Articles | Volume 14, issue 10
Atmos. Meas. Tech., 14, 6851–6866, 2021
Atmos. Meas. Tech., 14, 6851–6866, 2021
Research article
25 Oct 2021
Research article | 25 Oct 2021

Reconstruction of the mass and geometry of snowfall particles from multi-angle snowflake camera (MASC) images

Jussi Leinonen et al.

Related authors

Nowcasting thunderstorm hazards using machine learning: the impact of data sources on performance
Jussi Leinonen, Ulrich Hamann, Urs Germann, and John R. Mecikalski
Nat. Hazards Earth Syst. Sci., 22, 577–597,,, 2022
Short summary
Unsupervised classification of snowflake images using a generative adversarial network and K-medoids classification
Jussi Leinonen and Alexis Berne
Atmos. Meas. Tech., 13, 2949–2964,,, 2020
Short summary
Marine liquid cloud geometric thickness retrieved from OCO-2's oxygen A-band spectrometer
Mark Richardson, Jussi Leinonen, Heather Q. Cronk, James McDuffie, Matthew D. Lebsock, and Graeme L. Stephens
Atmos. Meas. Tech., 12, 1717–1737,,, 2019
Short summary
Retrieval of snowflake microphysical properties from multifrequency radar observations
Jussi Leinonen, Matthew D. Lebsock, Simone Tanelli, Ousmane O. Sy, Brenda Dolan, Randy J. Chase, Joseph A. Finlon, Annakaisa von Lerber, and Dmitri Moisseev
Atmos. Meas. Tech., 11, 5471–5488,,, 2018
Short summary
Performance assessment of a triple-frequency spaceborne cloud–precipitation radar concept using a global cloud-resolving model
J. Leinonen, M. D. Lebsock, S. Tanelli, K. Suzuki, H. Yashiro, and Y. Miyamoto
Atmos. Meas. Tech., 8, 3493–3517,,, 2015
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Considerations for improving data quality of thermo-hygrometer sensors on board unmanned aerial systems for planetary boundary layer research
Antonio R. Segales, Phillip B. Chilson, and Jorge L. Salazar-Cerreño
Atmos. Meas. Tech., 15, 2607–2621,,, 2022
Short summary
Characteristics of the derived energy dissipation rate using the 1 Hz commercial aircraft quick access recorder (QAR) data
Soo-Hyun Kim, Jeonghoe Kim, Jung-Hoon Kim, and Hye-Yeong Chun
Atmos. Meas. Tech., 15, 2277–2298,,, 2022
Short summary
Low-level buoyancy as a tool to understand boundary layer transitions
Francesca M. Lappin, Tyler M. Bell, Elizabeth A. Pillar-Little, and Phillip B. Chilson
Atmos. Meas. Tech., 15, 1185–1200,,, 2022
Short summary
Estimating vertical wind power density using tower observation and empirical models over varied desert steppe terrain in northern China
Shaohui Zhou, Yuanjian Yang, Zhiqiu Gao, Xingya Xi, Zexia Duan, and Yubin Li
Atmos. Meas. Tech., 15, 757–773,,, 2022
Short summary
Air temperature equation derived from sonic temperature and water vapor mixing ratio for turbulent airflow sampled through closed-path eddy-covariance flux systems
Xinhua Zhou, Tian Gao, Eugene S. Takle, Xiaojie Zhen, Andrew E. Suyker, Tala Awada, Jane Okalebo, and Jiaojun Zhu
Atmos. Meas. Tech., 15, 95–115,,, 2022
Short summary

Cited articles

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., Hasan, M., Van Essen, B. C., Awwal, A. A. S., and Asari, V. K.: A State-of-the-Art Survey on Deep Learning Theory and Architectures, Electronics, 8, 292,, 2019. a
Arjovsky, M., Chintala, S., and Bottou, L.: Wasserstein GAN, arXiv [preprint], arXiv:1701.07875, 2017. a
Bagheri, A. and Jin, J.: Photopolymerization in 3D Printing, ACS Appl. Polym. Mat., 1, 593–611,, 2019. a
Baker, B. and Lawson, R. P.: Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationships, J. Appl. Meteorol. Clim., 45, 1282–1290,, 2006. a, b
Chicco, D.: Siamese Neural Networks: An Overview, in: Artificial Neural Networks, edited by: Cartwright, H., Springer, New York, New York, USA,, pp. 73–94, 2021. a
Short summary
Measuring the shape, size and mass of a large number of snowflakes is a challenging task; it is hard to achieve in an automatic and instrumented manner. We present a method to retrieve these properties of individual snowflakes using as input a triplet of images/pictures automatically collected by a multi-angle snowflake camera (MASC) instrument. Our method, based on machine learning, is trained on artificially generated snowflakes and evaluated on 3D-printed snowflake replicas.