Articles | Volume 15, issue 15
https://doi.org/10.5194/amt-15-4569-2022
https://doi.org/10.5194/amt-15-4569-2022
Research article
 | 
12 Aug 2022
Research article |  | 12 Aug 2022

Correcting for filter-based aerosol light absorption biases at the Atmospheric Radiation Measurement program's Southern Great Plains site using photoacoustic measurements and machine learning

Joshin Kumar, Theo Paik, Nishit J. Shetty, Patrick Sheridan, Allison C. Aiken, Manvendra K. Dubey, and Rajan K. Chakrabarty

Related authors

Development of a Forced Advection Sampling Technique (FAST) for Quantification of Methane Emissions from Orphaned Wells
Mohit L. Dubey, Andre Santos, Andrew B. Moyes, Ken Reichl, James E. Lee, Manvendra K. Dubey, Corentin LeYhuelic, Evan Variano, Emily Follansbee, Fotini K. Chow, and Sébastien C. Biraud
EGUsphere, https://doi.org/10.5194/egusphere-2024-3040,https://doi.org/10.5194/egusphere-2024-3040, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Local and regional enhancements of CH4, CO, and CO2 inferred from TCCON column measurements
Kavitha Mottungan, Chayan Roychoudhury, Vanessa Brocchi, Benjamin Gaubert, Wenfu Tang, Mohammad Amin Mirrezaei, John McKinnon, Yafang Guo, David W. T. Griffith, Dietrich G. Feist, Isamu Morino, Mahesh K. Sha, Manvendra K. Dubey, Martine De Mazière, Nicholas M. Deutscher, Paul O. Wennberg, Ralf Sussmann, Rigel Kivi, Tae-Young Goo, Voltaire A. Velazco, Wei Wang, and Avelino F. Arellano Jr.
Atmos. Meas. Tech., 17, 5861–5885, https://doi.org/10.5194/amt-17-5861-2024,https://doi.org/10.5194/amt-17-5861-2024, 2024
Short summary
A new aerial approach for quantifying and attributing methane emissions: implementation and validation
Jonathan F. Dooley, Kenneth Minschwaner, Manvendra K. Dubey, Sahar H. El Abbadi, Evan D. Sherwin, Aaron G. Meyer, Emily Follansbee, and James E. Lee
Atmos. Meas. Tech., 17, 5091–5111, https://doi.org/10.5194/amt-17-5091-2024,https://doi.org/10.5194/amt-17-5091-2024, 2024
Short summary
Toward on-demand measurements of greenhouse gas emissions using an uncrewed aircraft AirCore system
Zihan Zhu, Javier González-Rocha, Yifan Ding, Isis Frausto-Vicencio, Sajjan Heerah, Akula Venkatram, Manvendra Dubey, Don Collins, and Francesca M. Hopkins
Atmos. Meas. Tech., 17, 3883–3895, https://doi.org/10.5194/amt-17-3883-2024,https://doi.org/10.5194/amt-17-3883-2024, 2024
Short summary
Brownness of Organics in Anthropogenic Biomass Burning Aerosols over South Asia
Chimurkar Navinya, Taveen Singh Kapoor, Gupta Anurag, Chandra Venkataraman, Harish C. Phuleria, and Rajan K. Chakrabarty
EGUsphere, https://doi.org/10.5194/egusphere-2024-1313,https://doi.org/10.5194/egusphere-2024-1313, 2024
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Classification accuracy and compatibility across devices of a new Rapid-E+ flow cytometer
Branko Sikoparija, Predrag Matavulj, Isidora Simovic, Predrag Radisic, Sanja Brdar, Vladan Minic, Danijela Tesendic, Evgeny Kadantsev, Julia Palamarchuk, and Mikhail Sofiev
Atmos. Meas. Tech., 17, 5051–5070, https://doi.org/10.5194/amt-17-5051-2024,https://doi.org/10.5194/amt-17-5051-2024, 2024
Short summary
A 2-year intercomparison of three methods for measuring black carbon concentration at a high-altitude research station in Europe
Sarah Tinorua, Cyrielle Denjean, Pierre Nabat, Véronique Pont, Mathilde Arnaud, Thierry Bourrianne, Maria Dias Alves, and Eric Gardrat
Atmos. Meas. Tech., 17, 3897–3915, https://doi.org/10.5194/amt-17-3897-2024,https://doi.org/10.5194/amt-17-3897-2024, 2024
Short summary
Comparison of the LEO and CPMA-SP2 techniques for black-carbon mixing-state measurements
Arash Naseri, Joel C. Corbin, and Jason S. Olfert
Atmos. Meas. Tech., 17, 3719–3738, https://doi.org/10.5194/amt-17-3719-2024,https://doi.org/10.5194/amt-17-3719-2024, 2024
Short summary
Aerosol trace element solubility determined using ultrapure water batch leaching: an intercomparison study of four different leaching protocols
Rui Li, Prema Piyusha Panda, Yizhu Chen, Zhenming Zhu, Fu Wang, Yujiao Zhu, He Meng, Yan Ren, Ashwini Kumar, and Mingjin Tang
Atmos. Meas. Tech., 17, 3147–3156, https://doi.org/10.5194/amt-17-3147-2024,https://doi.org/10.5194/amt-17-3147-2024, 2024
Short summary
Field comparison of dual- and single-spot Aethalometers: equivalent black carbon, light absorption, Ångström exponent and secondary brown carbon estimations
Liangbin Wu, Cheng Wu, Tao Deng, Dui Wu, Mei Li, Yong Jie Li, and Zhen Zhou
Atmos. Meas. Tech., 17, 2917–2936, https://doi.org/10.5194/amt-17-2917-2024,https://doi.org/10.5194/amt-17-2917-2024, 2024
Short summary

Cited articles

Arnott, W. P., Moosmüller, H., Rogers, C. F., Jin, T., and Bruch, R.: Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description, Atmos. Environ., 33, 2845–2852, 1999. 
Atmospheric Radiation Measurement (ARM) user facility: Photoacoustic Soot Spectrometer (AOSPASS3W). 2015-06-27 to 2015-09-25, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), compiled by: Aiken, A., ARM Data Center [data set], https://doi.org/10.5439/1190011, 2009. 
Atmospheric Radiation Measurement (ARM) user facility: ACSM, corrected for composition-dependent collection efficiency (ACSMCDCE). 2015-06-27 to 2015-09-25, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), compiled by: Zawadowicz, M. and Howie, J., ARM Data Center [data set], https://doi.org/10.5439/1763029, 2010. 
Atmospheric Radiation Measurement (ARM) user facility: Particle Soot Absorption Photometer (AOSPSAP3W). 2015-06-27 to 2017-09-25, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), compiled by: Koontz, A. and Springston, S., ARM Data Center [data set], https://doi.org/10.5439/1333829, 2011a. 
Download
Short summary
Accurate long-term measurement of aerosol light absorption is vital for assessing direct aerosol radiative forcing. Light absorption by aerosols at the US Department of Energy long-term climate monitoring SGP site is measured using the Particle Soot Absorption Photometer (PSAP), which suffers from artifacts and biases difficult to quantify. Machine learning offers a promising path forward to correct for biases in the long-term absorption dataset at the SGP site and similar Class-I areas.