Articles | Volume 13, issue 11
https://doi.org/10.5194/amt-13-6357-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-6357-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Three decades of tropospheric ozone lidar development at Garmisch-Partenkirchen, Germany
Thomas Trickl
CORRESPONDING AUTHOR
Karlsruher Institut für Technologie, Institut für Meteorologien und Klimaforschung (IMK-IFU), Kreuzeckbahnstr. 19, 82467
Garmisch-Partenkirchen, Germany
Helmuth Giehl
Karlsruher Institut für Technologie, Institut für Meteorologien und Klimaforschung (IMK-IFU), Kreuzeckbahnstr. 19, 82467
Garmisch-Partenkirchen, Germany
Frank Neidl
Karlsruher Institut für Technologie, Institut für Meteorologien und Klimaforschung (IMK-IFU), Kreuzeckbahnstr. 19, 82467
Garmisch-Partenkirchen, Germany
Matthias Perfahl
Karlsruher Institut für Technologie, Institut für Meteorologien und Klimaforschung (IMK-IFU), Kreuzeckbahnstr. 19, 82467
Garmisch-Partenkirchen, Germany
Hannes Vogelmann
Karlsruher Institut für Technologie, Institut für Meteorologien und Klimaforschung (IMK-IFU), Kreuzeckbahnstr. 19, 82467
Garmisch-Partenkirchen, Germany
Related authors
Thomas Trickl, Hannes Vogelmann, Michael Bittner, Gerald Nedoluha, Carsten Schmidt, Wolfgang Steinbrecht, and Sabine Wüst
EGUsphere, https://doi.org/10.5194/egusphere-2025-1952, https://doi.org/10.5194/egusphere-2025-1952, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
A powerful lidar system has been installed at the high-altitude observatory Schneefernerhaus (2575 m) to allow for atmospheric temperature measurements up to more than 80 km within just one hour. The temperature profiles are calibrated by values obtained from chemiluminscence of the hydroxyl radical around 86 km. The temperature profiles are successfully compared with satellite and lidar data.
Thomas Trickl, Hannes Vogelmann, Michael D. Fromm, Horst Jäger, Matthias Perfahl, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 24, 1997–2021, https://doi.org/10.5194/acp-24-1997-2024, https://doi.org/10.5194/acp-24-1997-2024, 2024
Short summary
Short summary
In 2023, the lidar team at Garmisch-Partenkirchen (Germany) celebrated its 50th year of aerosol profiling. The highlight of these activities has been the lidar measurements of stratospheric aerosol carried out since 1976. The observations since 2017 are characterized by severe smoke from several big fires in North America and Siberia and three volcanic eruptions. The sudden increase in the frequency of such strong fire events is difficult to understand.
Thomas Trickl, Martin Adelwart, Dina Khordakova, Ludwig Ries, Christian Rolf, Michael Sprenger, Wolfgang Steinbrecht, and Hannes Vogelmann
Atmos. Meas. Tech., 16, 5145–5165, https://doi.org/10.5194/amt-16-5145-2023, https://doi.org/10.5194/amt-16-5145-2023, 2023
Short summary
Short summary
Tropospheric ozone have been measured for more than a century. Highly quantitative ozone measurements have been made at monitoring stations. However, deficits have been reported for vertical sounding systems. Here, we report a thorough intercomparison effort between a differential-absorption lidar system and two types of balloon-borne ozone sondes, also using ozone sensors at nearby mountain sites as references. The sondes agree very well with the lidar after offset corrections.
Thomas Trickl, Cédric Couret, Ludwig Ries, and Hannes Vogelmann
Atmos. Chem. Phys., 23, 8403–8427, https://doi.org/10.5194/acp-23-8403-2023, https://doi.org/10.5194/acp-23-8403-2023, 2023
Short summary
Short summary
Downward atmospheric transport from the stratosphere (STT) is the most important natural source of tropospheric ozone. We analyse the stratospheric influence on the long-term series of ozone and carbon monoxide measured on the Zugspitze in the Bavarian Alps (2962 m a.s.l.). Since the 1970s, there has been a pronounced ozone rise that has been ascribed to an increase in STT. We determine the stratospheric influence from the observational data alone (humidity and 7Be).
Claudio Belotti, Flavio Barbara, Marco Barucci, Giovanni Bianchini, Francesco D'Amato, Samuele Del Bianco, Gianluca Di Natale, Marco Gai, Alessio Montori, Filippo Pratesi, Markus Rettinger, Christian Rolf, Ralf Sussmann, Thomas Trickl, Silvia Viciani, Hannes Vogelmann, and Luca Palchetti
Atmos. Meas. Tech., 16, 2511–2529, https://doi.org/10.5194/amt-16-2511-2023, https://doi.org/10.5194/amt-16-2511-2023, 2023
Short summary
Short summary
FIRMOS (Far-Infrared Radiation Mobile Observation System) is a spectroradiometer measuring in the far-infrared, developed to support the preparation of the FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) satellite mission. In this paper, we describe the instrument, its data products, and the results of the comparison with a suite of observations made from a high-altitude site during a field campaign, in winter 2018–2019.
Lisa Klanner, Katharina Höveler, Dina Khordakova, Matthias Perfahl, Christian Rolf, Thomas Trickl, and Hannes Vogelmann
Atmos. Meas. Tech., 14, 531–555, https://doi.org/10.5194/amt-14-531-2021, https://doi.org/10.5194/amt-14-531-2021, 2021
Short summary
Short summary
The importance of water vapour as the most influential greenhouse gas and for air composition calls for detailed investigations. The details of the highly inhomogeneous distribution of water vapour can be determined with lidar, the very low concentrations at high altitudes imposing a major challenge. An existing water-vapour lidar in the Bavarian Alps was recently complemented by a powerful Raman lidar that provides water vapour up to 20 km and temperature up to 90 km within just 1 h.
Thomas Trickl, Hannes Vogelmann, Michael Bittner, Gerald Nedoluha, Carsten Schmidt, Wolfgang Steinbrecht, and Sabine Wüst
EGUsphere, https://doi.org/10.5194/egusphere-2025-1952, https://doi.org/10.5194/egusphere-2025-1952, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
A powerful lidar system has been installed at the high-altitude observatory Schneefernerhaus (2575 m) to allow for atmospheric temperature measurements up to more than 80 km within just one hour. The temperature profiles are calibrated by values obtained from chemiluminscence of the hydroxyl radical around 86 km. The temperature profiles are successfully compared with satellite and lidar data.
Johannes Speidel, Hannes Vogelmann, Andreas Behrendt, Diego Lange, Matthias Mauder, Jens Reichardt, and Kevin Wolz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-168, https://doi.org/10.5194/amt-2024-168, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Humidity transport from the Earth's surface into the atmosphere is relevant for many processes. However, knowledge on the actual distribution of humidity concentrations is sparse – mainly due to technological limitations. With the herein presented lidar, it is possible to measure humidity concentrations and their vertical fluxes up to altitudes of >3 km with high spatio-temporal resolution, opening new possibilities for detailed process understanding and, ultimately, better model representation.
Thomas Trickl, Hannes Vogelmann, Michael D. Fromm, Horst Jäger, Matthias Perfahl, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 24, 1997–2021, https://doi.org/10.5194/acp-24-1997-2024, https://doi.org/10.5194/acp-24-1997-2024, 2024
Short summary
Short summary
In 2023, the lidar team at Garmisch-Partenkirchen (Germany) celebrated its 50th year of aerosol profiling. The highlight of these activities has been the lidar measurements of stratospheric aerosol carried out since 1976. The observations since 2017 are characterized by severe smoke from several big fires in North America and Siberia and three volcanic eruptions. The sudden increase in the frequency of such strong fire events is difficult to understand.
Thomas Trickl, Martin Adelwart, Dina Khordakova, Ludwig Ries, Christian Rolf, Michael Sprenger, Wolfgang Steinbrecht, and Hannes Vogelmann
Atmos. Meas. Tech., 16, 5145–5165, https://doi.org/10.5194/amt-16-5145-2023, https://doi.org/10.5194/amt-16-5145-2023, 2023
Short summary
Short summary
Tropospheric ozone have been measured for more than a century. Highly quantitative ozone measurements have been made at monitoring stations. However, deficits have been reported for vertical sounding systems. Here, we report a thorough intercomparison effort between a differential-absorption lidar system and two types of balloon-borne ozone sondes, also using ozone sensors at nearby mountain sites as references. The sondes agree very well with the lidar after offset corrections.
