrometer (GEMS) polarization characteristics and correction algorithm
An open-path observatory for greenhouse gases based on near-infrared Fourier transform spectroscopy
Ground-to-UAV, laser-based emissions quantification of methane and acetylene at long standoff distances
A portable reflected-sunlight spectrometer for CO2 and CH4
Open-path measurement of stable water isotopologues using mid-infrared dual-comb spectroscopy
Total column ozone retrieval from a novel array spectroradiometer
Applying machine learning to improve the near-real-time products of the Aura Microwave Limb Sounder
The site-specific primary calibration conditions for the Brewer spectrophotometer
Precipitable water vapor retrievals using a ground-based infrared sky camera in subtropical South America
Theoretical assessment of the ability of the MicroCarb satellite city-scan observing mode to estimate urban CO2 emissions
UAV-based sampling systems to analyse greenhouse gases and volatile organic compounds encompassing compound-specific stable isotope analysis
Performance and polarization response of slit homogenizers for the GeoCarb mission
Exploring bias in the OCO-3 snapshot area mapping mode via geometry, surface, and aerosol effects
Updated spectral radiance calibration on TIR bands for TANSO-FTS-2 onboard GOSAT-2
Evaluation of the High Altitude Lidar Observatory (HALO) methane retrievals during the summer 2019 ACT-America campaign
Polarization performance simulation for the GeoXO atmospheric composition instrument: NO2 retrieval impacts
The impact of aerosol fluorescence on long-term water vapor monitoring by Raman lidar and evaluation of a potential correction method
Integrated airborne investigation of the air composition over the Russian sector of the Arctic
Measurement of the vertical atmospheric density profile from the X-ray Earth occultation of the Crab Nebula with Insight-HXMT
Quantification and mitigation of the instrument effects and uncertainties of the airborne limb imaging FTIR GLORIA
Improved calibration procedures for the EM27/SUN spectrometers of the COllaborative Carbon Column Observing Network (COCCON)
Ground-based Ku-band microwave observations of ozone in the polar middle atmosphere
Traceable total ozone column retrievals from direct solar spectral irradiance measurements in the ultraviolet
Far-ultraviolet airglow remote sensing measurements on Feng Yun 3-D meteorological satellite
The NO2 camera based on gas correlation spectroscopy
Total water vapour columns derived from Sentinel 5P using the AMC-DOAS method
Mobile and high-spectral-resolution Fabry–Pérot interferometer spectrographs for atmospheric remote sensing
Diurnal variability of stratospheric column NO2 measured using direct solar and lunar spectra over Table Mountain, California (34.38° N)
The “ideal” spectrograph for atmospheric observations
Differential absorption lidar for water vapor isotopologues in the 1.98 µm spectral region: sensitivity analysis with respect to regional atmospheric variability
Atmospheric carbon dioxide measurement from aircraft and comparison with OCO-2 and CarbonTracker model data
Long-term column-averaged greenhouse gas observations using a COCCON spectrometer at the high-surface-albedo site in Gobabeb, Namibia
A fully automated Dobson sun spectrophotometer for total column ozone and Umkehr measurements
Slit homogenizer introduced performance gain analysis based on the Sentinel-5/UVNS spectrometer
On the capability of the future ALTIUS ultraviolet–visible–near-infrared limb sounder to constrain modelled stratospheric ozone
MicroPulse DIAL (MPD) – a diode-laser-based lidar architecture for quantitative atmospheric profiling
A multi-purpose, multi-rotor drone system for long-range and high-altitude volcanic gas plume measurements
Tropospheric NO2 measurements using a three-wavelength optical parametric oscillator differential absorption lidar
Spectral calibration of the MethaneAIR instrument
The design and development of a tuneable and portable radiation source for in situ spectrometer characterisation
Performance of an open-path near-infrared measurement system for measurements of CO2 and CH4 during extended field trials
Determination of the emission rates of CO2 point sources with airborne lidar
The GHGSat-D imaging spectrometer
Karolin Voss, Philip Holzbeck, Klaus Pfeilsticker, Ralph Kleinschek, Gerald Wetzel, Blanca Fuentes Andrade, Michael Höpfner, Jörn Ungermann, Björn-Martin Sinnhuber, and André Butz
Atmos. Meas. Tech., 17, 4507–4528, https://doi.org/10.5194/amt-17-4507-2024, https://doi.org/10.5194/amt-17-4507-2024, 2024
Short summary
Short summary
A novel balloon-borne instrument for direct sun and solar occultation measurements of several UV–Vis absorbing gases (e.g. O3, NO2, BrO, IO, and HONO) is described. Its major design features and performance during two stratospheric deployments are discussed. From the measured overhead BrO concentration and a suitable photochemical correction, total stratospheric bromine is inferred to (17.5 ± 2.2) ppt in air masses which entered the stratosphere around early 2017 ± 1 year.
Christoph Kiemle, Andreas Fix, Christian Fruck, Gerhard Ehret, and Martin Wirth
EGUsphere, https://doi.org/10.5194/egusphere-2024-2084, https://doi.org/10.5194/egusphere-2024-2084, 2024
Short summary
Short summary
Nitrous oxide is the third most important greenhouse gas modified by human activities after carbon dioxide and methane. This study examines the feasibility of airborne differential absorption lidar to quantify emissions from agriculture, fossil fuel combustion, industry and biomass burning. Simulations show that a technically realizable and affordable mid-infrared lidar system will be able to measure the nitrous oxide column concentration beneath the aircraft with sufficient precision.
Mark Weber
Atmos. Meas. Tech., 17, 3597–3604, https://doi.org/10.5194/amt-17-3597-2024, https://doi.org/10.5194/amt-17-3597-2024, 2024
Short summary
Short summary
We investigate how stable the performance of a satellite instrument has to be to be useful for assessing long-term trends in stratospheric ozone. The stability of an instrument is specified in percent per decade and is also called instrument drift. Instrument drifts add to uncertainties of long-term trends. From simulated time series of ozone based on the Monte Carlo approach, we determine stability requirements that are needed to achieve the desired long-term trend uncertainty.
Zhaoyan Liu, Bing Lin, Joel F. Campbell, Jirong Yu, Jihong Geng, and Shibin Jiang
Atmos. Meas. Tech., 17, 2977–2990, https://doi.org/10.5194/amt-17-2977-2024, https://doi.org/10.5194/amt-17-2977-2024, 2024
Short summary
Short summary
We introduce a concept utilizing a differential absorption barometric lidar operating within the 1.96 µm CO2 absorption band. Our focus is on a compact lidar configuration, featuring reduced telescope size and lower laser pulse energies towards minimizing costs for potential forthcoming Mars missions. The core measurement objectives encompass the determination of column CO2 absorption optical depth and abundance, surface air pressure, and vertical distributions of dust and cloud layers.
Marie Lothon, François Gheusi, Fabienne Lohou, Véronique Pont, Serge Soula, Solène Derrien, Yannick Bezombes, Emmanuel Leclerc, Gilles Athier, Antoine Vial, Alban Philibert, Bernard Campistron, Frédérique Saïd, Corinne Jambert, Jeroen Sonke, Julien Amestoy, Erwan Bargain, Pierre Bosser, Damien Boulanger, Guillaume Bret, Renaud Bodichon, Laurent Cabanas, Guylaine Canut, Jean-Bernard Estrampes, Eric Gardrat, Zaida Gomez Kuri, Jérémy Gueffier, Fabienne Guesdon, Morgan Lopez, Olivier Masson, Pierre-Yves Meslin, Yves Meyerfeld, Nicolas Pascal, Eric Pique, Michel Ramonet, Felix Starck, and Romain Vidal
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-10, https://doi.org/10.5194/amt-2024-10, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
The Pyrenean Platform for Observation of the Atmosphere (P2OA) is a coupled plain-mountain instrumented platform in southwest France, for the monitoring of climate variables and the study of meteorological processes in a mountainous region. A comprehensive description of this platform is presented for the first time: its instrumentation, the associated dataset, a meteorological characterisation the site. The potential of the P2OA is illustrated through several examples of process studies.
Jean-Philippe W. MacLean, Marianne Girard, Dylan Jervis, David Marshall, Jason McKeever, Antoine Ramier, Mathias Strupler, Ewan Tarrant, and David Young
Atmos. Meas. Tech., 17, 863–874, https://doi.org/10.5194/amt-17-863-2024, https://doi.org/10.5194/amt-17-863-2024, 2024
Short summary
Short summary
We demonstrate the capabilities of the GHGSat satellite constellation to detect and quantify offshore methane emissions using a sun glint observation mode. Using this technique, we observe offshore methane emissions from space ranging from 180 kg h−1 to 84 000 kg h−1. We further assess the instrument performance in offshore environments, both empirically and using analytical modelling, and find that the detection limit varies with latitude and season.
Alexander Geddes, Ben Liley, Richard McKenzie, Michael Kotkamp, and Richard Querel
Atmos. Meas. Tech., 17, 827–838, https://doi.org/10.5194/amt-17-827-2024, https://doi.org/10.5194/amt-17-827-2024, 2024
Short summary
Short summary
In this paper we describe a unique spectrometer that has been developed and tested over 10 years at Lauder, New Zealand. The spectrometer in question, UV2, makes alternating measurements of global UV and direct sun UV irradiance. After an assessment of the instrument performance, we compare the ozone and aerosol optical depth derived from UV2 to other independent measurements, finding excellent agreement suggesting that UV2 could supersede these measurements, particularly for ozone.
Haklim Choi, Xiong Liu, Ukkyo Jeong, Heesung Chong, Jhoon Kim, Myung Hwan Ahn, Dai Ho Ko, Dong-Won Lee, Kyung-Jung Moon, and Kwang-Mog Lee
Atmos. Meas. Tech., 17, 145–164, https://doi.org/10.5194/amt-17-145-2024, https://doi.org/10.5194/amt-17-145-2024, 2024
Short summary
Short summary
GEMS is the first geostationary satellite to measure the UV--Vis region, and this paper reports the polarization characteristics of GEMS and an algorithm. We develop a polarization correction algorithm optimized for GEMS based on a look-up-table approach that simultaneously considers the polarization of incoming light and polarization sensitivity characteristics of the instrument. Pre-launch polarization error was adjusted close to zero across the spectral range after polarization correction.
Tobias D. Schmitt, Jonas Kuhn, Ralph Kleinschek, Benedikt A. Löw, Stefan Schmitt, William Cranton, Martina Schmidt, Sanam N. Vardag, Frank Hase, David W. T. Griffith, and André Butz
Atmos. Meas. Tech., 16, 6097–6110, https://doi.org/10.5194/amt-16-6097-2023, https://doi.org/10.5194/amt-16-6097-2023, 2023
Short summary
Short summary
Our new observatory measures greenhouse gas concentrations of carbon dioxide (CO2) and methane (CH4) along a 1.55 km long light path over the city of Heidelberg, Germany. We compared our measurements with measurements that were taken at a single point at one end of our path. The two mostly agreed but show a significant difference for CO2 with certain wind directions. This is important when using greenhouse gas concentration measurements to observe greenhouse gas emissions of cities.
Kevin C. Cossel, Eleanor M. Waxman, Eli Hoenig, Daniel Hesselius, Christopher Chaote, Ian Coddington, and Nathan R. Newbury
Atmos. Meas. Tech., 16, 5697–5707, https://doi.org/10.5194/amt-16-5697-2023, https://doi.org/10.5194/amt-16-5697-2023, 2023
Short summary
Short summary
Measurements of the emission rate of a gas or gases from point and area sources are important in a range of monitoring applications. We demonstrate a method for rapid quantification of the emission rate of multiple gases using a spatially scannable open-path sensor. The open-path spectrometer measures the total column density of gases between the spectrometer and a retroreflector mounted on an uncrewed aerial vehicle (UAV). By scanning the UAV altitude, we can determine the total gas emissions.
Benedikt A. Löw, Ralph Kleinschek, Vincent Enders, Stanley P. Sander, Thomas J. Pongetti, Tobias D. Schmitt, Frank Hase, Julian Kostinek, and André Butz
Atmos. Meas. Tech., 16, 5125–5144, https://doi.org/10.5194/amt-16-5125-2023, https://doi.org/10.5194/amt-16-5125-2023, 2023
Short summary
Short summary
We developed a portable spectrometer (EM27/SCA) that remotely measures greenhouse gases in the lower atmosphere above a target region. The measurements can deliver insights into local emission patterns. To evaluate its performance, we set up the EM27/SCA above the Los Angeles Basin side by side with a similar non-portable instrument (CLARS-FTS). The precision is promising and the measurements are consistent with CLARS-FTS. In the future, we need to account for light scattering.
