Articles | Volume 14, issue 1
https://doi.org/10.5194/amt-14-223-2021
https://doi.org/10.5194/amt-14-223-2021
Research article
 | 
12 Jan 2021
Research article |  | 12 Jan 2021

Experimental methodology and procedure for SAPPHIRE: a Semi-automatic APParatus for High-voltage Ice nucleation REsearch

Jens-Michael Löwe, Markus Schremb, Volker Hinrichsen, and Cameron Tropea

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Laboratory Measurement | Topic: Instruments and Platforms
Measuring diameters and velocities of artificial raindrops with a neuromorphic event camera
Kire Micev, Jan Steiner, Asude Aydin, Jörg Rieckermann, and Tobi Delbruck
Atmos. Meas. Tech., 17, 335–357, https://doi.org/10.5194/amt-17-335-2024,https://doi.org/10.5194/amt-17-335-2024, 2024
Short summary
Pre-launch calibration and validation of the Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) instrument
Brent A. McBride, J. Vanderlei Martins, J. Dominik Cieslak, Roberto Fernandez-Borda, Anin Puthukuddy, Xiaoguang Xu, Noah Sienkiewicz, Brian Cairns, and Henrique M. J. Barbosa
EGUsphere, https://doi.org/10.5194/egusphere-2023-865,https://doi.org/10.5194/egusphere-2023-865, 2023
Short summary
Optimization of a Picarro L2140-i cavity ring-down spectrometer for routine measurement of triple oxygen isotope ratios in meteoric waters
Jack A. Hutchings and Bronwen L. Konecky
Atmos. Meas. Tech., 16, 1663–1682, https://doi.org/10.5194/amt-16-1663-2023,https://doi.org/10.5194/amt-16-1663-2023, 2023
Short summary
Improving continuous-flow analysis of triple oxygen isotopes in ice cores: insights from replicate measurements
Lindsey Davidge, Eric J. Steig, and Andrew J. Schauer
Atmos. Meas. Tech., 15, 7337–7351, https://doi.org/10.5194/amt-15-7337-2022,https://doi.org/10.5194/amt-15-7337-2022, 2022
Short summary
Contactless optical hygrometry in LACIS-T
Jakub L. Nowak, Robert Grosz, Wiebke Frey, Dennis Niedermeier, Jędrzej Mijas, Szymon P. Malinowski, Linda Ort, Silvio Schmalfuß, Frank Stratmann, Jens Voigtländer, and Tadeusz Stacewicz
Atmos. Meas. Tech., 15, 4075–4089, https://doi.org/10.5194/amt-15-4075-2022,https://doi.org/10.5194/amt-15-4075-2022, 2022
Short summary

Cited articles

Acharya, P. V. and Bahadur, V.: Fundamental interfacial mechanisms underlying electrofreezing, Adv. Coll. Int. Sci., 251, 26–43, https://doi.org/10.1016/j.cis.2017.12.003, 2018. a, b
Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw, K. S., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds, Nature, 498, 355–358, https://doi.org/10.1038/nature12278, 2013. a
Atkinson, J. D., Murray, B. J., and O'Sullivan, D.: Rate of Homogenous Nucleation of Ice in Supercooled Water, J. Phys. Chem. A, 120, 6513–6520, https://doi.org/10.1021/acs.jpca.6b03843, 2016. a
Baars, W., Stearman, R., and Tinney, C.: A Review on the Impact of Icing on Aircraft Stability and Control, ASD Journal, 2, 35–52, 2010. a
Barlow, T. W. and Haymet, A. D. J.: ALTA: An automated lag-time apparatus for studying the nucleation of supercooled liquids, Rev. Sci. Instrum., 66, 2996–3007, https://doi.org/10.1063/1.1145586, 1995. a
Download
Short summary
Icing is a severe problem in many technical applications like aviation or high-voltage components for power transmission and distribution. The presented experimental setup enables the accurate investigation of the freezing of water droplets under the impact of electric fields. All boundary conditions are well controlled and investigated in detail. Results obtained with the setup might improve the understanding of the freezing process of water droplets under the impact of high electric fields.