Thomas Trickl, Cédric Couret, Ludwig Ries, and Hannes Vogelmann
Atmos. Chem. Phys., 23, 8403–8427, https://doi.org/10.5194/acp-23-8403-2023, https://doi.org/10.5194/acp-23-8403-2023, 2023
Short summary
Short summary
Downward atmospheric transport from the stratosphere (STT) is the most important natural source of tropospheric ozone. We analyse the stratospheric influence on the long-term series of ozone and carbon monoxide measured on the Zugspitze in the Bavarian Alps (2962 m a.s.l.). Since the 1970s, there has been a pronounced ozone rise that has been ascribed to an increase in STT. We determine the stratospheric influence from the observational data alone (humidity and 7Be).
Claudio Belotti, Flavio Barbara, Marco Barucci, Giovanni Bianchini, Francesco D'Amato, Samuele Del Bianco, Gianluca Di Natale, Marco Gai, Alessio Montori, Filippo Pratesi, Markus Rettinger, Christian Rolf, Ralf Sussmann, Thomas Trickl, Silvia Viciani, Hannes Vogelmann, and Luca Palchetti
Atmos. Meas. Tech., 16, 2511–2529, https://doi.org/10.5194/amt-16-2511-2023, https://doi.org/10.5194/amt-16-2511-2023, 2023
Short summary
Short summary
FIRMOS (Far-Infrared Radiation Mobile Observation System) is a spectroradiometer measuring in the far-infrared, developed to support the preparation of the FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) satellite mission. In this paper, we describe the instrument, its data products, and the results of the comparison with a suite of observations made from a high-altitude site during a field campaign, in winter 2018–2019.
Peng Yuan, Roeland Van Malderen, Xungang Yin, Hannes Vogelmann, Weiping Jiang, Joseph Awange, Bernhard Heck, and Hansjörg Kutterer
Atmos. Chem. Phys., 23, 3517–3541, https://doi.org/10.5194/acp-23-3517-2023, https://doi.org/10.5194/acp-23-3517-2023, 2023
Short summary
Short summary
Water vapour plays an important role in various weather and climate processes. However, due to its large spatiotemporal variability, its high-accuracy quantification remains a challenge. In this study, 20+ years of GPS-derived integrated water vapour (IWV) retrievals in Europe were obtained. They were then used to characterise the temporal features of Europe's IWV and assess six atmospheric reanalyses. Results show that ERA5 outperforms the other reanalyses at most temporal scales.
Lisa Klanner, Katharina Höveler, Dina Khordakova, Matthias Perfahl, Christian Rolf, Thomas Trickl, and Hannes Vogelmann
Atmos. Meas. Tech., 14, 531–555, https://doi.org/10.5194/amt-14-531-2021, https://doi.org/10.5194/amt-14-531-2021, 2021
Short summary
Short summary
The importance of water vapour as the most influential greenhouse gas and for air composition calls for detailed investigations. The details of the highly inhomogeneous distribution of water vapour can be determined with lidar, the very low concentrations at high altitudes imposing a major challenge. An existing water-vapour lidar in the Bavarian Alps was recently complemented by a powerful Raman lidar that provides water vapour up to 20 km and temperature up to 90 km within just 1 h.
Cited articles
ACTRIS: Data Policy Disclaimer, available at: http://actris.nilu.no/, last access: 19 November 2020.
Amodeo, A., Bösenberg, J., Ansmann, A., Balis, D., Böckmann, C.,
Chaikovsky, A., Comeron, A., Mitev, V., Papayannis, A., Pappalardo, G.,
Perrone, M. R., Rizi, V., Simeonov, V., Sobolewski, P., Spinelli, N.,
Stoyanov, D. V., Trickl, T., and Wiegner, M.: EARLINET: the European Aerosol
Lidar Network, Optica Pura y Aplicada, 39, 1–10, 2006.
Ancellet, A. and Ravetta, F.: The Airborne Lidar for Tropospheric Ozone
(ALTO), Advances in Atmospheric Remote Sensing with Lidar in Selected Papers
of the 18th International Laser Radar Conference, Berlin (Germany, 1996), edited by:
Ansmann, A., Neuber, R., Rairoux, P., and Wandinger, U., Springer, Berlin,
Heidelberg, New York, 22–26 July 1996, 399–402, 1997.
Ancellet, A. and Ravetta, F.: Compact airborne lidar for tropospheric
ozone: description and field measurements, Appl. Opt., 37, 5509–5521, 1998.
Ancellet, G., Papayannis, A., Pelon, J., and Mégie, G.: DIAL
Tropospheric Ozone Measurement Using a Nd:YAG Laser and the Raman Shifting
Technique, J. Atmos. Oceanic Technol., 6, 832–839, 1989.
Ancellet, G., Pelon, J., Beekmann, M., Papayannis, A., and Mégie, G.:
Ground-Based Lidar Studies of Ozone Exchanges Between the Stratosphere and
the Troposphere, J. Geophys. Res., 96, 22401–22421, 1991.
Ancellet, A., Beekmann, M., and Papayannis, A.: Impact of cutoff low
development on downward transport of ozone in the troposphere, J. Geophys.
Res., 99, 3451–3468, 1994.
Ancellet, G., Pelon, J., Totems, J., Chazette, P., Bazureau, A., Sicard, M., Di Iorio, T., Dulac, F., and Mallet, M.: Long-range transport and mixing of aerosol sources during the 2013 North American biomass burning episode: analysis of multiple lidar observations in the western Mediterranean basin, Atmos. Chem. Phys., 16, 4725–4742, https://doi.org/10.5194/acp-16-4725-2016, 2016.
Alvarez II, R. J., Senff, C. J., Hardesty, R. M., Parrish, D. D., Like, W.
T., Watson, T. B., Daum, P. H., and Gillani, N.: Comparisons of airborne
lidar measurements of ozone with airborne in situ measurements during the
1995 Southern Oxidants Study, J. Geophs. Res., 103, 31155–31171, 1998.
Alvarez II, R. J., Senff, C. J., Langford, A. O., Weikmann, A. M., Law, D.
C., Machol, J. L., Merrit, D. A., Marchbanks, R. D., Sandberg, S. P.,
Brewer, W. A., Hardesty, R. M., and Banta, R. M.: Development and
application of a compact, tunable, solid-state airborne ozone lidar system
for boundary layer profiling, J. Atmos. Ocean. Technol., 28, 1258–1271,
2011.
ATMOFAST: Atmosphärischer Ferntransport und seine Auswirkungen auf die
Spurengaskonzentrationen in der freien Troposphäre über Mitteleuropa
(Atmospheric Long-range Transport and its Impact on the Trace-gas
Composition of the Free Troposphere over Central Europe), Project Final
Report, T. Trickl, co-ordinator, M. Kerschgens, A. Stohl, and T. Trickl,
subproject co-ordinators, funded by the German Ministry of Education and
Research within the programme “Atmosphärenforschung 2000“,
Forschungszentrum Karlsruhe, IMK-IFU (Garmisch-Partenkirchen, Germany),
http://www.trickl.de/ATMOFAST.htm (last access: 19 November 2020), 130 pp., 2005 (with revised
publication list 2012; in German).
Banta, R. M., Senff, C. J., White, A. B., Trainer, M., McNider, R. T.,
Valente, R. J., Mayor, S. D., Alvarez, R. J., Hardesty, R. M., Parrish, D.,
and Fehsenfeld, F. C.: Daytime buildup and nightime transport of urban ozone
in the boundary layer during a stagnation episode, J. Geophys. Res., 103,
22519–22544, 1998.
Baray, J.-L., Leveau, J., Porteneuve, J., Ancellet, G., Keckhut, P., Posny,
F., and Baldy, S.: Description and and evaluation of a tropospheric ozone
lidar implemented on an existing lidar in the southern subtropics, Appl.
Opt., 38, 6808–6817, 1999.
Baray, J.-L., Daniel, V., Ancellet, G., and Legras, B.: Planetary-scale
tropopause folds in the southern subtropics, Geophys. Res. Lett., 27,
353–356, 2000.
Blackman, R. B. and Tukey, J. W.: in: The Measurement of Power Spectra,
From the Point of View of Communications Engineering, Dover, Publications,
New York, USA, 95–101, 1959.