Daniel I. Herman, Griffin Mead, Fabrizio R. Giorgetta, Esther Baumann, Nathan A. Malarich, Brian R. Washburn, Nathan R. Newbury, Ian Coddington, and Kevin C. Cossel
Atmos. Meas. Tech., 16, 4053–4066, https://doi.org/10.5194/amt-16-4053-2023, https://doi.org/10.5194/amt-16-4053-2023, 2023
Short summary
Short summary
Measurements of the isotope ratio of water vapor provide information about the sources and history of water vapor at a given location, which can be used to understand the impacts of climate change on global water use. Here, we demonstrate a new method for measuring isotope ratios over long open-air paths, which can reduce sampling bias and provide more spatial averaging than standard point sensor methods. We show that this new technique has high sensitivity and accuracy.
Luca Egli, Julian Gröbner, Herbert Schill, and Eliane Maillard Barras
Atmos. Meas. Tech., 16, 2889–2902, https://doi.org/10.5194/amt-16-2889-2023, https://doi.org/10.5194/amt-16-2889-2023, 2023
Short summary
Short summary
This paper introduces a new method to retrieve total column ozone with spectral ground-based measurements from a novel array spectroradiometer. Total column ozone estimates using the small, cost-effective, and robust instrument and the new retrieval method are compared with other co-located total column ozone instruments. The comparison shows that the new system performs similarly to other well-established instruments, which require substantially more maintenance than the system introduced here.
Frank Werner, Nathaniel J. Livesey, Luis F. Millán, William G. Read, Michael J. Schwartz, Paul A. Wagner, William H. Daffer, Alyn Lambert, Sasha N. Tolstoff, and Michelle L. Santee
Atmos. Meas. Tech., 16, 2733–2751, https://doi.org/10.5194/amt-16-2733-2023, https://doi.org/10.5194/amt-16-2733-2023, 2023
Short summary
Short summary
The algorithm that produces the near-real-time data products of the Aura Microwave Limb Sounder has been updated. The new algorithm is based on machine learning techniques and yields data products with much improved accuracy. It is shown that the new algorithm outperforms the previous versions, even when it is trained on only a few years of satellite observations. This confirms the potential of applying machine learning to the near-real-time efforts of other current and future mission concepts.
Xiaoyi Zhao, Vitali Fioletov, Alberto Redondas, Julian Gröbner, Luca Egli, Franz Zeilinger, Javier López-Solano, Alberto Berjón Arroyo, James Kerr, Eliane Maillard Barras, Herman Smit, Michael Brohart, Reno Sit, Akira Ogyu, Ihab Abboud, and Sum Chi Lee
Atmos. Meas. Tech., 16, 2273–2295, https://doi.org/10.5194/amt-16-2273-2023, https://doi.org/10.5194/amt-16-2273-2023, 2023
Short summary
Short summary
The Brewer ozone spectrophotometer is one of the World Meteorological Organization (WMO) Global Atmosphere Watch (GAW)'s standard ozone monitoring instruments since the 1980s. This work is aimed at obtaining answers to (1) why Brewer primary calibration work can only be performed at certain sites (e.g., Izaña and MLO) and (2) what is needed to assure the equivalence of calibration quality from different sites.
Elion Daniel Hack, Theotonio Pauliquevis, Henrique Melo Jorge Barbosa, Marcia Akemi Yamasoe, Dimitri Klebe, and Alexandre Lima Correia
Atmos. Meas. Tech., 16, 1263–1278, https://doi.org/10.5194/amt-16-1263-2023, https://doi.org/10.5194/amt-16-1263-2023, 2023
Short summary
Short summary
Water vapor is a key factor when seeking to understand fast-changing processes when clouds and storms form and develop. We show here how images from a calibrated infrared camera can be used to derive how much water vapor there is in the atmosphere at a given time. Comparing our results to an established technique, for a case of stable atmospheric conditions, we found an agreement within 2.8 %. Water vapor sky maps can be retrieved every few minutes, day or night, under partly cloudy skies.
Kai Wu, Paul I. Palmer, Dien Wu, Denis Jouglet, Liang Feng, and Tom Oda
Atmos. Meas. Tech., 16, 581–602, https://doi.org/10.5194/amt-16-581-2023, https://doi.org/10.5194/amt-16-581-2023, 2023
Short summary
Short summary
We evaluate the theoretical ability of the upcoming MicroCarb satellite to estimate urban CO2 emissions over Paris and London. We explore the relative performance of alternative two-sweep and three-sweep city observing modes and take into account the impacts of cloud cover and urban biological CO2 fluxes. Our results find both the two-sweep and three-sweep observing modes are able to reduce prior flux errors by 20 %–40 % depending on the prevailing wind direction and cloud coverage.
Simon Leitner, Wendelin Feichtinger, Stefan Mayer, Florian Mayer, Dustin Krompetz, Rebecca Hood-Nowotny, and Andrea Watzinger
Atmos. Meas. Tech., 16, 513–527, https://doi.org/10.5194/amt-16-513-2023, https://doi.org/10.5194/amt-16-513-2023, 2023
Short summary
Short summary
An increased social environmental awareness requires the monitoring of greenhouse gases (GHGs). We report on the development of two sampling devices (which can be mounted to a drone) and the subsequent measurement setup to analyse these gases. The functionality of the presented system was tested in the field, and the results emphasised the functionality of the sampling and measurement setup, demonstrating that it is a viable tool for monitoring GHGs and identifying their emission sources.
Sean Crowell, Tobias Haist, Michael Tscherpel, Jérôme Caron, Eric Burgh, and Berrien Moore III
Atmos. Meas. Tech., 16, 195–208, https://doi.org/10.5194/amt-16-195-2023, https://doi.org/10.5194/amt-16-195-2023, 2023
Short summary
Short summary
Variations in brightness in radiance measurements cause errors that can be mitigated with hardware that scrambles the pattern of the incoming light. GeoCarb took this route to minimize this source of errors, but lab testing determined that the solution chosen was too sensitive to the the polarization of the incoming light. Modeling found that this was a predictable result of using gold coatings in the design, which is typical of spaceflight optical instruments.
Emily Bell, Christopher W. O'Dell, Thomas E. Taylor, Aronne Merrelli, Robert R. Nelson, Matthäus Kiel, Annmarie Eldering, Robert Rosenberg, and Brendan Fisher
Atmos. Meas. Tech., 16, 109–133, https://doi.org/10.5194/amt-16-109-2023, https://doi.org/10.5194/amt-16-109-2023, 2023
Short summary
Short summary
A small percentage of data from the Orbiting Carbon Observatory-3 (OCO-3) instrument has been shown to have a geometry-related bias in the earliest public data release. This work shows that the bias is due to a complex interplay of aerosols and viewing geometry and is largely mitigated in the latest data version through improved bias correction and quality filtering.
Hiroshi Suto, Fumie Kataoka, Robert O. Knuteson, Kei Shiomi, Nobuhiro Kikuchi, and Akihiko Kuze
Atmos. Meas. Tech., 15, 5399–5413, https://doi.org/10.5194/amt-15-5399-2022, https://doi.org/10.5194/amt-15-5399-2022, 2022
Short summary
Short summary
TANSO-FTS-2 onboard GOSAT-2 has operated nominally since February 2019, and the atmospheric radiance spectra it has acquired have been released to the public. This paper describes an updated model for spectral radiance calibration of TIR and its validation. The multi-satellite sensor and multi-angle comparison results suggest that the spectral radiance for TANSO-FTS-2 TIR, version v210210, is superior to that of the previous version in its consistency of multi-satellite sensor data.
Rory A. Barton-Grimley, Amin R. Nehrir, Susan A. Kooi, James E. Collins, David B. Harper, Anthony Notari, Joseph Lee, Joshua P. DiGangi, Yonghoon Choi, and Kenneth J. Davis
Atmos. Meas. Tech., 15, 4623–4650, https://doi.org/10.5194/amt-15-4623-2022, https://doi.org/10.5194/amt-15-4623-2022, 2022
Short summary
Short summary
HALO is a multi-functional lidar that measures CH4 columns and profiles of H2O mixing ratio and aerosol/cloud optical properties. HALO supports carbon cycle, weather dynamics, and radiation science suborbital research and is a technology testbed for future space-based differential absorption lidar missions. In 2019 HALO collected CH4 columns and aerosol/cloud profiles during the ACT-America campaign. Here we assess HALO's CH4 accuracy and precision compared to co-located in situ observations.
Aaron Pearlman, Monica Cook, Boryana Efremova, Francis Padula, Lok Lamsal, Joel McCorkel, and Joanna Joiner
Atmos. Meas. Tech., 15, 4489–4501, https://doi.org/10.5194/amt-15-4489-2022, https://doi.org/10.5194/amt-15-4489-2022, 2022
Short summary
Short summary
NOAA’s Geostationary Extended Observations (GeoXO) constellation is planned to consist of an atmospheric composition instrument (ACX) to support air quality forecasting and monitoring. As design trade-offs are being studied, we investigated one parameter, the polarization sensitivity, which has yet to be fully documented for NO2 retrievals. Our simulation study explores these impacts to inform the ACX’s development and better understand polarization’s role in trace gas retrievals.
Fernando Chouza, Thierry Leblanc, Mark Brewer, Patrick Wang, Giovanni Martucci, Alexander Haefele, Hélène Vérèmes, Valentin Duflot, Guillaume Payen, and Philippe Keckhut
Atmos. Meas. Tech., 15, 4241–4256, https://doi.org/10.5194/amt-15-4241-2022, https://doi.org/10.5194/amt-15-4241-2022, 2022
Short summary
Short summary
The comparison of water vapor lidar measurements with co-located radiosondes and aerosol backscatter profiles indicates that laser-induced aerosol fluorescence in smoke layers injected into the stratosphere can introduce very large and chronic wet biases above 15 km, thus impacting the ability of these systems to accurately estimate long-term water vapor trends. The proposed correction method presented in this work is able to reduce this fluorescence-induced bias from 75 % to under 5 %.
Boris D. Belan, Gerard Ancellet, Irina S. Andreeva, Pavel N. Antokhin, Viktoria G. Arshinova, Mikhail Y. Arshinov, Yurii S. Balin, Vladimir E. Barsuk, Sergei B. Belan, Dmitry G. Chernov, Denis K. Davydov, Alexander V. Fofonov, Georgii A. Ivlev, Sergei N. Kotel'nikov, Alexander S. Kozlov, Artem V. Kozlov, Katharine Law, Andrey V. Mikhal'chishin, Igor A. Moseikin, Sergei V. Nasonov, Philippe Nédélec, Olesya V. Okhlopkova, Sergei E. Ol'kin, Mikhail V. Panchenko, Jean-Daniel Paris, Iogannes E. Penner, Igor V. Ptashnik, Tatyana M. Rasskazchikova, Irina K. Reznikova, Oleg A. Romanovskii, Alexander S. Safatov, Denis E. Savkin, Denis V. Simonenkov, Tatyana K. Sklyadneva, Gennadii N. Tolmachev, Semyon V. Yakovlev, and Polina N. Zenkova
Atmos. Meas. Tech., 15, 3941–3967, https://doi.org/10.5194/amt-15-3941-2022, https://doi.org/10.5194/amt-15-3941-2022, 2022
Short summary
Short summary
The change of the global climate is most pronounced in the Arctic, where the air temperature increases faster than the global average. This is associated with an increase in the concentration of greenhouse gases in the atmosphere. It is important to study how the air composition in the Arctic changes in the changing climate. Thus this integrated experiment was carried out to measure the composition of the troposphere in the Russian sector of the Arctic from on board the aircraft laboratory.
Daochun Yu, Haitao Li, Baoquan Li, Mingyu Ge, Youli Tuo, Xiaobo Li, Wangchen Xue, Yaning Liu, Aoying Wang, Yajun Zhu, and Bingxian Luo
Atmos. Meas. Tech., 15, 3141–3159, https://doi.org/10.5194/amt-15-3141-2022, https://doi.org/10.5194/amt-15-3141-2022, 2022
Short summary
Short summary
In this work, the measurement of vertical atmospheric density profiles using X-ray Earth occultation is investigated. The Earth’s density profile for the lower thermosphere is obtained with Insight-HXMT. It is shown that the Insight-HXMT X-ray satellite of China can be used as an X-ray atmospheric diagnostics instrument for the upper atmosphere. The Insight-HXMT satellite can, with other X-ray astronomical satellites in orbit, form a network for X-ray Earth occultation sounding in the future.
