Articles | Volume 14, issue 12
https://doi.org/10.5194/amt-14-7729-2021
https://doi.org/10.5194/amt-14-7729-2021
Research article
 | 
09 Dec 2021
Research article |  | 09 Dec 2021

Inpainting radar missing data regions with deep learning

Andrew Geiss and Joseph C. Hardin

Related authors

A derecho climatology (2004–2021) in the United States based on machine learning identification of bow echoes
Jianfeng Li, Andrew Geiss, Zhe Feng, L. Ruby Leung, Yun Qian, and Wenjun Cui
Earth Syst. Sci. Data, 17, 3721–3740, https://doi.org/10.5194/essd-17-3721-2025,https://doi.org/10.5194/essd-17-3721-2025, 2025
Short summary
Classifying Thermodynamic Cloud Phase Using Machine Learning Models
Lexie Goldberger, Maxwell Levin, Carlandra Harris, Andrew Geiss, Matthew D. Shupe, and Damao Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1501,https://doi.org/10.5194/egusphere-2025-1501, 2025
Short summary
NeuralMie (v1.0): an aerosol optics emulator
Andrew Geiss and Po-Lun Ma
Geosci. Model Dev., 18, 1809–1827, https://doi.org/10.5194/gmd-18-1809-2025,https://doi.org/10.5194/gmd-18-1809-2025, 2025
Short summary
Emulating aerosol optics with randomly generated neural networks
Andrew Geiss, Po-Lun Ma, Balwinder Singh, and Joseph C. Hardin
Geosci. Model Dev., 16, 2355–2370, https://doi.org/10.5194/gmd-16-2355-2023,https://doi.org/10.5194/gmd-16-2355-2023, 2023
Short summary
Downscaling atmospheric chemistry simulations with physically consistent deep learning
Andrew Geiss, Sam J. Silva, and Joseph C. Hardin
Geosci. Model Dev., 15, 6677–6694, https://doi.org/10.5194/gmd-15-6677-2022,https://doi.org/10.5194/gmd-15-6677-2022, 2022
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Benchmarking and improving algorithms for attributing satellite-observed contrails to flights
Aaron Sarna, Vincent Meijer, Rémi Chevallier, Allie Duncan, Kyle McConnaughay, Scott Geraedts, and Kevin McCloskey
Atmos. Meas. Tech., 18, 3495–3532, https://doi.org/10.5194/amt-18-3495-2025,https://doi.org/10.5194/amt-18-3495-2025, 2025
Short summary
Riming-dependent snowfall rate and ice water content retrievals for W-band cloud radar
Nina Maherndl, Alessandro Battaglia, Anton Kötsche, and Maximilian Maahn
Atmos. Meas. Tech., 18, 3287–3304, https://doi.org/10.5194/amt-18-3287-2025,https://doi.org/10.5194/amt-18-3287-2025, 2025
Short summary
Radiative closure assessment of retrieved cloud and aerosol properties for the EarthCARE mission: the ACMB-DF product
Howard W. Barker, Jason N. S. Cole, Najda Villefranque, Zhipeng Qu, Almudena Velázquez Blázquez, Carlos Domenech, Shannon L. Mason, and Robin J. Hogan
Atmos. Meas. Tech., 18, 3095–3107, https://doi.org/10.5194/amt-18-3095-2025,https://doi.org/10.5194/amt-18-3095-2025, 2025
Short summary
Satellite-based detection of deep-convective clouds: the sensitivity of infrared methods and implications for cloud climatology
Andrzej Z. Kotarba and Izabela Wojciechowska
Atmos. Meas. Tech., 18, 2721–2738, https://doi.org/10.5194/amt-18-2721-2025,https://doi.org/10.5194/amt-18-2721-2025, 2025
Short summary
Infrared radiometric image classification and segmentation of cloud structures using a deep-learning framework from ground-based infrared thermal camera observations
Kélian Sommer, Wassim Kabalan, and Romain Brunet
Atmos. Meas. Tech., 18, 2083–2101, https://doi.org/10.5194/amt-18-2083-2025,https://doi.org/10.5194/amt-18-2083-2025, 2025
Short summary

Cited articles

Agrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen, C., and Hickey, J.: Machine learning for precipitation nowcasting from radar images, arXiv [preprint], arXiv:1912.12132, 11 December 2019. a
Arjovsky, M., Chintala, S., and Bottou, L.: Wasserstein generative adversarial networks, in: International conference on machine learning, PMLR, 70, 214–223, available at: https://proceedings.mlr.press/v70/arjovsky17a.html (last access: 22 March 2020), 2017. a
Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C.: Image Inpainting, in: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, SIGGRAPH '00, Addison-Wesley Publishing Co., USA, 417–424, https://doi.org/10.1145/344779.344972, 2000. a
Bertalmio, M., Bertozzi, A. L., and Sapiro, G.: Navier-stokes, fluid dynamics, and image and video inpainting, in: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA, 8–14 December 2001, IEEE CVPR, 1, https://doi.org/10.1109/CVPR.2001.990497, 2001. a
Bugeau, A., Bertalmío, M., Caselles, V., and Sapiro, G.: A Comprehensive Framework for Image Inpainting, IEEE T. Image Process., 19, 2634–2645, https://doi.org/10.1109/TIP.2010.2049240, 2010. a
Download
Short summary
Radars can suffer from missing or poor-quality data regions for several reasons: beam blockage, instrument failure, and near-ground blind zones, etc. Here, we demonstrate how deep convolutional neural networks can be used for filling in radar-missing data regions and that they can significantly outperform conventional approaches in terms of realism and accuracy.
Share