Bragg, S. L., Brault, J. W., and Smith, W. H.: Line Positions and Strengths
in the H2 Quadrupole Spectrum, Astrophys. J., 263, 999–1004, 1982.
Brenner, P., Reitebuch, O., Schäfer, K., Trickl, T., and Stichternath,
A.: A Novel Mobile Vertical-sounding System for Ozone Studies in the Lower
Troposphere”, Advances in Atmospheric Remote Sensing with Lidar, Selected
Papers of the 18th International Laser Radar Conference, Berlin (Germany,
1996), edited by: Ansmann, A., Neuber, R., Rairoux, P., and Wandinger, U., Springer, Berlin, Heidelberg, New York, 22–26 July 1996, 383–386, 1997.
Browell, E. V.: Lidar measurements of tropospheric gases, Opt. Eng., 21,
128–132, 1982.
Browell, E. V., Carter, A. F., Shipley, S. T., Allen, R. J., Butler, C. F.,
Mayo, M. N., Siviter, J. H., and Hall, W. M.: NASA multipurpose airborne
DIAL system and measurements of ozone and aerosol profiles, Appl. Opt., 22,
522–534, 1983.
Browell, E. V., Danielsen, E. F., Ismail, S., Gregory, G. L., and Beck, S.
M.: Tropopause Fold Structure Determined From Airborne Lidar and in Situ
Measurements, J. Geophys. Res., 92, 2112–2120, 1987.
Browell, E. V., Fenn, M. A., Butler, C. F., Grant, W. B., Merrill, J. T.,
Newell, R. E., Bradshaw, J. D., Sandholm, S. T., Anderson, B. E., Bandy, A.
R., Bachmeier, A. S., Blake, D. R., Davis, D. D., Gregory, G. L., Heikes, B.
G., Kondo, Y., Liu, S. C., Rowland, F. S., Sachse, G. W., Singh, H. B.,
Talbot, R. W., and Thornton, D. C.: Large-scale air mass characteristics
observed over the Western Pacific during summertime, J. Geophys. Res., 111,
1691–1712, 1996.
Browell, E. V., Fenn, M. A., Butler, C. F., Grant, W. B., Ismail, S.,
Ferrare, R. A., Kooi, S. A., Brackett, V. G., Clayton, M. B., Avery, M. A.,
Barrick, J. D. W., Fuelberg, H. E., Maloney, J. C., Newell, R. E., Zhu, Y.,
Mahoney, M. J., Anderson, B. E., Blake, D. R., Brune, W. H., Heikes, B. G.,
Sachse, G. W., Singh, H. B., and Talbot, R. W.: Large-scale air mass
characteristics observed over the remote tropical Pacific Ocean during March–April 1999: Results from the PEM-Tropics B field experiment, J. Geophys.
Res., 106, 32481–32501, 2001.
Bucreev, V. S., Vartapetov, S. K., Veselovskii, I. A., Galustov, A. S.,
Kovalev, Y. M., Prokhorov, A. M., Svetogorov, E. S., Khmelevtsov, S. S.,
and Lee, C. H.: Excimer-laser-based lidar system for stratospheric and
tropospheric ozone measurements, Quantum Electron+., 24, 546–551 (translated from Kvantovaya Electron+., 21, 591–596, 1994), 1994.
Bucreev, V. S., Vartapetov, S. K., Veselovskii, I. A., Galustov, A. S.,
Kovalev, Y. M., Svetogorov, E. S., and Khmelevtsov, S. S.: Combined lidar
system for stratospheric and tropospheric ozone measurements, Appl. Phys. B,
62, 97–101, 1996.
Burlakov, V. D., Dolgii, S. I., Makeev, A. P., Nevzorov, A. V., Romanovskii,
O. A., and Kharchenko, O. V.: A Differential-Absorption Lidar for Ozone
Sensing in the Upper Atmosphere – Lower Stratosphere, Instrum. exp. Tech+., 53, 886–889, 2010.
Carnuth, W., Kempfer, U., and Trickl, T.: Highlights of the tropospheric
lidar studies at IFU within the TOR project, Tellus B, 54, 163–185, 2002.
Couach, O., Balin, I., Jiménez, R., Ristori, P., Perego, S., Kirchner, F., Simeonov, V., Calpini, B., and van den Bergh, H.: An investigation of ozone and planetary boundary layer dynamics over the complex topography of Grenoble combining measurements and modeling, Atmos. Chem. Phys., 3, 549–562, https://doi.org/10.5194/acp-3-549-2003, 2003.
Cristofanelli, P., Bonasoni, P., Collins, W., Feichter, J., Forster, C.,
James, P., Kentarchos, A., Kubik, P. W., Land, C., Meloen, J., Roelofs, G.
J., Siegmund, P., Sprenger, M., Schnabel, C., Stohl, A., Tobler, L.,
Tositti, L., Trickl, T., and Zanis, P.: Stratosphere to troposphere
transport: a model and method evaluation, J. Geophys. Res., 108, 8525, https://doi.org/10.1029/2002JD002600, 2003.
Daumont, D., Brion, J., Charbonnier, J., and Malicet, J.: Ozone UV
Spectroscopy I: Absorption Cross-Sections at Room Temperature, J. Atmos.
Chem., 15, 145–155, 1992.
De Schoulepnikoff, L., Mitev, V., Simeonov, V., Calpini, B., and van den
Bergh, H.: Experimental investigation of high-power single-pass Raman
shifters in the ultraviolet with Nd:YAG and KrF lasers, Appl. Opt., 36,
5026–5043, 1997.
De Young, R., Carrion, W., Ganoe, R., Pliutau, D., Gronoff, G., Berkoff, T.,
and Kuang, S.: Langley mobile ozone lidar: ozone and aerosol atmospheric
profiling for air quality research, Appl. Opt., 56, 721–730, 2017.
Dickensen, G. D., Niu, M. L., Salumbides, E. J., Komasa, J., Eikema, K. S.
E., Pachuki, K., and Ubachs, W.: Fundamental Vibration of Molecular
Hydrogen, Phys. Rev. Lett., 110, 193601, https://doi.org/10.1103/PhysRevLett.110.193601 , 2013.
Draxler, R. and Hess, G.: An overview of the HYSPLIT_4
modelling system for trajectories, dispersion, and deposition, Aust.
Meteorol. Mag., 47, 295–308, 1998.
Dreessen, J., Sullivan, J., and Delgado, R.: Observations and impacts of
transported Canadian wildfire smoke on ozone and aerosol air quality in the
Maryland region on June 9–12, 2015, J. Air Waste Manage Assoc., 66,
842–862, 2016.
Duclaux, O., Frejafon, E., Thomasson, A., Yu, J., C., Puel, C., Savoie, F.,
Ritter, P., Boch, J. P., and Wolf, J. P.: 3D-air quality model evaluation
using the Lidar technique, Atmos. Environ., 36, 5081–5095, 2002.
Dufour, A., Amodei, M., Ancellet, G., and Peuch, V.-H.: Observed and
modelled ”chemical weather” during ESCOMPTE, Atmos. Res., 74, 161–189,
2005.
Durieux, E., Fiorani, L., Calpini, B., Flamm, M., Jaquet, L., and van den
Bergh, H.: Tropospheric Ozone Measurements over the Great Athens Area during
the MEDCAPHOT-TRACE Campaign, Atmos. Environ., 32, 2141–2150, 1998.
Eisele, H.: Aufbau und Betrieb eines Dreiwellenlängen-Lidars für
Ozonmessungen in der gesamten Troposphäre und Entwicklung eines neuen
Auswerteverfahrens zur Aerosol-korrektur, Dissertation, Universität
Tübingen (Germany, 1997), published as Schriftenreihe des
Fraunhofer-Instituts für Atmosphärische Umweltforschung, Vol. 55,
Verlag Dr. W. Maraun, Frankfurt/Main, Germany, 1998, ISBN 3-932666-08-9,
107 pp., 1997 (in German).
Eisele, H. and Trickl, T.: Second Generation of the IFU Stationary
Tropospheric Ozone Lidar, Advances in Atmospheric Remote Sensing with Lidar,
Selected Papers of the 18th International Laser Radar Conference (Berlin,
Germany, 1996), edited by: Ansmann, A., Neuber, R., Rairoux, P., and Wandinger, U., Springer, Berlin, Heidelberg, New York, 22–26 July 1996, 379–382, 1997.
