Articles | Volume 15, issue 16
https://doi.org/10.5194/amt-15-4989-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-4989-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Detection and analysis of cloud boundary in Xi'an, China, employing 35 GHz cloud radar aided by 1064 nm lidar
Yun Yuan
School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
Huige Di
CORRESPONDING AUTHOR
School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
Yuanyuan Liu
School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
Tao Yang
School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
Qimeng Li
School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
Qing Yan
School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
Wenhui Xin
School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
Shichun Li
School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
Dengxin Hua
CORRESPONDING AUTHOR
School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
Related authors
Qimeng Li, Huige Di, Ning Chen, Xiao Cheng, Jiaying Yang, Yun Yuan, Qing Yan, and Dengxin Hua
EGUsphere, https://doi.org/10.5194/egusphere-2025-5393, https://doi.org/10.5194/egusphere-2025-5393, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
A severe winter haze event was observed with a Raman–Mie lidar, providing high-resolution profiles of the atmospheric vertical structure. By integrating collocated radiosonde and surface meteorological data, the key meteorological characteristics, influencing factors, and interaction mechanisms governing the formation and evolution of this haze event were analyzed. The solar radiation plays a significant role in haze development, with a strong coupling between aerosols and temperature.
Huige Di and Yun Yuan
Atmos. Chem. Phys., 24, 5783–5801, https://doi.org/10.5194/acp-24-5783-2024, https://doi.org/10.5194/acp-24-5783-2024, 2024
Short summary
Short summary
We observed the seeder–feeder process among double-layer clouds using a cloud radar and microwave radiometer. By defining the parameters of the seeding depth and seeding time of the upper cloud affecting the lower cloud, we find that the cloud particle terminal velocity is significantly enhanced during the seeder–feeder period, and the lower the height and thinner the thickness of the height difference between double-layer clouds, the lower the height and thicker the thickness of seeding depth.
Huige Di, Yun Yuan, Qing Yan, Wenhui Xin, Shichun Li, Jun Wang, Yufeng Wang, Lei Zhang, and Dengxin Hua
Atmos. Meas. Tech., 15, 3555–3567, https://doi.org/10.5194/amt-15-3555-2022, https://doi.org/10.5194/amt-15-3555-2022, 2022
Short summary
Short summary
It is necessary to correctly evaluate the amount of cloud water resources in an area. Currently, there is a lack of effective observation methods for atmospheric column condensate evaluation. We propose a method for atmospheric column condensate by combining millimetre cloud radar, lidar and microwave radiometers. The method can realise determination of atmospheric column condensate. The variation of cloud before precipitation is considered, and the atmospheric column is deduced and obtained.
Qimeng Li, Huige Di, Ning Chen, Xiao Cheng, Jiaying Yang, Yun Yuan, Qing Yan, and Dengxin Hua
EGUsphere, https://doi.org/10.5194/egusphere-2025-5393, https://doi.org/10.5194/egusphere-2025-5393, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
A severe winter haze event was observed with a Raman–Mie lidar, providing high-resolution profiles of the atmospheric vertical structure. By integrating collocated radiosonde and surface meteorological data, the key meteorological characteristics, influencing factors, and interaction mechanisms governing the formation and evolution of this haze event were analyzed. The solar radiation plays a significant role in haze development, with a strong coupling between aerosols and temperature.
Huige Di, Xinhong Wang, Ning Chen, Jing Guo, Wenhui Xin, Shichun Li, Yan Guo, Qing Yan, Yufeng Wang, and Dengxin Hua
Atmos. Meas. Tech., 17, 4183–4196, https://doi.org/10.5194/amt-17-4183-2024, https://doi.org/10.5194/amt-17-4183-2024, 2024
Short summary
Short summary
This study proposes an inversion method for atmospheric-aerosol or cloud microphysical parameters based on dual-wavelength lidar data. It is suitable for the inversion of uniformly mixed and single-property aerosol layers or small cloud droplets. For aerosol particles, the inversion range that this algorithm can achieve is 0.3–1.7 μm. For cloud droplets, it is 1.0–10 μm. This algorithm can quickly obtain the microphysical parameters of atmospheric particles and has better robustness.