Jörn Ungermann, Anne Kleinert, Guido Maucher, Irene Bartolomé, Felix Friedl-Vallon, Sören Johansson, Lukas Krasauskas, and Tom Neubert
Atmos. Meas. Tech., 15, 2503–2530, https://doi.org/10.5194/amt-15-2503-2022, https://doi.org/10.5194/amt-15-2503-2022, 2022
Short summary
Short summary
GLORIA is a 2-D infrared imaging spectrometer operated on two high-flying research aircraft. This paper details our instrument calibration and characterization efforts, which in particular leverage in-flight data almost exclusively and often exploit the novel 2-D nature of the measurements. We show that the instrument surpasses the original instrument specifications and conclude by analyzing how the derived errors affect temperature and ozone retrievals, two of our main derived quantities.
Carlos Alberti, Frank Hase, Matthias Frey, Darko Dubravica, Thomas Blumenstock, Angelika Dehn, Paolo Castracane, Gregor Surawicz, Roland Harig, Bianca C. Baier, Caroline Bès, Jianrong Bi, Hartmut Boesch, André Butz, Zhaonan Cai, Jia Chen, Sean M. Crowell, Nicholas M. Deutscher, Dragos Ene, Jonathan E. Franklin, Omaira García, David Griffith, Bruno Grouiez, Michel Grutter, Abdelhamid Hamdouni, Sander Houweling, Neil Humpage, Nicole Jacobs, Sujong Jeong, Lilian Joly, Nicholas B. Jones, Denis Jouglet, Rigel Kivi, Ralph Kleinschek, Morgan Lopez, Diogo J. Medeiros, Isamu Morino, Nasrin Mostafavipak, Astrid Müller, Hirofumi Ohyama, Paul I. Palmer, Mahesh Pathakoti, David F. Pollard, Uwe Raffalski, Michel Ramonet, Robbie Ramsay, Mahesh Kumar Sha, Kei Shiomi, William Simpson, Wolfgang Stremme, Youwen Sun, Hiroshi Tanimoto, Yao Té, Gizaw Mengistu Tsidu, Voltaire A. Velazco, Felix Vogel, Masataka Watanabe, Chong Wei, Debra Wunch, Marcia Yamasoe, Lu Zhang, and Johannes Orphal
Atmos. Meas. Tech., 15, 2433–2463, https://doi.org/10.5194/amt-15-2433-2022, https://doi.org/10.5194/amt-15-2433-2022, 2022
Short summary
Short summary
Space-borne greenhouse gas missions require ground-based validation networks capable of providing fiducial reference measurements. Here, considerable refinements of the calibration procedures for the COllaborative Carbon Column Observing Network (COCCON) are presented. Laboratory and solar side-by-side procedures for the characterization of the spectrometers have been refined and extended. Revised calibration factors for XCO2, XCO and XCH4 are provided, incorporating 47 new spectrometers.
David A. Newnham, Mark A. Clilverd, William D. J. Clark, Michael Kosch, Pekka T. Verronen, and Alan E. E. Rogers
Atmos. Meas. Tech., 15, 2361–2376, https://doi.org/10.5194/amt-15-2361-2022, https://doi.org/10.5194/amt-15-2361-2022, 2022
Short summary
Short summary
Ozone (O3) is an important trace gas in the mesosphere and lower thermosphere (MLT), affecting heating rates and chemistry. O3 profiles measured by the Ny-Ålesund Ozone in the Mesosphere Instrument agree with Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) for winter night-time, but autumn twilight SABER abundances are up to 50 % higher. O3 abundances in the MLT from two different SABER channels also show significant differences for both autumn twilight and summer daytime.
Luca Egli, Julian Gröbner, Gregor Hülsen, Herbert Schill, and René Stübi
Atmos. Meas. Tech., 15, 1917–1930, https://doi.org/10.5194/amt-15-1917-2022, https://doi.org/10.5194/amt-15-1917-2022, 2022
Short summary
Short summary
This study presents traceable total column ozone retrievals from direct solar spectral irradiance measurements. The retrieved ozone does not require any field calibration with a reference instrument as it is required for other operational network instruments such as Brewer or Dobson. Total column ozone can be retrieved with a traceable overall standard uncertainty of less than 0.8 % indicating a benchmark uncertainty for total column ozone measurements.
Yungang Wang, Liping Fu, Fang Jiang, Xiuqing Hu, Chengbao Liu, Xiaoxin Zhang, Jiawei Li, Zhipeng Ren, Fei He, Lingfeng Sun, Ling Sun, Zhongdong Yang, Peng Zhang, Jingsong Wang, and Tian Mao
Atmos. Meas. Tech., 15, 1577–1586, https://doi.org/10.5194/amt-15-1577-2022, https://doi.org/10.5194/amt-15-1577-2022, 2022
Short summary
Short summary
Far-ultraviolet (FUV) airglow radiation is particularly well suited for space-based remote sensing. The Ionospheric Photometer (IPM) instrument carried aboard the Feng Yun 3-D satellite measures the spectral radiance of the Earth FUV airglow. IPM is a tiny, highly sensitive, and robust remote sensing instrument. Initial results demonstrate that the performance of IPM meets the designed requirement and therefore can be used to study the thermosphere and ionosphere in the future.
Leon Kuhn, Jonas Kuhn, Thomas Wagner, and Ulrich Platt
Atmos. Meas. Tech., 15, 1395–1414, https://doi.org/10.5194/amt-15-1395-2022, https://doi.org/10.5194/amt-15-1395-2022, 2022
Short summary
Short summary
We present a novel instrument for imaging measurements of NO2 with high spatiotemporal resolution based on gas correlation spectroscopy, called the GCS NO2 camera. The instrument works by placing two gas cells (cuvettes) in front of two photosensor arrays, one filled with air and one filled with a high concentration of NO2, acting as a non-dispersive spectral filter. NO2 images are then generated on the basis of the signal ratio of the two channels in the spectral region of 430–445 nm.
Tobias Küchler, Stefan Noël, Heinrich Bovensmann, John Philip Burrows, Thomas Wagner, Christian Borger, Tobias Borsdorff, and Andreas Schneider
Atmos. Meas. Tech., 15, 297–320, https://doi.org/10.5194/amt-15-297-2022, https://doi.org/10.5194/amt-15-297-2022, 2022
Short summary
Short summary
We applied the air-mass-corrected differential optical absorption spectroscopy (AMC-DOAS) method to derive total column water vapour (TCWV) from Sentinel-5P measurements and compared it to independent data sets. The correlation coefficients of typically more than 0.9 and the small deviations up to 2.5 kg m−2 reveal good agreement between our data product and other TCWV data sets. In particular for the different Sentinel-5P water vapour products, the deviations are around 1 kg m−2.
Jonas Kuhn, Nicole Bobrowski, Thomas Wagner, and Ulrich Platt
Atmos. Meas. Tech., 14, 7873–7892, https://doi.org/10.5194/amt-14-7873-2021, https://doi.org/10.5194/amt-14-7873-2021, 2021
Short summary
Short summary
We propose spectrograph implementations using Fabry–Pérot interferometers for atmospheric trace gas remote sensing. Compared with widely used grating spectrographs, we find substantial light throughput and mobility advantages for high resolving powers. Besides lowering detection limits and increasing the spatial and temporal resolution of many atmospheric trace gas measurements, this approach might enable remote sensing of further important gases such as tropospheric OH radicals.
King-Fai Li, Ryan Khoury, Thomas J. Pongetti, Stanley P. Sander, Franklin P. Mills, and Yuk L. Yung
Atmos. Meas. Tech., 14, 7495–7510, https://doi.org/10.5194/amt-14-7495-2021, https://doi.org/10.5194/amt-14-7495-2021, 2021
Short summary
Short summary
Nitrogen dioxide (NO2) plays a dominant role in the stratospheric ozone-destroying catalytic cycle. We have retrieved the diurnal cycle of NO2 over Table Mountain in Southern California, USA, during a week in October 2018. Under clean conditions, we are able to predict the diurnal cycle using standard photochemistry. On a day with significant pollution, we see the effect of NO2 sources in the nearby Los Angeles Basin.
Ulrich Platt, Thomas Wagner, Jonas Kuhn, and Thomas Leisner
Atmos. Meas. Tech., 14, 6867–6883, https://doi.org/10.5194/amt-14-6867-2021, https://doi.org/10.5194/amt-14-6867-2021, 2021
Short summary
Short summary
Absorption spectroscopy of scattered sunlight is extremely useful for the analysis of atmospheric trace gas distributions. A central parameter for the achievable sensitivity of spectroscopic instruments is the light throughput, which can be enhanced in a number of ways. We present new ideas and considerations of how instruments could be optimized. Particular emphasis is on arrays of massively parallel instruments. Such arrays can reduce the size and weight of instruments by orders of magnitude.
Jonas Hamperl, Clément Capitaine, Jean-Baptiste Dherbecourt, Myriam Raybaut, Patrick Chazette, Julien Totems, Bruno Grouiez, Laurence Régalia, Rosa Santagata, Corinne Evesque, Jean-Michel Melkonian, Antoine Godard, Andrew Seidl, Harald Sodemann, and Cyrille Flamant
Atmos. Meas. Tech., 14, 6675–6693, https://doi.org/10.5194/amt-14-6675-2021, https://doi.org/10.5194/amt-14-6675-2021, 2021
Short summary
Short summary
Laser active remote sensing of tropospheric water vapor is a promising technology for enhancing our understanding of processes governing the global hydrological cycle. We investigate the potential of a ground-based lidar to monitor the main water vapor isotopes at high spatio-temporal resolutions in the lower troposphere. Using a realistic end-to-end simulator, we show that high-precision measurements can be achieved within a range of 1.5 km, in mid-latitude or tropical environments.
Qin Wang, Farhan Mustafa, Lingbing Bu, Shouzheng Zhu, Jiqiao Liu, and Weibiao Chen
Atmos. Meas. Tech., 14, 6601–6617, https://doi.org/10.5194/amt-14-6601-2021, https://doi.org/10.5194/amt-14-6601-2021, 2021
Short summary
Short summary
In this work, an airborne experiment was carried out to validate a newly developed CO2 monitoring IPDA lidar against the in situ measurements obtained from a commercial CO2 monitoring instrument installed on an aircraft. The XCO2 values calculated with the IPDA lidar measurements were compared with the dry-air CO2 mole fraction measurements obtained from the in situ instruments, and the results showed a good agreement between the two datasets.
Matthias M. Frey, Frank Hase, Thomas Blumenstock, Darko Dubravica, Jochen Groß, Frank Göttsche, Martin Handjaba, Petrus Amadhila, Roland Mushi, Isamu Morino, Kei Shiomi, Mahesh Kumar Sha, Martine de Mazière, and David F. Pollard
Atmos. Meas. Tech., 14, 5887–5911, https://doi.org/10.5194/amt-14-5887-2021, https://doi.org/10.5194/amt-14-5887-2021, 2021
Short summary
Short summary
In this study, we present measurements of carbon dioxide, methane and carbon monoxide from a recently established site in Gobabeb, Namibia. Gobabeb is the first site observing these gases on the African mainland and improves the global coverage of measurement sites. Gobabeb is a hyperarid desert site, offering unique characteristics. Measurements started 2015 as part of the COllaborative Carbon Column Observing Network. We compare our results with other datasets and find a good agreement.
René Stübi, Herbert Schill, Jörg Klausen, Eliane Maillard Barras, and Alexander Haefele
Atmos. Meas. Tech., 14, 5757–5769, https://doi.org/10.5194/amt-14-5757-2021, https://doi.org/10.5194/amt-14-5757-2021, 2021
Short summary
Short summary
In the first half of the 20th century, Prof. Dobson developed an instrument to measure the ozone column. Around 50 of these Dobson instruments, manufactured in the second half of the 20th century, are still used today to monitor the state of the ozone layer. Started in 1926, the Arosa series was, until recently, based on manually operated Dobsons. To ensure its future operation, a fully automated version of the Dobson has been developed. This well-working automated system is described here.