Eisele, H. and Trickl, T.: Improvements of the aerosol algorithm in
ozone-lidar data processing by use of evolutionary strategies, Appl. Opt.,
44, 2638–2651, 2005.
Eisele, H., Scheel, H. E., Sladkovic, R., and Trickl, T.: High-Resolution
Lidar Measurements of Stratosphere-Troposphere Exchange, J. Atmos. Sci., 56,
319–330, 1999.
EUROTRAC: Transport and Chemical Transformation of Pollutants in the
Troposphere, Vol. 1, An Overview of the Work of EUROTRAC, edited by: Borrell, P. and Borrell, P.
M., Springer (Berlin, Heidelberg, New York), ISBN
3-540-66775-X, 474 pp., 1997.
Fiorani, L., Calpini, B., Jaquet, L., van den Bergh, H., and Durieux, E.: A
Combined Determination of Wind Velocities and Ozone Concentration for a
First Measurement of Ozone Fluxes with a DIAL Instrument during the
MEDCAPHOT-TRACE Campaign, Atmos. Environ., 32, 2151–2159, 1998.
Fix, A., Wirth, M., Meister, A., Ehret, G., Pesch, M., and Weidauer, D.:
Tunable ultraviolet optical parametric oscillator for differential
absorption lidar measurements of tropospheric ozone, Appl. Phys. B., 75,
153–163, 2002.
Fix, A., Steinebach, F., Wirth, M., Schäfler, A., and Ehret, G.:
Development and application of an airborne differential absorption lidar for
the simultaneous measurement of ozone and water vapor profiles in the
tropopause region, Appl. Opt., 58, 5892–5900, 2019.
Freudenthaler, V.: The telecover test: A Quality assurance tool for the
optical part of a lidar system, in: Reviewed and Revised Papers Presented at
the 24th International Laser Radar Conference, Boulder, Colorado,
USA, 23–27 June 2008, Vol. II, edited by: Hardesty, M. and Mayor, S., ISBN 978-0-615-21489-4,
145–146, 2008.
Galani, E., Balis, D., Zanis, P., Zerefos, C., Papayannis, A., Wernli, H.,
and Gerasopoulos, E.: Observations of stratosphere-to-troposphere transport
events over the eastern Mediterranean using a ground-based lidar system, J.
Geophys. Res., 108, 8527, https://doi.org/10.1029/2002JD002596, 2003.
Gaudel A., Ancellet G., and Godin-Beekmann S.: Analysis of 20 years of
tropospheric ozone vertical profiles by lidar and ECC at Observatoire de
Haute Provence (OHP) at 44∘ N, 6.7∘ E, Atmos. Environ.,
113, 78–89, 2015.
Giehl, H. and Trickl, T.: Testing the IFU High-Spectral-Resolution Lidar at
the 2009 Leipzig Field Campaign, in: Proceedings of the 25th
International Laser Radar Conference, St.-Petersburg (Russia), 5–9 July 2010,
2010, edited by: Matvienko, G. and Zemlyanov, A., V. E. Zuev Institute of Optics (Tomsk, Russia), 920–923, 2010.
Gorshelev, V., Serdyuchenko, A., Weber, M., Chehade, W., and Burrows, J. P.: High spectral resolution ozone absorption cross-sections – Part 1: Measurements, data analysis and comparison with previous measurements around 293 K, Atmos. Meas. Tech., 7, 609–624, https://doi.org/10.5194/amt-7-609-2014, 2014.
Grabbe, G. C., Bösenberg, J., Dier, H., Görsdorf, U., Matthias, V.,
Peters, G., Schaberl, T., and Senff, C.: Intercomparison of Ozone
Measurements between Lidar and ECC Sondes, Contr. Atmos. Phys., 69, 189–203,
1996.
Granados-Muñoz, M. J. and Leblanc, T.: Tropospheric ozone seasonal and long-term variability as seen by lidar and surface measurements at the JPL-Table Mountain Facility, California, Atmos. Chem. Phys., 16, 9299–9319, https://doi.org/10.5194/acp-16-9299-2016, 2016.
Granados-Muñoz, M. J., Johnson, M. S., and Leblanc, T.: Influence of the
North American monsoon on Southern California tropospheric ozone levels
during summer in 2013 and 2014, Geophys. Res. Lett., 44, 6431–6439,
https://doi.org/10.1002/2017GL073375, 2017.
Grant, W. B. and Hake, R. D.: Calibrated remote measurements of SO2
and O3 using atmospheric backscatter, J. Appl. Phys., 46, 3019–3023,
1975.
Grant, W. B., Browell, E. V., Butler, C. F., Fenn, M. A., Clayton, M. B.,
Hannan, J. R., Fuelberg, H. E., Blake, D. R., Blake, N. J., Gregory, G. L,
Heikes, B. G., Sachse, G. W., Singh, H. B., Snow, J., and Talbot, R. W.: A
case study of transport of tropical marine boundary layer and lower
tropospheric air masses to the northern midlatitude upper troposphere, J.
Geophys. Res., 105, 3757–3769, 2000.
Hoerling, M. P., Schaack, T. K., and Lenzen, A. J.: Global Objective
Tropopause Analysis, Mon. Weather Rev., 119, 1816–1831, 1991.
Iarlori, M., Madonna, F., Rizi, V., Trickl, T., and Amodeo, A.: Effective resolution concepts for lidar observations, Atmos. Meas. Tech., 8, 5157–5176, https://doi.org/10.5194/amt-8-5157-2015, 2015.
Jäger, H., Carnuth, W., and Georgii, B.: Observations of Saharan dust at
a North Alpine mountain station, J. Aerosol Sci., 19, 1235–1238, 1988.
Jennings, D. E., Weber, A., and Brault, J. W.: Raman spectroscopy of gases with a Fourier transform spectrometer: the spectrum of D2, Appl. Opt., 25, 284-290, 1986
Jeunouvrier, A., Mérienne, M.-F., Coquart, B., Carleer, M., Fally, S.,
Vandaele, A. C., Hermans, C., and Colin, R.: Fourier Transform Spectroscopy
of the O2 Herzberg Bands – I. Rotational Analysis, J. Mol. Spectrosc.,
198, 136–162, 1999.
Jonson, J. E., Simpson, D., Fagerli, H., and Solberg, S.: Can we explain the trends in European ozone levels?, Atmos. Chem. Phys., 6, 51–66, https://doi.org/10.5194/acp-6-51-2006, 2006.
Kalabokas, P., Papayannis, A., Tsaknakis, G., and Ziomas, I.: A
study on the atmospheric concentrations of primary and secondary air
pollutants in the Athens basin performed by DOAS and DIAL measuring
techniques, Sci. Total Environ., 414, 556–563, 2012.
Kempfer, U.: Entwicklung und Anwendung eines differentiellen
Absorptions-LIDAR-Systems zur Messung der troposphärischen
Ozonkonzentration, Dissertation, Ludwig-Maximilians-Universität
München (Germany), 151 pp., 1992.
Kempfer, U., Carnuth, W., Lotz, R., and Trickl, T.: A wide range ultraviolet
lidar system for tropospheric ozone measurements: development and
application, Rev. Sci. Instrum., 65, 3145–3164, 1994.
Klanner, L., Höveler, K., Khordakova, D., Perfahl, M., Rolf, C., Trickl, T., and Vogelmann, H.: A powerful lidar system capable of one-hour measurements of water vapour in the troposphere and the lower stratosphere as well as the temperature in the upper stratosphere and mesosphere, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-90, in review, 2020.
Kley, D., Crutzen, P. J., Smit, H. G. J., Vömel, H., Oltmans, S. J.,
Grassl, H., and Ramanathan, V.: Observations of near-zero ozone
concentrations over the convective Pacific: effects of air chemistry,
Science, 274, 230–233, 1996.
Kley, D., Beck, J., Grennfelt, P. I., Hov, O., and Penkett, S. A.:
Tropospheric Ozone Research (TOR) A Sub-Project of EUROTRAC, J. Atmos.
Chem., 28, 1–9, 1997.
