Articles | Volume 14, issue 10
https://doi.org/10.5194/amt-14-6695-2021
https://doi.org/10.5194/amt-14-6695-2021
Research article
 | 
18 Oct 2021
Research article |  | 18 Oct 2021

Twenty-four-hour cloud cover calculation using a ground-based imager with machine learning

Bu-Yo Kim, Joo Wan Cha, and Ki-Ho Chang

Related authors

Estimation of 24 h continuous cloud cover using a ground-based imager with a convolutional neural network
Bu-Yo Kim, Joo Wan Cha, and Yong Hee Lee
Atmos. Meas. Tech., 16, 5403–5413, https://doi.org/10.5194/amt-16-5403-2023,https://doi.org/10.5194/amt-16-5403-2023, 2023
Short summary

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
IceDetectNet: a rotated object detection algorithm for classifying components of aggregated ice crystals with a multi-label classification scheme
Huiying Zhang, Xia Li, Fabiola Ramelli, Robert O. David, Julie Pasquier, and Jan Henneberger
Atmos. Meas. Tech., 17, 7109–7128, https://doi.org/10.5194/amt-17-7109-2024,https://doi.org/10.5194/amt-17-7109-2024, 2024
Short summary
Distribution characteristics of the summer precipitation raindrop spectrum on the Qinghai–Tibet Plateau
Fuzeng Wang, Yuanyu Duan, Yao Huo, Yaxi Cao, Qiusong Wang, Tong Zhang, Junqing Liu, and Guangmin Cao
Atmos. Meas. Tech., 17, 6933–6944, https://doi.org/10.5194/amt-17-6933-2024,https://doi.org/10.5194/amt-17-6933-2024, 2024
Short summary
In situ observations of supercooled liquid water clouds over Dome C, Antarctica, by balloon-borne sondes
Philippe Ricaud, Pierre Durand, Paolo Grigioni, Massimo Del Guasta, Giuseppe Camporeale, Axel Roy, Jean-Luc Attié, and John Bognar
Atmos. Meas. Tech., 17, 5071–5089, https://doi.org/10.5194/amt-17-5071-2024,https://doi.org/10.5194/amt-17-5071-2024, 2024
Short summary
Partition between supercooled liquid droplets and ice crystals in mixed-phase clouds based on airborne in situ observations
Flor Vanessa Maciel, Minghui Diao, and Ching An Yang
Atmos. Meas. Tech., 17, 4843–4861, https://doi.org/10.5194/amt-17-4843-2024,https://doi.org/10.5194/amt-17-4843-2024, 2024
Short summary
Innovative cloud quantification: deep learning classification and finite-sector clustering for ground-based all-sky imaging
Jingxuan Luo, Yubing Pan, Debin Su, Jinhua Zhong, Lingxiao Wu, Wei Zhao, Xiaoru Hu, Zhengchao Qi, Daren Lu, and Yinan Wang
Atmos. Meas. Tech., 17, 3765–3781, https://doi.org/10.5194/amt-17-3765-2024,https://doi.org/10.5194/amt-17-3765-2024, 2024
Short summary

Cited articles

Al Banna, M. H., Taher, K. A., Kaiser, M. S., Mahmud, M., Rahman, M. S., Hosen, A. S., and Cho, G. H.: Application of artificial intelligence in predicting earthquakes: state-of-the-art and future challenges, IEEE Access., 8, 192880–192923, https://doi.org/10.1109/ACCESS.2020.3029859, 2020. 
Al-lahham, A., Theeb, O., Elalem, K., Alshawi, T., and Alshebeili, S.: Sky Imager-Based Forecast of Solar Irradiance Using Machine Learning, Electronics, 9, 1700, https://doi.org/10.3390/electronics9101700, 2020. 
Alonso, J., Batlles, F. J., López, G., and Ternero, A.: Sky camera imagery processing based on a sky classification using radiometric data, Energy, 68, 599–608, https://doi.org/10.1016/j.energy.2014.02.035, 2014. 
Alonso-Montesinos, J.: Real-Time Automatic Cloud Detection Using a Low-Cost Sky Camera, Remote Sens., 12, 1382, https://doi.org/10.3390/rs12091382, 2020. 
Azhar, M. A. D. M., Hamid, N. S. A., Kamil, W. M. A. W. M., and Mohamad, N. S.: Daytime Cloud Detection Method Using the All-Sky Imager over PERMATApintar Observatory, Universe, 7, 41, https://doi.org/10.3390/universe7020041, 2021. 
Download
Short summary
This study investigates a method for 24 h cloud cover calculation using a camera-based imager and supervised machine learning methods. The cloud cover is calculated by learning the statistical characteristics of the ratio, difference, and luminance using RGB channels of the image with a machine learning model. The proposed approach is suitable for nowcasting because it has higher learning and prediction speed than the method in which the many pixels of a 2D image are learned.