Timon Hummel, Christian Meister, Corneli Keim, Jasper Krauser, and Mark Wenig
Atmos. Meas. Tech., 14, 5459–5472, https://doi.org/10.5194/amt-14-5459-2021, https://doi.org/10.5194/amt-14-5459-2021, 2021
Short summary
Short summary
The impact of heterogeneous scene radiance affects the quality of trace gas retrieval products of Earth observation imaging spectrometers. This effect can be mitigated by introducing on-board hardware solutions called slit homogenizers, which scramble the light entering the instrument and thereby make it insensitive to Earth scene contrast. Here we present a comprehensive modeling of the slit homogenizer present in the Sentinel-5/UVNS instrument and quantify the spectral performance.
Quentin Errera, Emmanuel Dekemper, Noel Baker, Jonas Debosscher, Philippe Demoulin, Nina Mateshvili, Didier Pieroux, Filip Vanhellemont, and Didier Fussen
Atmos. Meas. Tech., 14, 4737–4753, https://doi.org/10.5194/amt-14-4737-2021, https://doi.org/10.5194/amt-14-4737-2021, 2021
Short summary
Short summary
ALTIUS is a micro-satellite which will measure the distribution of the ozone layer. Micro-satellites are intended to be cost-effective, but does this make the ALTIUS measurements any less valuable? To answer this, we simulated ALTIUS data and measured how it could constrain a model of the ozone layer; we then compared these results with those obtained from the state-of-the-art NASA Aura MLS satellite ozone measurements. The outcome shows us that the ALTIUS
budgetinstrument is indeed valuable.
Scott M. Spuler, Matthew Hayman, Robert A. Stillwell, Joshua Carnes, Todd Bernatsky, and Kevin S. Repasky
Atmos. Meas. Tech., 14, 4593–4616, https://doi.org/10.5194/amt-14-4593-2021, https://doi.org/10.5194/amt-14-4593-2021, 2021
Short summary
Short summary
Continuous water vapor and temperature profiles are critically needed for improved understanding of the lower atmosphere and potential advances in weather forecasting skill. To address this observation need, an active remote sensing technology based on a diode-laser-based lidar architecture is being developed. We discuss the details of the lidar architecture and analyze how it addresses a national-scale profiling network's need to provide continuous thermodynamic observations.
Bo Galle, Santiago Arellano, Nicole Bobrowski, Vladimir Conde, Tobias P. Fischer, Gustav Gerdes, Alexandra Gutmann, Thorsten Hoffmann, Ima Itikarai, Tomas Krejci, Emma J. Liu, Kila Mulina, Scott Nowicki, Tom Richardson, Julian Rüdiger, Kieran Wood, and Jiazhi Xu
Atmos. Meas. Tech., 14, 4255–4277, https://doi.org/10.5194/amt-14-4255-2021, https://doi.org/10.5194/amt-14-4255-2021, 2021
Short summary
Short summary
Measurements of volcanic gases are important for geophysical research, risk assessment and environmental impact studies. Some gases, like SO2 and BrO, may be studied from the ground at a safe distance using remote sensing techniques. Many other gases require in situ access to the gas plume. Here, a drone may be an attractive alternative. This paper describes a drone specially adapted for volcanic gas studies and demonstrates its use in a field campaign at Manam volcano in Papua New Guinea.
Jia Su, M. Patrick McCormick, Matthew S. Johnson, John T. Sullivan, Michael J. Newchurch, Timothy A. Berkoff, Shi Kuang, and Guillaume P. Gronoff
Atmos. Meas. Tech., 14, 4069–4082, https://doi.org/10.5194/amt-14-4069-2021, https://doi.org/10.5194/amt-14-4069-2021, 2021
Short summary
Short summary
A new technique using a three-wavelength differential absorption lidar (DIAL) technique based on an optical parametric oscillator (OPO) laser is proposed to obtain more accurate measurements of NO2. The retrieval uncertainties in aerosol extinction using the three-wavelength DIAL technique are reduced to less than 2 % of those when using the two-wavelength DIAL technique. Hampton University (HU) lidar NO2 profiles are compared with simulated data from the WRF-Chem model, and they agree well.
Carly Staebell, Kang Sun, Jenna Samra, Jonathan Franklin, Christopher Chan Miller, Xiong Liu, Eamon Conway, Kelly Chance, Scott Milligan, and Steven Wofsy
Atmos. Meas. Tech., 14, 3737–3753, https://doi.org/10.5194/amt-14-3737-2021, https://doi.org/10.5194/amt-14-3737-2021, 2021
Short summary
Short summary
Given the high global warming potential of CH4, the identification and subsequent reduction of anthropogenic CH4 emissions presents a significant opportunity for climate change mitigation. Satellites are an integral piece of this puzzle, providing data to quantify emissions at a variety of spatial scales. This work presents the spectral calibration of MethaneAIR, the airborne instrument used as a test bed for the forthcoming MethaneSAT satellite.
Marek Šmíd, Geiland Porrovecchio, Jiří Tesař, Tim Burnitt, Luca Egli, Julian Grőbner, Petr Linduška, and Martin Staněk
Atmos. Meas. Tech., 14, 3573–3582, https://doi.org/10.5194/amt-14-3573-2021, https://doi.org/10.5194/amt-14-3573-2021, 2021
Short summary
Short summary
We designed and developed a tuneable and portable radiation source (TuPS) to provide a reference wavelength scale, with a bandwidth of emitted radiation of 0.13 nm and uncertainty in wavelength of 0.02 nm. TuPS was successfully used for the in-field characterization of 14 Dobson spectrophotometers in campaigns in Europe. The line spread functions of Dobsons measured by TuPS in conjunction with the cross-sections from IUP improves the consistency between the Dobson and Brewer from 3 % to 1 %.
Nicholas M. Deutscher, Travis A. Naylor, Christopher G. R. Caldow, Hamish L. McDougall, Alex G. Carter, and David W. T. Griffith
Atmos. Meas. Tech., 14, 3119–3130, https://doi.org/10.5194/amt-14-3119-2021, https://doi.org/10.5194/amt-14-3119-2021, 2021
Short summary
Short summary
This work describes the performance of an open-path measurement system for greenhouse gases in an extended field trial. The instrument obtained measurement repeatability of 0.1 % or better for CO2 and CH4 measurements over a 1.55 km one-way pathway. Comparison to co-located in situ measurements allows characterisation of biases relative to global reference scales. The research was done to show the applicability of the technique and its ability to detect atmospheric-relevant sources and sinks.
Sebastian Wolff, Gerhard Ehret, Christoph Kiemle, Axel Amediek, Mathieu Quatrevalet, Martin Wirth, and Andreas Fix
Atmos. Meas. Tech., 14, 2717–2736, https://doi.org/10.5194/amt-14-2717-2021, https://doi.org/10.5194/amt-14-2717-2021, 2021
Short summary
Short summary
We report on CO2 emissions of a coal-fired power plant derived from flight measurements performed with the IPDA lidar CHARM-F during the CoMet campaign in spring 2018. Despite the results being in broad agreement with reported emissions, we observe strong variations between successive flyovers. Using a high-resolution large eddy simulation, we identify strong atmospheric turbulence as the cause for the variations and recommend more favorable measurement conditions for future campaign planning.
Dylan Jervis, Jason McKeever, Berke O. A. Durak, James J. Sloan, David Gains, Daniel J. Varon, Antoine Ramier, Mathias Strupler, and Ewan Tarrant
Atmos. Meas. Tech., 14, 2127–2140, https://doi.org/10.5194/amt-14-2127-2021, https://doi.org/10.5194/amt-14-2127-2021, 2021
Short summary
Short summary
We describe how the GHGSat-D demonstration satellite is designed and operated in order to measure greenhouse gas emissions from different types of industrial facilities. The distinguishing features of GHGSat-D, or
Claire, are its compact size (< 15 kg) and high spatial resolution (< 50 m). We give a mathematical model of the instrument and describe the techniques used to infer a methane concentration from a measurement of the sunlight that has reflected off the Earth's surface.
Cited articles
ACTRIS: Data Policy Disclaimer, available at: http://actris.nilu.no/, last access: 19 November 2020.
Amodeo, A., Bösenberg, J., Ansmann, A., Balis, D., Böckmann, C.,
Chaikovsky, A., Comeron, A., Mitev, V., Papayannis, A., Pappalardo, G.,
Perrone, M. R., Rizi, V., Simeonov, V., Sobolewski, P., Spinelli, N.,
Stoyanov, D. V., Trickl, T., and Wiegner, M.: EARLINET: the European Aerosol
Lidar Network, Optica Pura y Aplicada, 39, 1–10, 2006.
Ancellet, A. and Ravetta, F.: The Airborne Lidar for Tropospheric Ozone
(ALTO), Advances in Atmospheric Remote Sensing with Lidar in Selected Papers
of the 18th International Laser Radar Conference, Berlin (Germany, 1996), edited by:
Ansmann, A., Neuber, R., Rairoux, P., and Wandinger, U., Springer, Berlin,
Heidelberg, New York, 22–26 July 1996, 399–402, 1997.
Ancellet, A. and Ravetta, F.: Compact airborne lidar for tropospheric
ozone: description and field measurements, Appl. Opt., 37, 5509–5521, 1998.
Ancellet, G., Papayannis, A., Pelon, J., and Mégie, G.: DIAL
Tropospheric Ozone Measurement Using a Nd:YAG Laser and the Raman Shifting
Technique, J. Atmos. Oceanic Technol., 6, 832–839, 1989.
Ancellet, G., Pelon, J., Beekmann, M., Papayannis, A., and Mégie, G.:
Ground-Based Lidar Studies of Ozone Exchanges Between the Stratosphere and
the Troposphere, J. Geophys. Res., 96, 22401–22421, 1991.
Ancellet, A., Beekmann, M., and Papayannis, A.: Impact of cutoff low
development on downward transport of ozone in the troposphere, J. Geophys.
Res., 99, 3451–3468, 1994.
Ancellet, G., Pelon, J., Totems, J., Chazette, P., Bazureau, A., Sicard, M., Di Iorio, T., Dulac, F., and Mallet, M.: Long-range transport and mixing of aerosol sources during the 2013 North American biomass burning episode: analysis of multiple lidar observations in the western Mediterranean basin, Atmos. Chem. Phys., 16, 4725–4742, https://doi.org/10.5194/acp-16-4725-2016, 2016.
Alvarez II, R. J., Senff, C. J., Hardesty, R. M., Parrish, D. D., Like, W.
T., Watson, T. B., Daum, P. H., and Gillani, N.: Comparisons of airborne
lidar measurements of ozone with airborne in situ measurements during the
1995 Southern Oxidants Study, J. Geophs. Res., 103, 31155–31171, 1998.
Alvarez II, R. J., Senff, C. J., Langford, A. O., Weikmann, A. M., Law, D.
C., Machol, J. L., Merrit, D. A., Marchbanks, R. D., Sandberg, S. P.,
Brewer, W. A., Hardesty, R. M., and Banta, R. M.: Development and
application of a compact, tunable, solid-state airborne ozone lidar system
for boundary layer profiling, J. Atmos. Ocean. Technol., 28, 1258–1271,
2011.
ATMOFAST: Atmosphärischer Ferntransport und seine Auswirkungen auf die
Spurengaskonzentrationen in der freien Troposphäre über Mitteleuropa
(Atmospheric Long-range Transport and its Impact on the Trace-gas
Composition of the Free Troposphere over Central Europe), Project Final
Report, T. Trickl, co-ordinator, M. Kerschgens, A. Stohl, and T. Trickl,
subproject co-ordinators, funded by the German Ministry of Education and
Research within the programme “Atmosphärenforschung 2000“,
Forschungszentrum Karlsruhe, IMK-IFU (Garmisch-Partenkirchen, Germany),
http://www.trickl.de/ATMOFAST.htm (last access: 19 November 2020), 130 pp., 2005 (with revised
publication list 2012; in German).
Banta, R. M., Senff, C. J., White, A. B., Trainer, M., McNider, R. T.,
Valente, R. J., Mayor, S. D., Alvarez, R. J., Hardesty, R. M., Parrish, D.,
and Fehsenfeld, F. C.: Daytime buildup and nightime transport of urban ozone
in the boundary layer during a stagnation episode, J. Geophys. Res., 103,
22519–22544, 1998.
Baray, J.-L., Leveau, J., Porteneuve, J., Ancellet, G., Keckhut, P., Posny,
F., and Baldy, S.: Description and and evaluation of a tropospheric ozone
lidar implemented on an existing lidar in the southern subtropics, Appl.
Opt., 38, 6808–6817, 1999.