Kourtidis, K., Zerefos, C., Rapsomanikis, S., Simeonov, V., Balis, D.,
Perros, P. E., Thompson, A. M., Witte, J., Calpini, B., Sharobiem, W. M.,
Papayannis, A., Mihalopoulos, N., and Drakou, R.: Regional levels of ozone
in the troposphere over eastern Mediterranean, J. Geophys. Res., 107, 8140,
https://doi.org/10.1029/2000JD000140, 2002.
Kowol-Santen, J. and Ancellet, G.: Mesoscale analysis of transport across
the subtropical tropopause, Geophys. Res. Lett., 27, 3345–3347, 2000.
Kreipl, S.: Messung des Aerosoltransports am Alpennordrand mittels
Laserradar (Lidar), Dissertation, Friedrich-Alexander-Universität
Erlangen-Nürnberg (Germany), 195 pp., 2006 (in German).
Krupenie, P. H.: The Spectrum of Molecular Oxygen, J. Phys. Chem. Ref. Data,
1, 423–534, 1972.
Kuang, S., Burris, J. F., Newchurch, M. J., Johnson, S., and Long, S.:
Differential Absorption Lidar to measure subhourly variation of tropospheric
ozone profiles, IEEE Trans. Geosci. Remote Sens., 49, 557–571, 2011.
Kuang, S., Newchurch, M. J., Burris, J., Wang, L., Knupp, K., and Huang, G.:
Stratosphere-to-troposphere transport revealed by ground-based lidar and
ozonesonde at a midlatitude site, J. Geophys. Res., 117, D18305, https://doi.org/10.1029/2012JD017695, 2012.
Kuang, S., Newchurch, M. J., Burris, J. F., and Liu, X.: Ground-based lidar
for atmospheric boundary layer ozone measurements, Appl. Opt., 52,
3557–3566, 2013.
Kuang, S., Newchurch, M. J., Johnson, M. S., Wang, L., Burris, J. F.,
Pierce, R. B., Eloranta, E. W., Pollack, I. W., Graus, M., de Gouw, J.,
Warneke, C., Ryerson, T. B., Markovic, M. Z., Holloway, J. S., Pour-Biazar,
A., Huang, G., Liu, X., and Feng, N.: Summertime tropospheric ozone
enhancement associated with a cold front passage due to
stratosphere-to-troposphere transport and biomass burning: Simultaneous
ground-based lidar and airborne measurements, J. Geophys. Res., 122, 1293–1311,
https://doi.org/10.1002/2016JD026078, 2017.
Lamarque, J.-F., Langford, A. O., and Proffitt, M. H.: Cross-tropopause
mixing of ozone through gravity wave breaking: Observation and modelling, J.
Geophys. Res., 101, 22969–22976, 1996.
Langford, A. O.: Identification and correction of
analog-to-digital-converter nonlinearities and their implications for
differential absorption lidar measurements, Appl. Opt., 34, 8330–8340, 1995.
Langford, A. O., Masters, C. D., Proffitt, M. H., Hsie, E.-Y., and Tuck, A.
F.: Ozone measurements in a tropopause fold associated with a cut-off low
system, Geophys. Res. Lett., 23, 2501–2504, 1996.
Langford, A. O., Aikin, K. C., Eubank, C. S., and Williams, E. J.:
Stratospheric contribution to high surface ozone in Colorado during
springtime, Geophys. Res. Lett., 36, L12801, https://doi.org/10.1029/2009GL038367, 2009.
Langford, A. O., Brioude, J., Cooper, O. R., Senff, C. J., Alvarez II, R.
J., Hardesty, R. M., Johnson, B. J., and Oltmans, S. J.: Stratospheric
influence on surface ozone in the Los Angeles area during late spring and
early summer of 2010, J. Geophys. Res., 117, D00V06, https://doi.org/10.1029/2011JD016766, 2012.
Langford, A. O., Alvarez II, R. J., Brioude, J., Fine, R., Gustin, M. S.,
Lin, M. Y., Marchbanks, R. D., Pierce, R. B., Sandberg, S. P., Senff, C. J.,
Weickmann, A. M., and Williams, E. J.: Entrainment of stratospheric air and
Asian pollution by the convective boundary layer in the southwestern U.S.,
J. Geophys. Res., 122, 1312–1337, https://doi.org/10.1002/2016JD025987, 2017.
Langford, A. O., Alvarez II, R. J., Brioude, Evan, S., Iraci, L. T., Kirgas,
G., Kuang, S., Leblanc, T., Newchurch, M. J., Pierce, R. B., Senff, C. J.,
and Yates, E. L.: Coordinated profiling of stratospheric intrusions and
transported pollution by the Tropospheric Ozone Lidar Network (TOLNet) and
NASA Alpha Jet experiment (AJAX): Observations and comparison to HYSPLIT,
RAQMS, and FLEXPART, Atmos. Environ., 174, 1–14, 2018.
Lazzarotto, B., Frioud, M., Larchevêque, G., Mitev, V., Quaglia, P.,
Simeonov, V., Thompson, A., van den Bergh, H., and Calpini, B.: Ozone and
water-vapor measurements by Raman lidar in the planetary boundary layer:
error sources and field measurements, Appl. Opt., 40, 2985–2997, 2001.
Leblanc, T., Sica, R. J., van Gijsel, J. A. E., Godin-Beekmann, S., Haefele, A., Trickl, T., Payen, G., and Gabarrot, F.: Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms – Part 1: Vertical resolution, Atmos. Meas. Tech., 9, 4029–4049, https://doi.org/10.5194/amt-9-4029-2016, 2016.
Leblanc, T., Brewer, M. A., Wang, P. S., Granados-Muñoz, M. J., Strawbridge, K. B., Travis, M., Firanski, B., Sullivan, J. T., McGee, T. J., Sumnicht, G. K., Twigg, L. W., Berkoff, T. A., Carrion, W., Gronoff, G., Aknan, A., Chen, G., Alvarez, R. J., Langford, A. O., Senff, C. J., Kirgis, G., Johnson, M. S., Kuang, S., and Newchurch, M. J.: Validation of the TOLNet lidars: the Southern California Ozone Observation Project (SCOOP), Atmos. Meas. Tech., 11, 6137–6162, https://doi.org/10.5194/amt-11-6137-2018, 2018.
Leclair De Bellevue, J., Réchou, A., Baray, J. L., Ancellet, G., and
Diab, R. D.: Signatures of stratosphere to troposphere transport near deep
convective events in the southern subtropics, J. Geophys Res., 111, D24107,
https://doi.org/10.1029/2005JD006947, 2006.
Liang, Q., Jaeglé, L., Hudman, R. C., Turquety, S., Jacob, D. J., Avery,
M. A., Browell, E. V., Sachse, G. W., Blake, D. R., Brune, W., Ren, X.,
Cohen, R. C., Dibb, J. E., Fried, A., Fuelberg, H., Porter, M., Heikes, B.
G., Huey, G., Singh, H. B., and Wennberg, P. O.: Summertime influence of
Asian pollution in the free troposphere over North America, J. Geophys.
Res., 112, D12S11, https://doi.org/10.1029/2006JD007919, 2007.
Machol, J. L., Marchbanks, R. D., Senff, C. J., McCarty, B. J., Eberhard, W.
L., Brewer, W. A., Richter, R. A., Alvarez II, R. J., Law, D. C., Weickmann,
A. M., and Sandberg, S. P.: Scanning tropospheric ozone and aerosol lidar
with double-gated photomultipliers, Appl. Optics, 48, 512–524, 2008.
Malicet, J., Daumont, D., Charbonnier, J., Parisse, C., Chakir, A., and
Brion, J.: Ozone UV Spectroscopy I: Absorption Cross-Sections and
Temperature Dependence, J. Atmos. Chem., 21, 263–273, 1995.
Marenco, A., Thouret, V., Nédélec, P., Smit, H., Helten, M., Kley,
D., Karcher, F., Simon, P., Law, K., Pyle, J., Poschmann, G., von Wrede, R.,
Hume, C., and Cook, T.: Measurement of ozone and water vapor by Airbus
in-service aircraft: The MOZAIC airborne program, An overview, J. Geophys.
Res., 103, 25631–25642, 1998.
Matthias, M.: Vertikalmessungen der Aerosolextinktion und des Ozons mit
einem UV-Raman-Lidar, Dissertation, Universität Hamburg, published as
Examensarbeit Nr. 80, Max-Planck-Institut für Meteorologie (Hamburg,
Germany), ISSN 0938-5177, 143 pp., 2000 (in German).