Huige Di and Yun Yuan
Atmos. Chem. Phys., 24, 5783–5801, https://doi.org/10.5194/acp-24-5783-2024, https://doi.org/10.5194/acp-24-5783-2024, 2024
Short summary
Short summary
We observed the seeder–feeder process among double-layer clouds using a cloud radar and microwave radiometer. By defining the parameters of the seeding depth and seeding time of the upper cloud affecting the lower cloud, we find that the cloud particle terminal velocity is significantly enhanced during the seeder–feeder period, and the lower the height and thinner the thickness of the height difference between double-layer clouds, the lower the height and thicker the thickness of seeding depth.
Huige Di, Yun Yuan, Qing Yan, Wenhui Xin, Shichun Li, Jun Wang, Yufeng Wang, Lei Zhang, and Dengxin Hua
Atmos. Meas. Tech., 15, 3555–3567, https://doi.org/10.5194/amt-15-3555-2022, https://doi.org/10.5194/amt-15-3555-2022, 2022
Short summary
Short summary
It is necessary to correctly evaluate the amount of cloud water resources in an area. Currently, there is a lack of effective observation methods for atmospheric column condensate evaluation. We propose a method for atmospheric column condensate by combining millimetre cloud radar, lidar and microwave radiometers. The method can realise determination of atmospheric column condensate. The variation of cloud before precipitation is considered, and the atmospheric column is deduced and obtained.
Guanglie Hong, Yu Dong, and Huige Di
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-69, https://doi.org/10.5194/amt-2022-69, 2022
Revised manuscript not accepted
Short summary
Short summary
According to the absorption spectrum characteristics of oxygen A-band, a comprehensive budget is made in connection with various errors. The main purpose is to select a group of detection wavelengths with excellent performance and small error to match the evaluated radar system model, so as to provide a reference idea for the actual establishment of the experimental system in the future.
Cited articles
Apituley, A., van Lammeren, A., and Russchenberg, H.: High time resolution cloud measurements with lidar during CLARA, Phys. Chem. Earth (B), 25, 107–113, https://doi.org/10.1016/S1464-1909(99)00135-5, 2000.
Borg, L. A., Holz, R. E., and Turner, D. D.: Investigating cloud radar
sensitivity to optically thin cirrus using collocated Raman lidar
observations, Geophys. Res. Lett., 38, L05807,
https://doi.org/10.1029/2010gl046365, 2011.
Cao, X., Lu, G., Li, M., and Wang, J.: Statistical Characteristics of Cloud
Heights over Lanzhou, China from Multiple Years of Micro-Pulse Lidar
Observation, Atmosphere-Basel, 12, 1415,
https://doi.org/10.3390/atmos12111415, 2021.
Clothiaux, E. E., Moran, K. P., Martner, B. E., Ackerman, T. P., Mace, G.
G., Uttal, T., Mather, J. H., Widener, K. B., Miller, M. A., and Rodriguez,
D. J.: The atmospheric radiation measurement program cloud radars:
Operational modes, J. Atmos. Ocean. Tech., 16, 819–827,
https://doi.org/10.1175/1520-0426(1999)016<0819:TARMPC>2.0.CO;2, 1999.
Cordoba-Jabonero, C., Lopes, F. J. S., Landulfo, E., Cuevas, E., Ochoa, H.,
and Gil-Ojeda, M.: Diversity on subtropical and polar cirrus clouds
properties as derived from both ground-based lidars and CALIPSO/CALIOP
measurements, Atmos. Res., 183, 151–165,
https://doi.org/10.1016/j.atmosres.2016.08.015, 2017.
Delanoe, J. and Hogan, R. J.: A variational scheme for retrieving ice cloud
properties from combined radar, lidar, and infrared radiometer, J. Geophys.
Res.-Atmos., 113, D07204, https://doi.org/10.1029/2007jd009000, 2008.
Di, H., Yuan, Y., Yan, Q., Xin, W., Li, S., Wang, J., Wang, Y., Zhang, L., and Hua, D.: Determination of atmospheric column condensate using active and passive remote sensing technology, Atmos. Meas. Tech., 15, 3555–3567, https://doi.org/10.5194/amt-15-3555-2022, 2022.
Dong, X., Xi, B., Crosby, K., Long, C. N., Stone, R. S., and Shupe, M. D.: A
10 year climatology of Arctic cloud fraction and radiative forcing at
Barrow, Alaska, J. Geophys. Res., 115, D17212, https://doi.org/10.1029/2009jd013489, 2010.
Ellis, S. M. and Vivekanandan, J.: Liquid water content estimates using
simultaneous S and K a band radar measurements, Radio. Sci., 46, RS2021, https://doi.org/10.1029/2010RS004361, 2011.