Baray, J.-L., Daniel, V., Ancellet, G., and Legras, B.: Planetary-scale
tropopause folds in the southern subtropics, Geophys. Res. Lett., 27,
353–356, 2000.
Blackman, R. B. and Tukey, J. W.: in: The Measurement of Power Spectra,
From the Point of View of Communications Engineering, Dover, Publications,
New York, USA, 95–101, 1959.
Bragg, S. L., Brault, J. W., and Smith, W. H.: Line Positions and Strengths
in the H2 Quadrupole Spectrum, Astrophys. J., 263, 999–1004, 1982.
Brenner, P., Reitebuch, O., Schäfer, K., Trickl, T., and Stichternath,
A.: A Novel Mobile Vertical-sounding System for Ozone Studies in the Lower
Troposphere”, Advances in Atmospheric Remote Sensing with Lidar, Selected
Papers of the 18th International Laser Radar Conference, Berlin (Germany,
1996), edited by: Ansmann, A., Neuber, R., Rairoux, P., and Wandinger, U., Springer, Berlin, Heidelberg, New York, 22–26 July 1996, 383–386, 1997.
Browell, E. V.: Lidar measurements of tropospheric gases, Opt. Eng., 21,
128–132, 1982.
Browell, E. V., Carter, A. F., Shipley, S. T., Allen, R. J., Butler, C. F.,
Mayo, M. N., Siviter, J. H., and Hall, W. M.: NASA multipurpose airborne
DIAL system and measurements of ozone and aerosol profiles, Appl. Opt., 22,
522–534, 1983.
Browell, E. V., Danielsen, E. F., Ismail, S., Gregory, G. L., and Beck, S.
M.: Tropopause Fold Structure Determined From Airborne Lidar and in Situ
Measurements, J. Geophys. Res., 92, 2112–2120, 1987.
Browell, E. V., Fenn, M. A., Butler, C. F., Grant, W. B., Merrill, J. T.,
Newell, R. E., Bradshaw, J. D., Sandholm, S. T., Anderson, B. E., Bandy, A.
R., Bachmeier, A. S., Blake, D. R., Davis, D. D., Gregory, G. L., Heikes, B.
G., Kondo, Y., Liu, S. C., Rowland, F. S., Sachse, G. W., Singh, H. B.,
Talbot, R. W., and Thornton, D. C.: Large-scale air mass characteristics
observed over the Western Pacific during summertime, J. Geophys. Res., 111,
1691–1712, 1996.
Browell, E. V., Fenn, M. A., Butler, C. F., Grant, W. B., Ismail, S.,
Ferrare, R. A., Kooi, S. A., Brackett, V. G., Clayton, M. B., Avery, M. A.,
Barrick, J. D. W., Fuelberg, H. E., Maloney, J. C., Newell, R. E., Zhu, Y.,
Mahoney, M. J., Anderson, B. E., Blake, D. R., Brune, W. H., Heikes, B. G.,
Sachse, G. W., Singh, H. B., and Talbot, R. W.: Large-scale air mass
characteristics observed over the remote tropical Pacific Ocean during March–April 1999: Results from the PEM-Tropics B field experiment, J. Geophys.
Res., 106, 32481–32501, 2001.
Bucreev, V. S., Vartapetov, S. K., Veselovskii, I. A., Galustov, A. S.,
Kovalev, Y. M., Prokhorov, A. M., Svetogorov, E. S., Khmelevtsov, S. S.,
and Lee, C. H.: Excimer-laser-based lidar system for stratospheric and
tropospheric ozone measurements, Quantum Electron+., 24, 546–551 (translated from Kvantovaya Electron+., 21, 591–596, 1994), 1994.
Bucreev, V. S., Vartapetov, S. K., Veselovskii, I. A., Galustov, A. S.,
Kovalev, Y. M., Svetogorov, E. S., and Khmelevtsov, S. S.: Combined lidar
system for stratospheric and tropospheric ozone measurements, Appl. Phys. B,
62, 97–101, 1996.
Burlakov, V. D., Dolgii, S. I., Makeev, A. P., Nevzorov, A. V., Romanovskii,
O. A., and Kharchenko, O. V.: A Differential-Absorption Lidar for Ozone
Sensing in the Upper Atmosphere – Lower Stratosphere, Instrum. exp. Tech+., 53, 886–889, 2010.
Carnuth, W., Kempfer, U., and Trickl, T.: Highlights of the tropospheric
lidar studies at IFU within the TOR project, Tellus B, 54, 163–185, 2002.
Couach, O., Balin, I., Jiménez, R., Ristori, P., Perego, S., Kirchner, F., Simeonov, V., Calpini, B., and van den Bergh, H.: An investigation of ozone and planetary boundary layer dynamics over the complex topography of Grenoble combining measurements and modeling, Atmos. Chem. Phys., 3, 549–562, https://doi.org/10.5194/acp-3-549-2003, 2003.
Cristofanelli, P., Bonasoni, P., Collins, W., Feichter, J., Forster, C.,
James, P., Kentarchos, A., Kubik, P. W., Land, C., Meloen, J., Roelofs, G.
J., Siegmund, P., Sprenger, M., Schnabel, C., Stohl, A., Tobler, L.,
Tositti, L., Trickl, T., and Zanis, P.: Stratosphere to troposphere
transport: a model and method evaluation, J. Geophys. Res., 108, 8525, https://doi.org/10.1029/2002JD002600, 2003.
Daumont, D., Brion, J., Charbonnier, J., and Malicet, J.: Ozone UV
Spectroscopy I: Absorption Cross-Sections at Room Temperature, J. Atmos.
Chem., 15, 145–155, 1992.
De Schoulepnikoff, L., Mitev, V., Simeonov, V., Calpini, B., and van den
Bergh, H.: Experimental investigation of high-power single-pass Raman
shifters in the ultraviolet with Nd:YAG and KrF lasers, Appl. Opt., 36,
5026–5043, 1997.
De Young, R., Carrion, W., Ganoe, R., Pliutau, D., Gronoff, G., Berkoff, T.,
and Kuang, S.: Langley mobile ozone lidar: ozone and aerosol atmospheric
profiling for air quality research, Appl. Opt., 56, 721–730, 2017.
Dickensen, G. D., Niu, M. L., Salumbides, E. J., Komasa, J., Eikema, K. S.
E., Pachuki, K., and Ubachs, W.: Fundamental Vibration of Molecular
Hydrogen, Phys. Rev. Lett., 110, 193601, https://doi.org/10.1103/PhysRevLett.110.193601 , 2013.
Draxler, R. and Hess, G.: An overview of the HYSPLIT_4
modelling system for trajectories, dispersion, and deposition, Aust.
Meteorol. Mag., 47, 295–308, 1998.
Dreessen, J., Sullivan, J., and Delgado, R.: Observations and impacts of
transported Canadian wildfire smoke on ozone and aerosol air quality in the
Maryland region on June 9–12, 2015, J. Air Waste Manage Assoc., 66,
842–862, 2016.
Duclaux, O., Frejafon, E., Thomasson, A., Yu, J., C., Puel, C., Savoie, F.,
Ritter, P., Boch, J. P., and Wolf, J. P.: 3D-air quality model evaluation
using the Lidar technique, Atmos. Environ., 36, 5081–5095, 2002.
Dufour, A., Amodei, M., Ancellet, G., and Peuch, V.-H.: Observed and
modelled ”chemical weather” during ESCOMPTE, Atmos. Res., 74, 161–189,
2005.
Durieux, E., Fiorani, L., Calpini, B., Flamm, M., Jaquet, L., and van den
Bergh, H.: Tropospheric Ozone Measurements over the Great Athens Area during
the MEDCAPHOT-TRACE Campaign, Atmos. Environ., 32, 2141–2150, 1998.
Eisele, H.: Aufbau und Betrieb eines Dreiwellenlängen-Lidars für
Ozonmessungen in der gesamten Troposphäre und Entwicklung eines neuen
Auswerteverfahrens zur Aerosol-korrektur, Dissertation, Universität
Tübingen (Germany, 1997), published as Schriftenreihe des
Fraunhofer-Instituts für Atmosphärische Umweltforschung, Vol. 55,
Verlag Dr. W. Maraun, Frankfurt/Main, Germany, 1998, ISBN 3-932666-08-9,
107 pp., 1997 (in German).
Eisele, H. and Trickl, T.: Second Generation of the IFU Stationary
Tropospheric Ozone Lidar, Advances in Atmospheric Remote Sensing with Lidar,
Selected Papers of the 18th International Laser Radar Conference (Berlin,
Germany, 1996), edited by: Ansmann, A., Neuber, R., Rairoux, P., and Wandinger, U., Springer, Berlin, Heidelberg, New York, 22–26 July 1996, 379–382, 1997.
Eisele, H. and Trickl, T.: Improvements of the aerosol algorithm in
ozone-lidar data processing by use of evolutionary strategies, Appl. Opt.,
44, 2638–2651, 2005.
Eisele, H., Scheel, H. E., Sladkovic, R., and Trickl, T.: High-Resolution
Lidar Measurements of Stratosphere-Troposphere Exchange, J. Atmos. Sci., 56,
319–330, 1999.
EUROTRAC: Transport and Chemical Transformation of Pollutants in the
Troposphere, Vol. 1, An Overview of the Work of EUROTRAC, edited by: Borrell, P. and Borrell, P.
M., Springer (Berlin, Heidelberg, New York), ISBN
3-540-66775-X, 474 pp., 1997.
Fiorani, L., Calpini, B., Jaquet, L., van den Bergh, H., and Durieux, E.: A
Combined Determination of Wind Velocities and Ozone Concentration for a
First Measurement of Ozone Fluxes with a DIAL Instrument during the
MEDCAPHOT-TRACE Campaign, Atmos. Environ., 32, 2151–2159, 1998.
Fix, A., Wirth, M., Meister, A., Ehret, G., Pesch, M., and Weidauer, D.:
Tunable ultraviolet optical parametric oscillator for differential
absorption lidar measurements of tropospheric ozone, Appl. Phys. B., 75,
153–163, 2002.
Fix, A., Steinebach, F., Wirth, M., Schäfler, A., and Ehret, G.:
Development and application of an airborne differential absorption lidar for
the simultaneous measurement of ozone and water vapor profiles in the
tropopause region, Appl. Opt., 58, 5892–5900, 2019.
Freudenthaler, V.: The telecover test: A Quality assurance tool for the
optical part of a lidar system, in: Reviewed and Revised Papers Presented at
the 24th International Laser Radar Conference, Boulder, Colorado,
USA, 23–27 June 2008, Vol. II, edited by: Hardesty, M. and Mayor, S., ISBN 978-0-615-21489-4,
145–146, 2008.
Galani, E., Balis, D., Zanis, P., Zerefos, C., Papayannis, A., Wernli, H.,
and Gerasopoulos, E.: Observations of stratosphere-to-troposphere transport
events over the eastern Mediterranean using a ground-based lidar system, J.
Geophys. Res., 108, 8527, https://doi.org/10.1029/2002JD002596, 2003.
Gaudel A., Ancellet G., and Godin-Beekmann S.: Analysis of 20 years of
tropospheric ozone vertical profiles by lidar and ECC at Observatoire de
Haute Provence (OHP) at 44∘ N, 6.7∘ E, Atmos. Environ.,
113, 78–89, 2015.
Giehl, H. and Trickl, T.: Testing the IFU High-Spectral-Resolution Lidar at
the 2009 Leipzig Field Campaign, in: Proceedings of the 25th
International Laser Radar Conference, St.-Petersburg (Russia), 5–9 July 2010,
2010, edited by: Matvienko, G. and Zemlyanov, A., V. E. Zuev Institute of Optics (Tomsk, Russia), 920–923, 2010.
Gorshelev, V., Serdyuchenko, A., Weber, M., Chehade, W., and Burrows, J. P.: High spectral resolution ozone absorption cross-sections – Part 1: Measurements, data analysis and comparison with previous measurements around 293 K, Atmos. Meas. Tech., 7, 609–624, https://doi.org/10.5194/amt-7-609-2014, 2014.
Grabbe, G. C., Bösenberg, J., Dier, H., Görsdorf, U., Matthias, V.,
Peters, G., Schaberl, T., and Senff, C.: Intercomparison of Ozone
Measurements between Lidar and ECC Sondes, Contr. Atmos. Phys., 69, 189–203,
1996.