McDermid, I. S., Haner, D. A., Kleiman, M. M., Walsh, T. D., and White, M.
L.: Differential absorption lidar systems for tropospheric and stratospheric
ozone measurements, Opt. Engin., 30, 22–30, 1991.
McDermid, I. S., Beyerle, G., Haner, D. A., and Leblanc, T.: Redesign and
improved performance of the tropospheric ozone lidar at the Jet Propulsion
Laboratory Table Mountain Facility, Appl. Opt., 41, 7550–7555, 2002.
Milton, M. J. T., Ancellet, G., Apituley, A., Bösenberg, J., Carnuth,
W., Castagnoli, F., Trickl, T., Edner, H., Stefanutti, L., Schaberl, T.,
Sunesson, A., and Weitkamp, C.: Raman-shifted laser sources suitable for
differential-absorption lidar measurements of ozone in the troposphere,
Appl. Phys. B, 66, 105–113, 1998.
Mytilinaios, M., Papayannis, A., and Tsaknakis, G.: Lower-free tropospheric
ozone DIAL measurements over Athens, Greece, EPJ Web of Conferences, 28th International Laser Radar Conference, Bucharest, Romania, 25–30 June 2017, 176,
05025, https://doi.org/10.1051/epjconf/201817605025, 2018.
Nakazato, M., Nagai, T., Sakai, T., and Hirose, Y.: Tropospheric ozone
differential-absorption lidar using stimulated Raman scattering in carbon
dioxide, Appl. Opt., 46, 2269–2279, 2007.
Newchurch, M. J., Kuang, S., Leblanc, T., Alvarez II, R. J., Langford, A.
O., Senff, C. J., Burris, J. F., McGee, T. J., Sullivan, J. T., DeYoung, R.
J., Al-Saadi, J., Johnson, M., and Pszenny, A.: TOLNet – A Tropospheric
Ozone Lidar Profiling Network for Satellite Continuity and Process Studies,
Proc. 27th International Laser Radar Conference, New York, USA,
2015, 5–10 July 2015, EPJ Web of Conferences, 119, 20001, 2016.
Newell, R. E., Browell, E. V., Davis, D. D., and Liu, S. C.: Western Pacific
ozone and potential vorticity: Implications for Asian pollution, Geophys.
Res. Lett., 24, 2733–2736, 1997.
Ordoñez, C., Brunner, D., Staehelin, J., Hadjinicolaou, P., Pyle, J. A.,
Jonas, M., Wernli, H., and Prévôt, A. S. H.: Strong influence of
lowermost stratospheric ozone on lower tropospheric background ozone changes
over Europe, Geophys. Res. Lett., 34, L07805, https://doi.org/10.1029/2006GL029113, 2007.
Pan, L. L., Randel, W. J., Gary, B. L., Mahoney, M. J., and Hintsa, E. J.:
Definitions and sharpness of the extratropical tropopause: A trace gas
perspective, J. Geophys. Res., 109, D23103, https://doi.org/10.1029/2004JD004982, 2004.
Papayannis, A., Ancellet, G., Pelon, J., and Mégie, G.: Multiwavelength
lidar for ozone measurements in the troposphere and the lower stratosphere,
Appl. Opt., 29, 467–476, 1990.
Papayannis, A., Balis, D., Zanis, P., Galani, E., Wernli, H., Zerefos, C., Stohl, A., Eckhardt, S., and Amiridis, V.: Sampling of an STT event over the Eastern Mediterranean region by lidar and electrochemical sonde, Ann. Geophys., 23, 2039–2050, https://doi.org/10.5194/angeo-23-2039-2005, 2005.
Papayannis, A., Amiridis, V., Mona, L.,
Tsaknakis, G., Balis, D., Bösenberg, J., Chaikovsky, A., De Tomasi, F.,
Grigorov, I., Mattis, I., Mitev, V., Müller, D., Nickovic, S.,
Pérez, C., Pietruczuk, A., Pisani, G. L., Ravetta, F., Rizi, V., Sicard,
M., Trickl, T., Wiegner, M., Gerding, M., Mamouri, R. E., D'Amico, G., and Pappalardo, G.: Systematic lidar observations of Saharan dust
over Europe in the frame of EARLINET (2000–2002), J. Geophys. Res., 113,
D10204, https://doi.org/10.1029/2007JD009028, 2008.
Pelon, J. and Mégie, G.: Ozone Monitoring in the Troposphere and Lower
Stratosphere: Evaluation and Operation of a Ground-Based Lidar Station, J.
Geophys. Res., 87, 4947–4955, 1982.
Perrone, M. R. and Piccinno, V.: On the benefits of astigmatic focusing
configurations in stimulated Raman scattering processes, Opt. Comm., 133,
534–540, 1997.
Proffitt, M. H. and Langford, A. O.: Ground-based differential-absorption
lidar system for day or night measurements of ozone throughout the free
troposphere, Appl. Opt., 36, 2568–2585, 1997.
Ravetta, F., Ancellet, G., Kowol-Santen, J., Wilson, R., and Nedeljkovic,
D.: Ozone, Temperature, and Wind Field Measurements in a Tropopause Fold:
Comparison with a Mesoscale Model Simulation, Mon. Weather Rev., 127,
2641–2653, 1999.
Ravetta, F., Ancellet, A., Colette, A., and Schlager, H.: Long-range
transport and tropospheric ozone variability in the western Mediterranean
region during the Intercontinental Transport of Ozone and Precursors
(ITOP-2004) campaign, J. Geophys. Res., 112, D10S46, https://doi.org/10.1029/2006JD007724, 2007.
Reichardt, J., Wandinger, U., Servazi, M., and Weitkamp, C.: Combined Raman
lidar for aerosol, ozone and moisture measurements, Opt. Eng., 35,
1457–1465, 1996.
Roelofs, G. J., Kentarchos, A. S., Trickl, T., Stohl, A., Collins, W. J.,
Crowther, R. A., Hauglustaine, D., Klonecki, A., Law, K. S., Lawrence, M.
G., von Kuhlmann, R., and van Weele, M.: Intercomparison of tropospheric
ozone models: Ozone transport in a complex tropopause folding event, J.
Geophys. Res., 108, 8529, doi:10.1029/2003JD003462, 2003.
Scheel, H. E.: Ozone Climatology Studies for the Zugspitze and Neighbouring
Sites in the German Alps, pp. 134–139 in: Tropospheric Ozone Research 2,
EUROTRAC-2 Subproject Final Report, A. Lindskog, Co-ordinator, EUROTRAC
International Scientific Secretariat, available at: http://www.trickl.de/scheel.pdf (last access: 19 November 2020), München, Germany, 2003.
Seibert, P., Feldmann, H., Neininger, B., Bäumle, M., and Trickl, T.:
South foehn and ozone in the Eastern Alps – case study and climatological
aspect, Atmos. Environ., 34, 1379–1394, 2000.
Senff, C. J., Hardesty, R. M., Alvarez II, R. J., and Mayor, S. D.: Airborne
lidar characterization of power plant plumes during the 1995 Southern
Oxidants Study, J. Geophys. Res., 103, 31173–31189, 1998.
Senff, C. J., Alvarez II, R. J., Hardesty, R. M., Banta, R. M., and
Langford, A. O.: Airborne lidar measurements of ozone flux downwind of
Houston and Dallas, J. Geophys. Res., 115, D20307, https://doi.org/10.1029/2009JD013689, 2010.
Serdyuchenko, A., Gorshelev, V., Weber, M., Chehade, W., and Burrows, J. P.: High spectral resolution ozone absorption cross-sections – Part 2: Temperature dependence, Atmos. Meas. Tech., 7, 625–636, https://doi.org/10.5194/amt-7-625-2014, 2014.
Simeonov, V., Larcheveque, G., Quaglia, P., van den Bergh, H., and Calpini,
B.: Influence of the photomultiplier tube spatial uniformity on lidar
signals, Appl. Opt., 38, 5186–5190, 1999.
Simeonov, V., Ristori, P., Taslakov, M., Dinoev, T., Molina, L. T., Molina,
M. J., and van den Bergh, H.: Proceedings of the Conference on “Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing”, Bruges, Belgium, 19–20 September 2005, edited by: Singh, U. N. Singh, Proc. SPIE, 5984, 59840O, https://doi.org/10.1117/12.629429, 8 pp., 2005
Stohl, A. and Trickl, T.: A textbook example of long-range transport:
Simultaneous observation of ozone maxima of stratospheric and North American
origin in the free troposphere over Europe, J. Geophys. Res., 104,
30445–30462, 1999.