Görsdorf, U., Lehmann, V., Bauer-Pfundstein, M., Peters, G., Vavriv, D.,
Vinogradov, V., and Volkov, V.: A 35-GHz polarimetric Doppler radar for
long-term observations of cloud parameters – Description of system and data
processing, J. Atmos. Ocean. Tech., 32, 675–690,
https://doi.org/10.1175/JTECH-D-14-00066.1, 2015.
Hobbs, P. V., Funk, N. T., Weiss, Sr. R. R., Lohn, J. D., and Biswas, K. R.:
Evaluation of a 35 GHz radar for cloud physics research, J. Atmos. Ocean.
Tech., 2, 35-48, https://doi.org/10.1175/1520-0426(1985)002<0035:EOAGRF>2.0.CO;2, 1985.
Intrieri, J. M., Stephens, G. L., Eberhard, W. L., and Uttal, T.: A method
for determining cirrus cloud particle sizes using lidar and radar
backscatter technique, J. Appl. Meteorol. Clim., 32, 1074–1082,
https://doi.org/10.1175/1520-0450(1993)032<1074:AMFDCC>2.0.CO;2,
1993.
Kitova, N., Ivanova, K., Mikhalev, M. A., and Ausloos, M.: Statistical
investigation of cloud base height time evolution, Proc. SPIE-Int. Soc. Opt.
Eng., 5226, 280–284, https://doi.org/10.1117/12.519500, 2003.
Kollias, P., Clothiaux, E. E., Miller, M. A., Albrecht, B. A., Stephens, G.
L., and Ackerman, T. P.: Millimeter-wavelength radars: New frontier in
atmospheric cloud and precipitation research, B. Am. Meteorol. Soc., 88,
1608–1624, https://doi.org/10.1175/BAMS-88-10-1608, 2007a.
Kollias, P., Clothiaux, E. E., Miller, M. A., Luke, E. P., Johnson, K. L.,
Moran, K. P., Widener, K. B., and Albrecht, B. A.: The Atmospheric Radiation
Measurement Program cloud profiling radars: Second-generation sampling
strategies, processing, and cloud data products, J. Atmos. Ocean. Tech.,
24, 1199–1214, https://doi.org/10.1175/JTECH2033.1, 2007b.
Kovalev, V. A., Newton, J., Wold, C., and Wei, M.: Simple algorithm to determine the near-edge smoke boundaries with scanning lidar, Appl. Optics., 44, 1761–1768, https://doi.org/10.1364/ao.44.001761, 2005.
Kuji, M.: Retrieval of water cloud top and bottom heights and the validation
with ground-based observations, Proc. SPIE-Int. Soc. Opt. Eng., 8890,
88900R, https://doi.org/10.1117/12.2029169, 2013.
Li, J., Yi, Y., Stamnes, K., Ding, X., Wang, T., Jin, H., and Wang, S.: A
new approach to retrieve cloud base height of marine boundary layer clouds,
Geophys. Res. Lett., 40, 4448–4453, https://doi.org/10.1002/grl.50836,
2013.
Lohmann, U. and Gasparini, B.: A cirrus cloud climate dial?, Science,
357, 248–249, https://doi.org/10.1126/science.aan3325, 2017.
Luke, E. P., Kollias, P., Johnson, K. L., and Clothiaux, E. E.: A technique
for the automatic detection of insect clutter in cloud radar returns, J.
Atmos. Ocean. Tech., 25, 1498–1513, https://doi.org/10.1175/2007JTECHA953.1, 2008.
Mao, F., Gong, W., and Zhu, Z.: Simple multiscale algorithm for layer
detection with lidar, Appl. Optics., 50, 6591–6598,
https://doi.org/10.1364/AO.50.006591, 2011.
Melnikov, V., Leskinen, M., and Koistinen, J.: Doppler velocities at
orthogonal polarizations in radar echoes from insects and birds, IEEE
Geosci. Remote. S., 11, 592–596, https://doi.org/10.1109/LGRS.2013.2272011, 2014.
Melnikov, V. M., Istok, M. J., and Westbrook, J. K.: Asymmetric radar echo
patterns from insects, J. Atmos. Ocean. Tech., 32, 659–674,
https://doi.org/10.1175/JTECH-D-13-00247.1, 2015.
Morille, Y., Haeffelin, M., Drobinski, P., and Pelon, J.: STRAT: An
automated algorithm to retrieve the vertical structure of the atmosphere
from single-channel lidar data, J. Atmos. Ocean. Tech., 24, 761–775,
https://doi.org/10.1175/JTECH2008.1, 2007.