Granados-Muñoz, M. J. and Leblanc, T.: Tropospheric ozone seasonal and long-term variability as seen by lidar and surface measurements at the JPL-Table Mountain Facility, California, Atmos. Chem. Phys., 16, 9299–9319, https://doi.org/10.5194/acp-16-9299-2016, 2016.
Granados-Muñoz, M. J., Johnson, M. S., and Leblanc, T.: Influence of the
North American monsoon on Southern California tropospheric ozone levels
during summer in 2013 and 2014, Geophys. Res. Lett., 44, 6431–6439,
https://doi.org/10.1002/2017GL073375, 2017.
Grant, W. B. and Hake, R. D.: Calibrated remote measurements of SO2
and O3 using atmospheric backscatter, J. Appl. Phys., 46, 3019–3023,
1975.
Grant, W. B., Browell, E. V., Butler, C. F., Fenn, M. A., Clayton, M. B.,
Hannan, J. R., Fuelberg, H. E., Blake, D. R., Blake, N. J., Gregory, G. L,
Heikes, B. G., Sachse, G. W., Singh, H. B., Snow, J., and Talbot, R. W.: A
case study of transport of tropical marine boundary layer and lower
tropospheric air masses to the northern midlatitude upper troposphere, J.
Geophys. Res., 105, 3757–3769, 2000.
Hoerling, M. P., Schaack, T. K., and Lenzen, A. J.: Global Objective
Tropopause Analysis, Mon. Weather Rev., 119, 1816–1831, 1991.
Iarlori, M., Madonna, F., Rizi, V., Trickl, T., and Amodeo, A.: Effective resolution concepts for lidar observations, Atmos. Meas. Tech., 8, 5157–5176, https://doi.org/10.5194/amt-8-5157-2015, 2015.
Jäger, H., Carnuth, W., and Georgii, B.: Observations of Saharan dust at
a North Alpine mountain station, J. Aerosol Sci., 19, 1235–1238, 1988.
Jennings, D. E., Weber, A., and Brault, J. W.: Raman spectroscopy of gases with a Fourier transform spectrometer: the spectrum of D2, Appl. Opt., 25, 284-290, 1986
Jeunouvrier, A., Mérienne, M.-F., Coquart, B., Carleer, M., Fally, S.,
Vandaele, A. C., Hermans, C., and Colin, R.: Fourier Transform Spectroscopy
of the O2 Herzberg Bands – I. Rotational Analysis, J. Mol. Spectrosc.,
198, 136–162, 1999.
Jonson, J. E., Simpson, D., Fagerli, H., and Solberg, S.: Can we explain the trends in European ozone levels?, Atmos. Chem. Phys., 6, 51–66, https://doi.org/10.5194/acp-6-51-2006, 2006.
Kalabokas, P., Papayannis, A., Tsaknakis, G., and Ziomas, I.: A
study on the atmospheric concentrations of primary and secondary air
pollutants in the Athens basin performed by DOAS and DIAL measuring
techniques, Sci. Total Environ., 414, 556–563, 2012.
Kempfer, U.: Entwicklung und Anwendung eines differentiellen
Absorptions-LIDAR-Systems zur Messung der troposphärischen
Ozonkonzentration, Dissertation, Ludwig-Maximilians-Universität
München (Germany), 151 pp., 1992.
Kempfer, U., Carnuth, W., Lotz, R., and Trickl, T.: A wide range ultraviolet
lidar system for tropospheric ozone measurements: development and
application, Rev. Sci. Instrum., 65, 3145–3164, 1994.
Klanner, L., Höveler, K., Khordakova, D., Perfahl, M., Rolf, C., Trickl, T., and Vogelmann, H.: A powerful lidar system capable of one-hour measurements of water vapour in the troposphere and the lower stratosphere as well as the temperature in the upper stratosphere and mesosphere, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-90, in review, 2020.
Kley, D., Crutzen, P. J., Smit, H. G. J., Vömel, H., Oltmans, S. J.,
Grassl, H., and Ramanathan, V.: Observations of near-zero ozone
concentrations over the convective Pacific: effects of air chemistry,
Science, 274, 230–233, 1996.
Kley, D., Beck, J., Grennfelt, P. I., Hov, O., and Penkett, S. A.:
Tropospheric Ozone Research (TOR) A Sub-Project of EUROTRAC, J. Atmos.
Chem., 28, 1–9, 1997.
Kourtidis, K., Zerefos, C., Rapsomanikis, S., Simeonov, V., Balis, D.,
Perros, P. E., Thompson, A. M., Witte, J., Calpini, B., Sharobiem, W. M.,
Papayannis, A., Mihalopoulos, N., and Drakou, R.: Regional levels of ozone
in the troposphere over eastern Mediterranean, J. Geophys. Res., 107, 8140,
https://doi.org/10.1029/2000JD000140, 2002.
Kowol-Santen, J. and Ancellet, G.: Mesoscale analysis of transport across
the subtropical tropopause, Geophys. Res. Lett., 27, 3345–3347, 2000.
Kreipl, S.: Messung des Aerosoltransports am Alpennordrand mittels
Laserradar (Lidar), Dissertation, Friedrich-Alexander-Universität
Erlangen-Nürnberg (Germany), 195 pp., 2006 (in German).
Krupenie, P. H.: The Spectrum of Molecular Oxygen, J. Phys. Chem. Ref. Data,
1, 423–534, 1972.
Kuang, S., Burris, J. F., Newchurch, M. J., Johnson, S., and Long, S.:
Differential Absorption Lidar to measure subhourly variation of tropospheric
ozone profiles, IEEE Trans. Geosci. Remote Sens., 49, 557–571, 2011.
Kuang, S., Newchurch, M. J., Burris, J., Wang, L., Knupp, K., and Huang, G.:
Stratosphere-to-troposphere transport revealed by ground-based lidar and
ozonesonde at a midlatitude site, J. Geophys. Res., 117, D18305, https://doi.org/10.1029/2012JD017695, 2012.
Kuang, S., Newchurch, M. J., Burris, J. F., and Liu, X.: Ground-based lidar
for atmospheric boundary layer ozone measurements, Appl. Opt., 52,
3557–3566, 2013.
Kuang, S., Newchurch, M. J., Johnson, M. S., Wang, L., Burris, J. F.,
Pierce, R. B., Eloranta, E. W., Pollack, I. W., Graus, M., de Gouw, J.,
Warneke, C., Ryerson, T. B., Markovic, M. Z., Holloway, J. S., Pour-Biazar,
A., Huang, G., Liu, X., and Feng, N.: Summertime tropospheric ozone
enhancement associated with a cold front passage due to
stratosphere-to-troposphere transport and biomass burning: Simultaneous
ground-based lidar and airborne measurements, J. Geophys. Res., 122, 1293–1311,
https://doi.org/10.1002/2016JD026078, 2017.
Lamarque, J.-F., Langford, A. O., and Proffitt, M. H.: Cross-tropopause
mixing of ozone through gravity wave breaking: Observation and modelling, J.
Geophys. Res., 101, 22969–22976, 1996.
Langford, A. O.: Identification and correction of
analog-to-digital-converter nonlinearities and their implications for
differential absorption lidar measurements, Appl. Opt., 34, 8330–8340, 1995.
Langford, A. O., Masters, C. D., Proffitt, M. H., Hsie, E.-Y., and Tuck, A.
F.: Ozone measurements in a tropopause fold associated with a cut-off low
system, Geophys. Res. Lett., 23, 2501–2504, 1996.
Langford, A. O., Aikin, K. C., Eubank, C. S., and Williams, E. J.:
Stratospheric contribution to high surface ozone in Colorado during
springtime, Geophys. Res. Lett., 36, L12801, https://doi.org/10.1029/2009GL038367, 2009.
Langford, A. O., Brioude, J., Cooper, O. R., Senff, C. J., Alvarez II, R.
J., Hardesty, R. M., Johnson, B. J., and Oltmans, S. J.: Stratospheric
influence on surface ozone in the Los Angeles area during late spring and
early summer of 2010, J. Geophys. Res., 117, D00V06, https://doi.org/10.1029/2011JD016766, 2012.
Langford, A. O., Alvarez II, R. J., Brioude, J., Fine, R., Gustin, M. S.,
Lin, M. Y., Marchbanks, R. D., Pierce, R. B., Sandberg, S. P., Senff, C. J.,
Weickmann, A. M., and Williams, E. J.: Entrainment of stratospheric air and
Asian pollution by the convective boundary layer in the southwestern U.S.,
J. Geophys. Res., 122, 1312–1337, https://doi.org/10.1002/2016JD025987, 2017.
Langford, A. O., Alvarez II, R. J., Brioude, Evan, S., Iraci, L. T., Kirgas,
G., Kuang, S., Leblanc, T., Newchurch, M. J., Pierce, R. B., Senff, C. J.,
and Yates, E. L.: Coordinated profiling of stratospheric intrusions and
transported pollution by the Tropospheric Ozone Lidar Network (TOLNet) and
NASA Alpha Jet experiment (AJAX): Observations and comparison to HYSPLIT,
RAQMS, and FLEXPART, Atmos. Environ., 174, 1–14, 2018.
Lazzarotto, B., Frioud, M., Larchevêque, G., Mitev, V., Quaglia, P.,
Simeonov, V., Thompson, A., van den Bergh, H., and Calpini, B.: Ozone and
water-vapor measurements by Raman lidar in the planetary boundary layer:
error sources and field measurements, Appl. Opt., 40, 2985–2997, 2001.
Leblanc, T., Sica, R. J., van Gijsel, J. A. E., Godin-Beekmann, S., Haefele, A., Trickl, T., Payen, G., and Gabarrot, F.: Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms – Part 1: Vertical resolution, Atmos. Meas. Tech., 9, 4029–4049, https://doi.org/10.5194/amt-9-4029-2016, 2016.
Leblanc, T., Brewer, M. A., Wang, P. S., Granados-Muñoz, M. J., Strawbridge, K. B., Travis, M., Firanski, B., Sullivan, J. T., McGee, T. J., Sumnicht, G. K., Twigg, L. W., Berkoff, T. A., Carrion, W., Gronoff, G., Aknan, A., Chen, G., Alvarez, R. J., Langford, A. O., Senff, C. J., Kirgis, G., Johnson, M. S., Kuang, S., and Newchurch, M. J.: Validation of the TOLNet lidars: the Southern California Ozone Observation Project (SCOOP), Atmos. Meas. Tech., 11, 6137–6162, https://doi.org/10.5194/amt-11-6137-2018, 2018.
Leclair De Bellevue, J., Réchou, A., Baray, J. L., Ancellet, G., and
Diab, R. D.: Signatures of stratosphere to troposphere transport near deep
convective events in the southern subtropics, J. Geophys Res., 111, D24107,
https://doi.org/10.1029/2005JD006947, 2006.
Liang, Q., Jaeglé, L., Hudman, R. C., Turquety, S., Jacob, D. J., Avery,
M. A., Browell, E. V., Sachse, G. W., Blake, D. R., Brune, W., Ren, X.,
Cohen, R. C., Dibb, J. E., Fried, A., Fuelberg, H., Porter, M., Heikes, B.
G., Huey, G., Singh, H. B., and Wennberg, P. O.: Summertime influence of
Asian pollution in the free troposphere over North America, J. Geophys.
Res., 112, D12S11, https://doi.org/10.1029/2006JD007919, 2007.
Machol, J. L., Marchbanks, R. D., Senff, C. J., McCarty, B. J., Eberhard, W.
L., Brewer, W. A., Richter, R. A., Alvarez II, R. J., Law, D. C., Weickmann,
A. M., and Sandberg, S. P.: Scanning tropospheric ozone and aerosol lidar
with double-gated photomultipliers, Appl. Optics, 48, 512–524, 2008.
Malicet, J., Daumont, D., Charbonnier, J., Parisse, C., Chakir, A., and
Brion, J.: Ozone UV Spectroscopy I: Absorption Cross-Sections and
Temperature Dependence, J. Atmos. Chem., 21, 263–273, 1995.
Marenco, A., Thouret, V., Nédélec, P., Smit, H., Helten, M., Kley,
D., Karcher, F., Simon, P., Law, K., Pyle, J., Poschmann, G., von Wrede, R.,
Hume, C., and Cook, T.: Measurement of ozone and water vapor by Airbus
in-service aircraft: The MOZAIC airborne program, An overview, J. Geophys.
Res., 103, 25631–25642, 1998.