Stohl, A., Spichtinger-Rakowsky, N., Bonasoni, P., Feldmann, H.,
Memmesheimer, M., Scheel, H. E., Trickl, T., Hübener, S., Ringer, W.,
and Mandl, M.: The influence of stratospheric intrusions on alpine ozone
concentrations, Atmos. Environ., 34, 1323–1354, 2000.
Stohl, A., Bonasoni, P., Cristofanelli, P., Collins, W., Feichter, J.,
Frank, A., Forster, C., Gerasopoulos, E., Gäggeler, H., James, P.,
Kentarchos, T., Kromp-Kolb, H., Krüger, B., Land, C., Meloen, J.,
Papayannis, A., Priller, A., Seibert, P., Sprenger, M., Roelofs, G. J.,
Scheel, H. E., Schnabel, C., Siegmund, P., Tobler, L., Trickl, T., Wernli,
H., Wirth, V., Zanis, P., and Zerefos, C.: Stratosphere-troposphere exchange
– a review, and what we have learned from STACCATO, J. Geophys. Res., 108,
8516, https://doi.org/10.1029/2002JD002490, 2003.
Strawbridge, K. B., Travis, M. S., Firanski, B. J., Brook, J. R., Staebler, R., and Leblanc, T.: A fully autonomous ozone, aerosol and nighttime water vapor lidar: a synergistic approach to profiling the atmosphere in the Canadian oil sands region, Atmos. Meas. Tech., 11, 6735–6759, https://doi.org/10.5194/amt-11-6735-2018, 2018.
Sullivan, J. T., McGee, T. J., Sumnicht, G. K., Twigg, L. W., and Hoff, R. M.: A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore–Washington, D.C. region, Atmos. Meas. Tech., 7, 3529–3548, https://doi.org/10.5194/amt-7-3529-2014, 2014.
Sullivan, J. T., McGee, T. J., Thompson, A. M., Pierce, R. B., Sumnicht, G.
K., Twigg, L. W., Eloranta, E. W., and Hoff, R. M.: Characterizing the
lifetime and occurrence of stratospheric-tropospheric exchange events in the
rocky mountain region using high-resolution ozone measurements, J. Geophys.
Res., 120, 12410–12424, https://doi.org/10.1002/2015JD023877, 2016.
Sullivan, J. T., Rabenhorst, S. T., Dreessen, J., McGee, T. J, Delgado, R.,
Twigg, L., and Sumnicht, G.: Lidar observations revealing transport of
O3 in the presence of a nocturnal low-level jet: Regional implications
for “next-day” pollution, Atmos. Environ., 158, 160–171, 2017.
Sunesson, J. A., Apituley, A., and Swart, D. P. J.: Differential absorption
lidar system for routine monitoring of tropospheric ozone, Appl. Opt., 33,
7045–7058, 1994.
Tarasick, D., Galbally, I. E., Cooper, O. R., Schultz, G. M., Ancellet, G.,
Leblanc, T., Wallington, T. J., Ziemke, J., Liu, X., Steinbacher, M.,
Staehelin, J., Vigouroux, C., Hannigan, J., García, O., Foret, G.,
Zanis, P., Weatherhead, E., Petropavlovskikh, I., Worden, H., Osman, M.,
Liu, J., Chang, K.-L., Gaudel, A., Lin, M., Granados-Muñoz, M.,
Thompson, A. M., Oltmans, S. J., Cuesta, J., Dufour, G., Thouret, V.,
Hassler, B., Trickl, T., and Neu, J. L.: Tropospheric Ozone
Assessment Report: Tropospheric ozone from 1877 to 2016, observed levels,
trends and uncertainties, Elem. Sci. Anth., 7, 39, https://doi.org/10.1525/elementa.376, 2019.
TESLAS: Tropospheric Environmental Studies by Laser Sounding (TESLAS), in:
Transport and Chemical Transformation of Pollutants in the Troposphere, Vol.
8, Instrument Development for Atmospheric Research and Monitoring, edited by: Bösenberg, J., Brassington, D., and Simon, P. C., Springer (Berlin,
Heidelberg, New York), ISBN 3-540-62516-X, 1–203, 1997.
Thomasson, A., Geffroy, S., Frejafon, E., Weidauer, D., Fabian, R., Godet,
Y., Nominé, M., Ménard, T., Rairoux, P., Moeller, D., and Wolf, J.
P.: LIDAR mapping of ozone-episode dynamics and intercomparison with spot
analyzers, Appl. Phys. B, 74, 453–459, 2002.
Trickl, T.: Lidar Studies of Tropospheric Transport, in: Tropospheric Ozone
Research 2, EUROTRAC-2 Subproject Final Report, A. Lindskog, Subproject
Co-ordinator, EUROTRAC-2 International Scientific Secretariat, available at: http://www.trickl.de/TOR.pdf (last access: 19 November 2020), München,
Germany, 2003, 146–159, 2003.
Trickl, T.: Upgraded 1.56-μm lidar at IMK-IFU with 0.28 J/pulse, Appl.
Opt., 49, 3732–3740, 2010a.
Trickl, T.: Tropospheric trace-gas measurements with the
differential-absorption lidar technique, in: Recent Advances in Atmospheric
Lidars, edited by: Fiorani, L. and Mitev, V., INOE Publishing House, Bucharest
(Romania), Series on Optoelectronic Materials and Devices, Vol. 7, ISBN 978-973-88109-6-9; 87–147 (revised version available at: http://www.trickl.de/DIAL.pdf (last access: 19 November 2020), 2010b.
Trickl, T., Vrakking, M. J. J., Cromwell, E. F., Lee, Y. T., and Kung, A.
H.: Ultrahigh-resolution (1 + 1) photoionization spectroscopy of Kr I:
Hyperfine structures, isotope shifts and lifetimes for the n = 5, 6, 7 4p
5ns Rydberg levels, Phys. Rev. A, 39, 2948–2955, 1989.
Trickl, T., Cooper, O. R., Eisele, H., James, P., Mücke, R., and Stohl,
A.: Intercontinental transport and its influence on the ozone concentrations
over central Europe: Three case studies, J. Geophys. Res., 108, 8530,
https://doi.org/10.1029/2002JD002735, 2003.
Trickl, T., Kung, A. H., and Lee, Y. T.: Krypton atom and
testing the limits of extreme-ultraviolet tunable-laser spectroscopy, Phys.
Rev. A, 75, 022501, https://doi.org/10.1103/PhysRevA.75.022501, 2007.
Trickl, T., Feldmann, H., Kanter, H.-J., Scheel, H.-E., Sprenger, M., Stohl, A., and Wernli, H.: Forecasted deep stratospheric intrusions over Central Europe: case studies and climatologies, Atmos. Chem. Phys., 10, 499–524, https://doi.org/10.5194/acp-10-499-2010, 2010.
Trickl, T., Bärtsch-Ritter, N., Eisele, H., Furger, M., Mücke, R., Sprenger, M., and Stohl, A.: High-ozone layers in the middle and upper troposphere above Central Europe: potential import from the stratosphere along the subtropical jet stream, Atmos. Chem. Phys., 11, 9343–9366, https://doi.org/10.5194/acp-11-9343-2011, 2011.
Trickl, T., Vogelmann, H., Giehl, H., Scheel, H.-E., Sprenger, M., and Stohl, A.: How stratospheric are deep stratospheric intrusions?, Atmos. Chem. Phys., 14, 9941–9961, https://doi.org/10.5194/acp-14-9941-2014, 2014.
Trickl, T., Vogelmann, H., Flentje, H., and Ries, L.: Stratospheric ozone in boreal fire plumes – the 2013 smoke season over central Europe, Atmos. Chem. Phys., 15, 9631–9649, https://doi.org/10.5194/acp-15-9631-2015, 2015.
Trickl, T., Vogelmann, H., Fix, A., Schäfler, A., Wirth, M., Calpini, B., Levrat, G., Romanens, G., Apituley, A., Wilson, K. M., Begbie, R., Reichardt, J., Vömel, H., and Sprenger, M.: How stratospheric are deep stratospheric intrusions? LUAMI 2008, Atmos. Chem. Phys., 16, 8791–8815, https://doi.org/10.5194/acp-16-8791-2016, 2016.
