Articles | Volume 14, issue 10
https://doi.org/10.5194/amt-14-6695-2021
https://doi.org/10.5194/amt-14-6695-2021
Research article
 | 
18 Oct 2021
Research article |  | 18 Oct 2021

Twenty-four-hour cloud cover calculation using a ground-based imager with machine learning

Bu-Yo Kim, Joo Wan Cha, and Ki-Ho Chang

Related authors

Estimation of 24 h continuous cloud cover using a ground-based imager with a convolutional neural network
Bu-Yo Kim, Joo Wan Cha, and Yong Hee Lee
Atmos. Meas. Tech., 16, 5403–5413, https://doi.org/10.5194/amt-16-5403-2023,https://doi.org/10.5194/amt-16-5403-2023, 2023
Short summary

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Quantifying riming from airborne data during the HALO-(AC)3 campaign
Nina Maherndl, Manuel Moser, Johannes Lucke, Mario Mech, Nils Risse, Imke Schirmacher, and Maximilian Maahn
Atmos. Meas. Tech., 17, 1475–1495, https://doi.org/10.5194/amt-17-1475-2024,https://doi.org/10.5194/amt-17-1475-2024, 2024
Short summary
Estimation of 24 h continuous cloud cover using a ground-based imager with a convolutional neural network
Bu-Yo Kim, Joo Wan Cha, and Yong Hee Lee
Atmos. Meas. Tech., 16, 5403–5413, https://doi.org/10.5194/amt-16-5403-2023,https://doi.org/10.5194/amt-16-5403-2023, 2023
Short summary
Neural network processing of holographic images
John S. Schreck, Gabrielle Gantos, Matthew Hayman, Aaron Bansemer, and David John Gagne
Atmos. Meas. Tech., 15, 5793–5819, https://doi.org/10.5194/amt-15-5793-2022,https://doi.org/10.5194/amt-15-5793-2022, 2022
Short summary
Ice crystal images from optical array probes: classification with convolutional neural networks
Louis Jaffeux, Alfons Schwarzenböck, Pierre Coutris, and Christophe Duroure
Atmos. Meas. Tech., 15, 5141–5157, https://doi.org/10.5194/amt-15-5141-2022,https://doi.org/10.5194/amt-15-5141-2022, 2022
Short summary
Detection and analysis of cloud boundary in Xi'an, China, employing 35 GHz cloud radar aided by 1064 nm lidar
Yun Yuan, Huige Di, Yuanyuan Liu, Tao Yang, Qimeng Li, Qing Yan, Wenhui Xin, Shichun Li, and Dengxin Hua
Atmos. Meas. Tech., 15, 4989–5006, https://doi.org/10.5194/amt-15-4989-2022,https://doi.org/10.5194/amt-15-4989-2022, 2022
Short summary

Cited articles

Al Banna, M. H., Taher, K. A., Kaiser, M. S., Mahmud, M., Rahman, M. S., Hosen, A. S., and Cho, G. H.: Application of artificial intelligence in predicting earthquakes: state-of-the-art and future challenges, IEEE Access., 8, 192880–192923, https://doi.org/10.1109/ACCESS.2020.3029859, 2020. 
Al-lahham, A., Theeb, O., Elalem, K., Alshawi, T., and Alshebeili, S.: Sky Imager-Based Forecast of Solar Irradiance Using Machine Learning, Electronics, 9, 1700, https://doi.org/10.3390/electronics9101700, 2020. 
Alonso, J., Batlles, F. J., López, G., and Ternero, A.: Sky camera imagery processing based on a sky classification using radiometric data, Energy, 68, 599–608, https://doi.org/10.1016/j.energy.2014.02.035, 2014. 
Alonso-Montesinos, J.: Real-Time Automatic Cloud Detection Using a Low-Cost Sky Camera, Remote Sens., 12, 1382, https://doi.org/10.3390/rs12091382, 2020. 
Azhar, M. A. D. M., Hamid, N. S. A., Kamil, W. M. A. W. M., and Mohamad, N. S.: Daytime Cloud Detection Method Using the All-Sky Imager over PERMATApintar Observatory, Universe, 7, 41, https://doi.org/10.3390/universe7020041, 2021. 
Download
Short summary
This study investigates a method for 24 h cloud cover calculation using a camera-based imager and supervised machine learning methods. The cloud cover is calculated by learning the statistical characteristics of the ratio, difference, and luminance using RGB channels of the image with a machine learning model. The proposed approach is suitable for nowcasting because it has higher learning and prediction speed than the method in which the many pixels of a 2D image are learned.