Matthias, M.: Vertikalmessungen der Aerosolextinktion und des Ozons mit
einem UV-Raman-Lidar, Dissertation, Universität Hamburg, published as
Examensarbeit Nr. 80, Max-Planck-Institut für Meteorologie (Hamburg,
Germany), ISSN 0938-5177, 143 pp., 2000 (in German).
McDermid, I. S., Haner, D. A., Kleiman, M. M., Walsh, T. D., and White, M.
L.: Differential absorption lidar systems for tropospheric and stratospheric
ozone measurements, Opt. Engin., 30, 22–30, 1991.
McDermid, I. S., Beyerle, G., Haner, D. A., and Leblanc, T.: Redesign and
improved performance of the tropospheric ozone lidar at the Jet Propulsion
Laboratory Table Mountain Facility, Appl. Opt., 41, 7550–7555, 2002.
Milton, M. J. T., Ancellet, G., Apituley, A., Bösenberg, J., Carnuth,
W., Castagnoli, F., Trickl, T., Edner, H., Stefanutti, L., Schaberl, T.,
Sunesson, A., and Weitkamp, C.: Raman-shifted laser sources suitable for
differential-absorption lidar measurements of ozone in the troposphere,
Appl. Phys. B, 66, 105–113, 1998.
Mytilinaios, M., Papayannis, A., and Tsaknakis, G.: Lower-free tropospheric
ozone DIAL measurements over Athens, Greece, EPJ Web of Conferences, 28th International Laser Radar Conference, Bucharest, Romania, 25–30 June 2017, 176,
05025, https://doi.org/10.1051/epjconf/201817605025, 2018.
Nakazato, M., Nagai, T., Sakai, T., and Hirose, Y.: Tropospheric ozone
differential-absorption lidar using stimulated Raman scattering in carbon
dioxide, Appl. Opt., 46, 2269–2279, 2007.
Newchurch, M. J., Kuang, S., Leblanc, T., Alvarez II, R. J., Langford, A.
O., Senff, C. J., Burris, J. F., McGee, T. J., Sullivan, J. T., DeYoung, R.
J., Al-Saadi, J., Johnson, M., and Pszenny, A.: TOLNet – A Tropospheric
Ozone Lidar Profiling Network for Satellite Continuity and Process Studies,
Proc. 27th International Laser Radar Conference, New York, USA,
2015, 5–10 July 2015, EPJ Web of Conferences, 119, 20001, 2016.
Newell, R. E., Browell, E. V., Davis, D. D., and Liu, S. C.: Western Pacific
ozone and potential vorticity: Implications for Asian pollution, Geophys.
Res. Lett., 24, 2733–2736, 1997.
Ordoñez, C., Brunner, D., Staehelin, J., Hadjinicolaou, P., Pyle, J. A.,
Jonas, M., Wernli, H., and Prévôt, A. S. H.: Strong influence of
lowermost stratospheric ozone on lower tropospheric background ozone changes
over Europe, Geophys. Res. Lett., 34, L07805, https://doi.org/10.1029/2006GL029113, 2007.
Pan, L. L., Randel, W. J., Gary, B. L., Mahoney, M. J., and Hintsa, E. J.:
Definitions and sharpness of the extratropical tropopause: A trace gas
perspective, J. Geophys. Res., 109, D23103, https://doi.org/10.1029/2004JD004982, 2004.
Papayannis, A., Ancellet, G., Pelon, J., and Mégie, G.: Multiwavelength
lidar for ozone measurements in the troposphere and the lower stratosphere,
Appl. Opt., 29, 467–476, 1990.
Papayannis, A., Balis, D., Zanis, P., Galani, E., Wernli, H., Zerefos, C., Stohl, A., Eckhardt, S., and Amiridis, V.: Sampling of an STT event over the Eastern Mediterranean region by lidar and electrochemical sonde, Ann. Geophys., 23, 2039–2050, https://doi.org/10.5194/angeo-23-2039-2005, 2005.
Papayannis, A., Amiridis, V., Mona, L.,
Tsaknakis, G., Balis, D., Bösenberg, J., Chaikovsky, A., De Tomasi, F.,
Grigorov, I., Mattis, I., Mitev, V., Müller, D., Nickovic, S.,
Pérez, C., Pietruczuk, A., Pisani, G. L., Ravetta, F., Rizi, V., Sicard,
M., Trickl, T., Wiegner, M., Gerding, M., Mamouri, R. E., D'Amico, G., and Pappalardo, G.: Systematic lidar observations of Saharan dust
over Europe in the frame of EARLINET (2000–2002), J. Geophys. Res., 113,
D10204, https://doi.org/10.1029/2007JD009028, 2008.
Pelon, J. and Mégie, G.: Ozone Monitoring in the Troposphere and Lower
Stratosphere: Evaluation and Operation of a Ground-Based Lidar Station, J.
Geophys. Res., 87, 4947–4955, 1982.
Perrone, M. R. and Piccinno, V.: On the benefits of astigmatic focusing
configurations in stimulated Raman scattering processes, Opt. Comm., 133,
534–540, 1997.
Proffitt, M. H. and Langford, A. O.: Ground-based differential-absorption
lidar system for day or night measurements of ozone throughout the free
troposphere, Appl. Opt., 36, 2568–2585, 1997.
Ravetta, F., Ancellet, G., Kowol-Santen, J., Wilson, R., and Nedeljkovic,
D.: Ozone, Temperature, and Wind Field Measurements in a Tropopause Fold:
Comparison with a Mesoscale Model Simulation, Mon. Weather Rev., 127,
2641–2653, 1999.
Ravetta, F., Ancellet, A., Colette, A., and Schlager, H.: Long-range
transport and tropospheric ozone variability in the western Mediterranean
region during the Intercontinental Transport of Ozone and Precursors
(ITOP-2004) campaign, J. Geophys. Res., 112, D10S46, https://doi.org/10.1029/2006JD007724, 2007.
Reichardt, J., Wandinger, U., Servazi, M., and Weitkamp, C.: Combined Raman
lidar for aerosol, ozone and moisture measurements, Opt. Eng., 35,
1457–1465, 1996.
Roelofs, G. J., Kentarchos, A. S., Trickl, T., Stohl, A., Collins, W. J.,
Crowther, R. A., Hauglustaine, D., Klonecki, A., Law, K. S., Lawrence, M.
G., von Kuhlmann, R., and van Weele, M.: Intercomparison of tropospheric
ozone models: Ozone transport in a complex tropopause folding event, J.
Geophys. Res., 108, 8529, doi:10.1029/2003JD003462, 2003.
Scheel, H. E.: Ozone Climatology Studies for the Zugspitze and Neighbouring
Sites in the German Alps, pp. 134–139 in: Tropospheric Ozone Research 2,
EUROTRAC-2 Subproject Final Report, A. Lindskog, Co-ordinator, EUROTRAC
International Scientific Secretariat, available at: http://www.trickl.de/scheel.pdf (last access: 19 November 2020), München, Germany, 2003.
Seibert, P., Feldmann, H., Neininger, B., Bäumle, M., and Trickl, T.:
South foehn and ozone in the Eastern Alps – case study and climatological
aspect, Atmos. Environ., 34, 1379–1394, 2000.
Senff, C. J., Hardesty, R. M., Alvarez II, R. J., and Mayor, S. D.: Airborne
lidar characterization of power plant plumes during the 1995 Southern
Oxidants Study, J. Geophys. Res., 103, 31173–31189, 1998.
Senff, C. J., Alvarez II, R. J., Hardesty, R. M., Banta, R. M., and
Langford, A. O.: Airborne lidar measurements of ozone flux downwind of
Houston and Dallas, J. Geophys. Res., 115, D20307, https://doi.org/10.1029/2009JD013689, 2010.
Serdyuchenko, A., Gorshelev, V., Weber, M., Chehade, W., and Burrows, J. P.: High spectral resolution ozone absorption cross-sections – Part 2: Temperature dependence, Atmos. Meas. Tech., 7, 625–636, https://doi.org/10.5194/amt-7-625-2014, 2014.
Simeonov, V., Larcheveque, G., Quaglia, P., van den Bergh, H., and Calpini,
B.: Influence of the photomultiplier tube spatial uniformity on lidar
signals, Appl. Opt., 38, 5186–5190, 1999.
Simeonov, V., Ristori, P., Taslakov, M., Dinoev, T., Molina, L. T., Molina,
M. J., and van den Bergh, H.: Proceedings of the Conference on “Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing”, Bruges, Belgium, 19–20 September 2005, edited by: Singh, U. N. Singh, Proc. SPIE, 5984, 59840O, https://doi.org/10.1117/12.629429, 8 pp., 2005
Stohl, A. and Trickl, T.: A textbook example of long-range transport:
Simultaneous observation of ozone maxima of stratospheric and North American
origin in the free troposphere over Europe, J. Geophys. Res., 104,
30445–30462, 1999.
Stohl, A., Spichtinger-Rakowsky, N., Bonasoni, P., Feldmann, H.,
Memmesheimer, M., Scheel, H. E., Trickl, T., Hübener, S., Ringer, W.,
and Mandl, M.: The influence of stratospheric intrusions on alpine ozone
concentrations, Atmos. Environ., 34, 1323–1354, 2000.
Stohl, A., Bonasoni, P., Cristofanelli, P., Collins, W., Feichter, J.,
Frank, A., Forster, C., Gerasopoulos, E., Gäggeler, H., James, P.,
Kentarchos, T., Kromp-Kolb, H., Krüger, B., Land, C., Meloen, J.,
Papayannis, A., Priller, A., Seibert, P., Sprenger, M., Roelofs, G. J.,
Scheel, H. E., Schnabel, C., Siegmund, P., Tobler, L., Trickl, T., Wernli,
H., Wirth, V., Zanis, P., and Zerefos, C.: Stratosphere-troposphere exchange
– a review, and what we have learned from STACCATO, J. Geophys. Res., 108,
8516, https://doi.org/10.1029/2002JD002490, 2003.
Strawbridge, K. B., Travis, M. S., Firanski, B. J., Brook, J. R., Staebler, R., and Leblanc, T.: A fully autonomous ozone, aerosol and nighttime water vapor lidar: a synergistic approach to profiling the atmosphere in the Canadian oil sands region, Atmos. Meas. Tech., 11, 6735–6759, https://doi.org/10.5194/amt-11-6735-2018, 2018.
Sullivan, J. T., McGee, T. J., Sumnicht, G. K., Twigg, L. W., and Hoff, R. M.: A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore–Washington, D.C. region, Atmos. Meas. Tech., 7, 3529–3548, https://doi.org/10.5194/amt-7-3529-2014, 2014.
Sullivan, J. T., McGee, T. J., Thompson, A. M., Pierce, R. B., Sumnicht, G.
K., Twigg, L. W., Eloranta, E. W., and Hoff, R. M.: Characterizing the
lifetime and occurrence of stratospheric-tropospheric exchange events in the
rocky mountain region using high-resolution ozone measurements, J. Geophys.
Res., 120, 12410–12424, https://doi.org/10.1002/2015JD023877, 2016.
Sullivan, J. T., Rabenhorst, S. T., Dreessen, J., McGee, T. J, Delgado, R.,
Twigg, L., and Sumnicht, G.: Lidar observations revealing transport of
O3 in the presence of a nocturnal low-level jet: Regional implications
for “next-day” pollution, Atmos. Environ., 158, 160–171, 2017.
Sunesson, J. A., Apituley, A., and Swart, D. P. J.: Differential absorption
lidar system for routine monitoring of tropospheric ozone, Appl. Opt., 33,
7045–7058, 1994.
Tarasick, D., Galbally, I. E., Cooper, O. R., Schultz, G. M., Ancellet, G.,
Leblanc, T., Wallington, T. J., Ziemke, J., Liu, X., Steinbacher, M.,
Staehelin, J., Vigouroux, C., Hannigan, J., García, O., Foret, G.,
Zanis, P., Weatherhead, E., Petropavlovskikh, I., Worden, H., Osman, M.,
Liu, J., Chang, K.-L., Gaudel, A., Lin, M., Granados-Muñoz, M.,
Thompson, A. M., Oltmans, S. J., Cuesta, J., Dufour, G., Thouret, V.,
Hassler, B., Trickl, T., and Neu, J. L.: Tropospheric Ozone
Assessment Report: Tropospheric ozone from 1877 to 2016, observed levels,
trends and uncertainties, Elem. Sci. Anth., 7, 39, https://doi.org/10.1525/elementa.376, 2019.
TESLAS: Tropospheric Environmental Studies by Laser Sounding (TESLAS), in:
Transport and Chemical Transformation of Pollutants in the Troposphere, Vol.