Motty, G. S., Satyanarayana, M., Jayeshlal, G. S., Krishnakumar, V., and
Mahadevan, Pillai, V. P.: Lidar observed structural characteristics of
higher altitude cirrus clouds over a tropical site in Indian subcontinent
region, J. Atmos. Sol.-Terr. Phy., 179, 367–377, https://doi.org/10.1016/j.jastp.2018.08.013, 2018.
Nakajima, T. and King, M. D.: Determination of the optical thickness and
effective particle radius of clouds from reflected solar radiation
measurements. Part I: Theory, J. Atmos. Sci., 47, 1878–1893,
https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2, 1990.
Oh, S. B., Kim, Y. H., Kim, K. H., Cho, C. H., and Lim, E.: Verification and
correction of cloud base and top height retrievals from Ka-band cloud radar
in Boseong, Korea, Adv. Atmos. Sci., 33, 73–84, https://doi.org/10.1007/s00376-015-5058-y, 2016.
Pal, S. R., Steinbrecht, W., and Carswell, A. I.: Automated method for lidar
determination of cloud-base height and vertical extent, Appl. Optics,
31, 1488–1494, https://doi.org/10.1364/AO.31.001488, 1992.
Platt, C. M., Young, S. A., Carswell, A. I., Pal, S. R., McCormick, M. P.,
Winker, D. M., Delguasta, M., Stefanutti, L., Eberhard, W. L., Hardesty, M.,
Flamant, P. H., Valentin, R., Forgan, B., Gimmestad, G. G., Jäger,
H., Khmelevtsov, S. S., Kolev, I., Kaprieolev, B., Lu, D., Sassen, K.,
Shamanaev, V. S., Uchino, O., Mizuno, Y., Wandinger, U., Weitkamp, C.,
Ansmann, A., and Wooldridge, C.: The experimental cloud lidar pilot study
(ECLIPS) for cloud–radiation research, B. Am. Meteorol. Soc., 75,
1635–1654, https://doi.org/10.1175/1520-0477(1994)075<1635:TECLPS>2.0.CO;2, 1994.
Protat, A., Delanoë, J., May, P. T., Haynes, J., Jakob, C., O'Connor, E., Pope, M., and Wheeler, M. C.: The variability of tropical ice cloud properties as a function of the large-scale context from ground-based radar-lidar observations over Darwin, Australia, Atmos. Chem. Phys., 11, 8363–8384, https://doi.org/10.5194/acp-11-8363-2011, 2011.
Sassen, K. and Mace, G.: Ground-based Remote Sensing of Cirrus Clouds,
Oxford, University Press, 168–196, https://doi.org/10.1093/oso/9780195130720.003.0012, 2001.
Sauvageot, H.: Retrieval of vertical profiles of liquid water and ice
content in mixed clouds from Doppler radar and microwave radiometer
measurements, J. Appl. Meteorol. Clim., 35, 14–23,
https://doi.org/10.1175/1520-0450(1996)035<0014:ROVPOL>2.0.CO;2, 1996.
Sherwood, S. C., Bony, S., and Dufresne, J. L.: Spread in model climate
sensitivity traced to atmospheric convective mixing, Nature, 505,
37–42, https://doi.org/10.1038/nature12829, 2014.
Shupe, M. D., Kollias, P., Poellot, M., and Eloranta, E.: On deriving
vertical air motions from cloud radar Doppler spectra, J. Atmos. Ocean.
Tech., 25, 547–557, https://doi.org/10.1175/2007JTECHA1007.1, 2008.
Stephens, G. L.: Cloud Feedbacks in the Climate System: A Critical
Review, J. Climate., 18, 237–273, https://doi.org/10.1175/JCLI-3243.1, 2005.
Stephens, G. L., Li, J., Wild, M., Clayson, C. A., Loeb, N., Kato, S.,
L'ecuyer, T., Stackhouse Jr., P. W., Lebsock, M., and Andrews, T.: An update
on Earth's energy balance in light of the latest global observations, Nat.
Geosci., 5, 691–696, https://doi.org/10.1038/ngeo1580, 2012.
Streicher, J., Werner, C., and Köepp, F.: Verification of lidar
visibility, cloud base height, and vertical velocity measurements by laser
remote sensing, SPIE, 2506, 576–579, https://doi.org/10.1117/12.221061, 1995.