Trickl, T., Vogelmann, H., Ries, L., and Sprenger, M.: Very high stratospheric influence observed in the free troposphere over the northern Alps – just a local phenomenon?, Atmos. Chem. Phys., 20, 243–266, https://doi.org/10.5194/acp-20-243-2020, 2020.
Uchino, O., Tokunaga, M., Maeda, M., and Miyazoe, Y.:
Differential-absorption-lidar measurements of tropospheric ozone with
excimer-Raman hybrid laser, Opt. Lett., 8, 347–349, 1983.
Uchino, O., Sakai, T., Nagai, T., Morino, I., Maki, T., Deushi, M., Shibata, K., Kajino, M., Kawasaki, T., Akaho, T., Takubo, S., Okumura, H., Arai, K., Nakazato, M., Matsunaga, T., Yokota, T., Kawakami, S., Kita, K., and Sasano, Y.: DIAL measurement of lower tropospheric ozone over Saga (33.24° N, 130.29° E), Japan, and comparison with a chemistry–climate model, Atmos. Meas. Tech., 7, 1385–1394, https://doi.org/10.5194/amt-7-1385-2014, 2014.
U.S. Standard Atmosphere: National Oceanic and Atmospheric Organization
(NOAA), National Aeronautics and Space Administration, United States Air
Force, NOAA-S/T 76-1562, US Printing Office (Washington, D.C.), 227 pp.,
1976.
Uthe, E. E. and Livingston, J. M.: Airborne Lidar Mapping of Ozone
Concentrations During the Lake Michigan Ozone Study, J. Air Waste Manage.
Assoc., 42, 1313–1318, 1992.
Valente, R. J., Imhoff, R. E., Tanner, R. L., Meagher, J. F., Daum, P. H.,
Hardesty, R. M., Banta, R. M., Alvarez, R. J., McNider, R. T., and Gillani,
N. V.: Ozone production during an urban air stagnation episode over
Nashville, Tennessee, J. Geophys. Res., 103, 22555–22568, 1998.
Vautard, R., Szopa, S., Beekmann, M., Menut, L., Hauglustaine, D. A., Rouil,
L., and Roemer, M.: Are decadal anthropogenic emission reductions in Europe
consistent with surface ozone observations? Geophys. Res. Lett., 33, L13810,
https://doi.org/10.1029/2006GL026080, 2006.
VDI: guide line 4210 Remote Sensing, Atmospheric Measurements with LIDAR,
Measuring gaseous air pollution with the DAS LIDAR, Verein Deutscher
Ingenieure, Düsseldorf, Germany, 47 pp., 1999.
Veselovskii, I. and Barchunov, B.: Excimer-laser-based lidar for
tropospheric ozone monitoring, Appl. Phys. B, 68, 1131–1137, 1999.
Viallon, J., Lee, S., Moussay, P., Tworek, K., Petersen, M., and Wielgosz, R. I.: Accurate measurements of ozone absorption cross-sections in the Hartley band, Atmos. Meas. Tech., 8, 1245–1257, https://doi.org/10.5194/amt-8-1245-2015, 2015.
Völger, P., Bösenberg, J., and Schult, I.: Scattering Properties of
Selected Model Aerosols Calculated at UV-Wavelengths: Implications for DIAL
Measurements of Tropospheric Ozone, Beitr. Phys. Atmosph., 69, 177–187,
1996.
Vogelmann, H. and Trickl, T.: Wide-Range Sounding of Free-Tropospheric Water
Vapor with a Differential-Absorption Lidar (DIAL) at a High-Altitude
Station, Appl. Opt., 47, 2116–2132, 2008.
VOTALP II: Vertical Ozone Transport in the Alps II, Final Report for the
European Union, Contract Nr.: ENV4 CT970413, Reporting Period
1/3/1998-29/2/2000, H. Kromp-Kolb, Co-ordinator, Universität für
Bodenkultur Wien (Austria), Institut für Meteorologie und Physik, 96
pp., 2000.
Wallinder, E., Edner, H., Ragnarson, P., and Svanberg, S.: Vertically
Sounding Ozone Lidar System based on a KrF Excimer Laser, Phys. Scripta,
55, 714–718, 1997.
Wang, L., Newchurch, M. J., Alvarez II, R. J., Berkoff, T. A., Brown, S. S., Carrion, W., De Young, R. J., Johnson, B. J., Ganoe, R., Gronoff, G., Kirgis, G., Kuang, S., Langford, A. O., Leblanc, T., McDuffie, E. E., McGee, T. J., Pliutau, D., Senff, C. J., Sullivan, J. T., Sumnicht, G., Twigg, L. W., and Weinheimer, A. J.: Quantifying TOLNet ozone lidar accuracy during the 2014 DISCOVER-AQ and FRAPPÉ campaigns, Atmos. Meas. Tech., 10, 3865–3876, https://doi.org/10.5194/amt-10-3865-2017, 2017.
Weitkamp, C., Baumbach, G., Becker, K.-H., Braun-Schoen, S., Burger, H.,
Dinev, S., Fabian, R., Frey, S., Fritzsche, F., Glaser, K., Glauer, J.,
Herb, F., Immler, F., Junkermann, W., Kanter, H. J., Lindemann, C.,
Loescher, A., Mohnen, V. A., Möller, D., Neidhart, B., Olariu, R.,
Reimer, E., Schmidt, V., Schubert, G., Spittler, M., Vogt, U., Weidauer, D.,
Windholz, L., and Wöste, L.: Wie richtig sind Lidarmessungen der
Ozonverteilung?, Gefahrstoffe – Reinhaltung der Luft, 60, 279–284, 2000 (in
German).
Wotava, G. and Kromp-Kolb, H.: The research project VOTALP – general
objectives and main results, Atmos. Environ., 34, 1319–1322, 2000.
Yates, E. L., Johnson, M. S., Iraci, L. T., Ryoo, J.-M., Pierce, R. B.,
Cullis, P. D., Gore, W., Ives, M. A., Johnson, B. J., Leblanc, T., Marrero,
J. E., Sterling, C. W., and Tanaka, T.: An Assessment of Ground Level and
Free Tropospheric Ozone Over California and Nevada, J. Geophys. Res., 122,
10089–10102, https://doi.org/10.1002/2016JD026266, 2017.
Zanis, P., Trickl, T., Stohl, A., Wernli, H., Cooper, O., Zerefos, C., Gaeggeler, H., Schnabel, C., Tobler, L., Kubik, P. W., Priller, A., Scheel, H. E., Kanter, H. J., Cristofanelli, P., Forster, C., James, P., Gerasopoulos, E., Delcloo, A., Papayannis, A., and Claude, H.: Forecast, observation and modelling of a deep stratospheric intrusion event over Europe, Atmos. Chem. Phys., 3, 763–777, https://doi.org/10.5194/acp-3-763-2003, 2003.
Zhao, Y., Howell, J. N., and Hardesty, R. M.: Transportable Lidar for the
Measurement of Ozone Concentration and Flux Profiles in the Lower
Troposphere, in: Proceedings of the 16th International Laser Radar
Conference, Cambridge, Massachussetts, USA, 20–24 July 1992, 185–187, 1992.
Zhao, Y., Marchbanks, R. D., Senff, C. J., and Johnson, H. D.: Lidar
Profiling of Ozone and Aerosol in the SCOS97-NARSTO Experiment, in:
Proceedings of the Ninetenth International Laser Radar Conference, Annapolis,
Maryland, USA, 6–10 July 1998, edited by: Singh, U. N., Ismail, S., and Schwemmer, G. K.,
NASA Langley Research Center, NASA/CP-1998-207671/PT1, 375–378, 1998.
Short summary
Lidar sounding of ozone and other atmospheric constituents has proved to be an invaluable tool for atmospheric studies. The ozone lidar systems developed at Garmisch-Partenkirchen have reached an accuracy level almost matching that of in situ sensors. Since the late 1990s numerous important scientific discoveries have been made, such as the first observation of intercontinental transport of ozone and the very high occurrence of intrusions of stratospheric air into the troposphere.
Lidar sounding of ozone and other atmospheric constituents has proved to be an invaluable tool...