8, Instrument Development for Atmospheric Research and Monitoring, edited by: Bösenberg, J., Brassington, D., and Simon, P. C., Springer (Berlin,
Heidelberg, New York), ISBN 3-540-62516-X, 1–203, 1997.
Thomasson, A., Geffroy, S., Frejafon, E., Weidauer, D., Fabian, R., Godet,
Y., Nominé, M., Ménard, T., Rairoux, P., Moeller, D., and Wolf, J.
P.: LIDAR mapping of ozone-episode dynamics and intercomparison with spot
analyzers, Appl. Phys. B, 74, 453–459, 2002.
Trickl, T.: Lidar Studies of Tropospheric Transport, in: Tropospheric Ozone
Research 2, EUROTRAC-2 Subproject Final Report, A. Lindskog, Subproject
Co-ordinator, EUROTRAC-2 International Scientific Secretariat, available at: http://www.trickl.de/TOR.pdf (last access: 19 November 2020), München,
Germany, 2003, 146–159, 2003.
Trickl, T.: Upgraded 1.56-μm lidar at IMK-IFU with 0.28 J/pulse, Appl.
Opt., 49, 3732–3740, 2010a.
Trickl, T.: Tropospheric trace-gas measurements with the
differential-absorption lidar technique, in: Recent Advances in Atmospheric
Lidars, edited by: Fiorani, L. and Mitev, V., INOE Publishing House, Bucharest
(Romania), Series on Optoelectronic Materials and Devices, Vol. 7, ISBN 978-973-88109-6-9; 87–147 (revised version available at: http://www.trickl.de/DIAL.pdf (last access: 19 November 2020), 2010b.
Trickl, T., Vrakking, M. J. J., Cromwell, E. F., Lee, Y. T., and Kung, A.
H.: Ultrahigh-resolution (1 + 1) photoionization spectroscopy of Kr I:
Hyperfine structures, isotope shifts and lifetimes for the n = 5, 6, 7 4p
5ns Rydberg levels, Phys. Rev. A, 39, 2948–2955, 1989.
Trickl, T., Cooper, O. R., Eisele, H., James, P., Mücke, R., and Stohl,
A.: Intercontinental transport and its influence on the ozone concentrations
over central Europe: Three case studies, J. Geophys. Res., 108, 8530,
https://doi.org/10.1029/2002JD002735, 2003.
Trickl, T., Kung, A. H., and Lee, Y. T.: Krypton atom and
testing the limits of extreme-ultraviolet tunable-laser spectroscopy, Phys.
Rev. A, 75, 022501, https://doi.org/10.1103/PhysRevA.75.022501, 2007.
Trickl, T., Feldmann, H., Kanter, H.-J., Scheel, H.-E., Sprenger, M., Stohl, A., and Wernli, H.: Forecasted deep stratospheric intrusions over Central Europe: case studies and climatologies, Atmos. Chem. Phys., 10, 499–524, https://doi.org/10.5194/acp-10-499-2010, 2010.
Trickl, T., Bärtsch-Ritter, N., Eisele, H., Furger, M., Mücke, R., Sprenger, M., and Stohl, A.: High-ozone layers in the middle and upper troposphere above Central Europe: potential import from the stratosphere along the subtropical jet stream, Atmos. Chem. Phys., 11, 9343–9366, https://doi.org/10.5194/acp-11-9343-2011, 2011.
Trickl, T., Vogelmann, H., Giehl, H., Scheel, H.-E., Sprenger, M., and Stohl, A.: How stratospheric are deep stratospheric intrusions?, Atmos. Chem. Phys., 14, 9941–9961, https://doi.org/10.5194/acp-14-9941-2014, 2014.
Trickl, T., Vogelmann, H., Flentje, H., and Ries, L.: Stratospheric ozone in boreal fire plumes – the 2013 smoke season over central Europe, Atmos. Chem. Phys., 15, 9631–9649, https://doi.org/10.5194/acp-15-9631-2015, 2015.
Trickl, T., Vogelmann, H., Fix, A., Schäfler, A., Wirth, M., Calpini, B., Levrat, G., Romanens, G., Apituley, A., Wilson, K. M., Begbie, R., Reichardt, J., Vömel, H., and Sprenger, M.: How stratospheric are deep stratospheric intrusions? LUAMI 2008, Atmos. Chem. Phys., 16, 8791–8815, https://doi.org/10.5194/acp-16-8791-2016, 2016.
Trickl, T., Vogelmann, H., Ries, L., and Sprenger, M.: Very high stratospheric influence observed in the free troposphere over the northern Alps – just a local phenomenon?, Atmos. Chem. Phys., 20, 243–266, https://doi.org/10.5194/acp-20-243-2020, 2020.
Uchino, O., Tokunaga, M., Maeda, M., and Miyazoe, Y.:
Differential-absorption-lidar measurements of tropospheric ozone with
excimer-Raman hybrid laser, Opt. Lett., 8, 347–349, 1983.
Uchino, O., Sakai, T., Nagai, T., Morino, I., Maki, T., Deushi, M., Shibata, K., Kajino, M., Kawasaki, T., Akaho, T., Takubo, S., Okumura, H., Arai, K., Nakazato, M., Matsunaga, T., Yokota, T., Kawakami, S., Kita, K., and Sasano, Y.: DIAL measurement of lower tropospheric ozone over Saga (33.24° N, 130.29° E), Japan, and comparison with a chemistry–climate model, Atmos. Meas. Tech., 7, 1385–1394, https://doi.org/10.5194/amt-7-1385-2014, 2014.
U.S. Standard Atmosphere: National Oceanic and Atmospheric Organization
(NOAA), National Aeronautics and Space Administration, United States Air
Force, NOAA-S/T 76-1562, US Printing Office (Washington, D.C.), 227 pp.,
1976.
Uthe, E. E. and Livingston, J. M.: Airborne Lidar Mapping of Ozone
Concentrations During the Lake Michigan Ozone Study, J. Air Waste Manage.
Assoc., 42, 1313–1318, 1992.
Valente, R. J., Imhoff, R. E., Tanner, R. L., Meagher, J. F., Daum, P. H.,
Hardesty, R. M., Banta, R. M., Alvarez, R. J., McNider, R. T., and Gillani,
N. V.: Ozone production during an urban air stagnation episode over
Nashville, Tennessee, J. Geophys. Res., 103, 22555–22568, 1998.
Vautard, R., Szopa, S., Beekmann, M., Menut, L., Hauglustaine, D. A., Rouil,
L., and Roemer, M.: Are decadal anthropogenic emission reductions in Europe
consistent with surface ozone observations? Geophys. Res. Lett., 33, L13810,
https://doi.org/10.1029/2006GL026080, 2006.
VDI: guide line 4210 Remote Sensing, Atmospheric Measurements with LIDAR,
Measuring gaseous air pollution with the DAS LIDAR, Verein Deutscher
Ingenieure, Düsseldorf, Germany, 47 pp., 1999.
Veselovskii, I. and Barchunov, B.: Excimer-laser-based lidar for
tropospheric ozone monitoring, Appl. Phys. B, 68, 1131–1137, 1999.
Viallon, J., Lee, S., Moussay, P., Tworek, K., Petersen, M., and Wielgosz, R. I.: Accurate measurements of ozone absorption cross-sections in the Hartley band, Atmos. Meas. Tech., 8, 1245–1257, https://doi.org/10.5194/amt-8-1245-2015, 2015.
Völger, P., Bösenberg, J., and Schult, I.: Scattering Properties of
Selected Model Aerosols Calculated at UV-Wavelengths: Implications for DIAL
Measurements of Tropospheric Ozone, Beitr. Phys. Atmosph., 69, 177–187,
1996.
Vogelmann, H. and Trickl, T.: Wide-Range Sounding of Free-Tropospheric Water
Vapor with a Differential-Absorption Lidar (DIAL) at a High-Altitude
Station, Appl. Opt., 47, 2116–2132, 2008.
VOTALP II: Vertical Ozone Transport in the Alps II, Final Report for the
European Union, Contract Nr.: ENV4 CT970413, Reporting Period
1/3/1998-29/2/2000, H. Kromp-Kolb, Co-ordinator, Universität für
Bodenkultur Wien (Austria), Institut für Meteorologie und Physik, 96
pp., 2000.
Wallinder, E., Edner, H., Ragnarson, P., and Svanberg, S.: Vertically
Sounding Ozone Lidar System based on a KrF Excimer Laser, Phys. Scripta,
55, 714–718, 1997.
Wang, L., Newchurch, M. J., Alvarez II, R. J., Berkoff, T. A., Brown, S. S., Carrion, W., De Young, R. J., Johnson, B. J., Ganoe, R., Gronoff, G., Kirgis, G., Kuang, S., Langford, A. O., Leblanc, T., McDuffie, E. E., McGee, T. J., Pliutau, D., Senff, C. J., Sullivan, J. T., Sumnicht, G., Twigg, L. W., and Weinheimer, A. J.: Quantifying TOLNet ozone lidar accuracy during the 2014 DISCOVER-AQ and FRAPPÉ campaigns, Atmos. Meas. Tech., 10, 3865–3876, https://doi.org/10.5194/amt-10-3865-2017, 2017.
Weitkamp, C., Baumbach, G., Becker, K.-H., Braun-Schoen, S., Burger, H.,
Dinev, S., Fabian, R., Frey, S., Fritzsche, F., Glaser, K., Glauer, J.,
Herb, F., Immler, F., Junkermann, W., Kanter, H. J., Lindemann, C.,
Loescher, A., Mohnen, V. A., Möller, D., Neidhart, B., Olariu, R.,
Reimer, E., Schmidt, V., Schubert, G., Spittler, M., Vogt, U., Weidauer, D.,
Windholz, L., and Wöste, L.: Wie richtig sind Lidarmessungen der
Ozonverteilung?, Gefahrstoffe – Reinhaltung der Luft, 60, 279–284, 2000 (in
German).
Wotava, G. and Kromp-Kolb, H.: The research project VOTALP – general
objectives and main results, Atmos. Environ., 34, 1319–1322, 2000.
Yates, E. L., Johnson, M. S., Iraci, L. T., Ryoo, J.-M., Pierce, R. B.,
Cullis, P. D., Gore, W., Ives, M. A., Johnson, B. J., Leblanc, T., Marrero,
J. E., Sterling, C. W., and Tanaka, T.: An Assessment of Ground Level and
Free Tropospheric Ozone Over California and Nevada, J. Geophys. Res., 122,
10089–10102, https://doi.org/10.1002/2016JD026266, 2017.
Zanis, P., Trickl, T., Stohl, A., Wernli, H., Cooper, O., Zerefos, C., Gaeggeler, H., Schnabel, C., Tobler, L., Kubik, P. W., Priller, A., Scheel, H. E., Kanter, H. J., Cristofanelli, P., Forster, C., James, P., Gerasopoulos, E., Delcloo, A., Papayannis, A., and Claude, H.: Forecast, observation and modelling of a deep stratospheric intrusion event over Europe, Atmos. Chem. Phys., 3, 763–777, https://doi.org/10.5194/acp-3-763-2003, 2003.
Zhao, Y., Howell, J. N., and Hardesty, R. M.: Transportable Lidar for the
Measurement of Ozone Concentration and Flux Profiles in the Lower
Troposphere, in: Proceedings of the 16th International Laser Radar
Conference, Cambridge, Massachussetts, USA, 20–24 July 1992, 185–187, 1992.
Zhao, Y., Marchbanks, R. D., Senff, C. J., and Johnson, H. D.: Lidar
Profiling of Ozone and Aerosol in the SCOS97-NARSTO Experiment, in:
Proceedings of the Ninetenth International Laser Radar Conference, Annapolis,
Maryland, USA, 6–10 July 1998, edited by: Singh, U. N., Ismail, S., and Schwemmer, G. K.,
NASA Langley Research Center, NASA/CP-1998-207671/PT1, 375–378, 1998.
Short summary
Lidar sounding of ozone and other atmospheric constituents has proved to be an invaluable tool for atmospheric studies. The ozone lidar systems developed at Garmisch-Partenkirchen have reached an accuracy level almost matching that of in situ sensors. Since the late 1990s numerous important scientific discoveries have been made, such as the first observation of intercontinental transport of ozone and the very high occurrence of intrusions of stratospheric air into the troposphere.
Lidar sounding of ozone and other atmospheric constituents has proved to be an invaluable tool...