Thorsen, T. J., Fu, Q., and Comstock, J. M.: Cloud effects on radiative
heating rate profiles over Darwin using ARM and A-train radar/lidar
observations, J. Geophys. Res-Atmos., 118, 5637–5654,
https://doi.org/10.1002/jgrd.50476, 2013.
Varikoden, H., Harikumar, R., Vishnu, R., Sasi Kumar, V., Sampath, S.,
Murali Das, S., and Mohan Kumar, G.: Observational study of cloud base
height and its frequency over a tropical station, Thiruvananthapuram, using
a ceilometer, Int. J. Remote. Sens., 32, 8505–8518, https://doi.org/10.1080/01431161.2010.542199, 2011.
Veselovskii, I., Goloub, P., Podvin, T., Tanre, D., Ansmann, A., Korenskiy,
M., Borovoi, A., Hu, Q., and Whiteman, D. N.: Spectral dependence of
backscattering coefficient of mixed phase clouds over West Africa measured
with two-wavelength Raman polarization lidar: Features attributed to
ice-crystals corner reflection, J. Quant. Spectrosc. Ra., 202, 74–80,
https://doi.org/10.1016/j.jqsrt.2017.07.028, 2017.
Wandinger, U.: Introduction to Lidar, Brooks/Cole Pub Co,
https://doi.org/10.1007/0-387-25101-4_1, 2005.
Wang, J. and Rossow, W. B.: Determination of cloud vertical structure from
upper-air observations, J. Appl. Meteorol. Clim., 34, 2243–2258,
https://doi.org/10.1175/1520-0450(1995)034<2243:DOCVSF>2.0.CO;2, 1995.
Ward, J. G. and Merceret, F. J.: An automated cloud-edge detection
algorithm using cloud physics and radar data, J. Atmos. Ocean. Tech., 21,
762–765, https://doi.org/10.1175/1520-0426(2004)021<0762:AACDAU>2.0.CO;2,
2004.
Wild, M.: New Directions: A facelift for the picture of the global energy
balance, Atmos. Environ., 55, 366–367,
https://doi.org/10.1016/j.atmosenv.2012.03.022, 2012.
Williams, C. R., Bringi, V. N., Carey, L. D., Chandrasekar, V., Gatlin, P.
N., Haddad, Z. S., Meneghini, R., Munchak, S. J., Nesbitt, S. W., Petersen, W. A., Tanelli, S., Tokay, A., Wilson, A., and Wolff, D. B.: Describing the
shape of raindrop size distributions using uncorrelated raindrop mass
spectrum parameters, J. Appl. Meteorol. Clim., 53, 1282–1296,
https://doi.org/10.1175/JAMC-D-13-076.1, 2014.
Xie, H., Zhou, T., Fu, Q., Huang, J., Huang, Z., Huang, Z., Bi, J., Shi, J.,
Zhang, B., and Ge, J.: Automated detection of cloud and aerosol features
with SACOL micro-pulse lidar in northwest China, Opt. Express., 25,
30732–30753, https://doi.org/10.1364/OE.25.030732, 2017.
Young, S. A.: Analysis of lidar backscatter profiles in optically thin
clouds, Appl. Optics, 34, 7019–7031, https://doi.org/10.1364/AO.34.007019, 1995.
Zhang, J., Chen, H., Xia, X., and Wang, W.: Dynamic and thermodynamic
features of low and middle clouds derived from atmospheric radiation
measurement program mobile facility radiosonde data at Shouxian, China, Adv.
Atmos. Sci., 33, 21–33, https://doi.org/10.1007/s00376-015-5032-8, 2016.
Zhang, L., Dong, X., Kennedy, A, Xi, B., and Li, Z.: Evaluation of NASA GISS
post-CMIP5 single column model simulated clouds and precipitation using ARM
Southern Great Plains observations, Adv. Atmos. Sci., 34, 306–320,
https://doi.org/10.1007/s00376-016-5254-4, 2017.
Zhang, Y., Zhang, L., Guo, J., Feng, J., Cao, L., Wang, Y., Zhou, Q., Li,
L., Li, B., Xu, H., Liu, L., An, N., and Liu, H.: Climatology of cloud-base
height from long-term radiosonde measurements in China, Adv. Atmos. Sci.,
35, 158–168, https://doi.org/10.1007/s00376-017-7096-0, 2018.
Zhao, C., Wang, Y., Wang, Q., Li, Z., Wang, Z., and Liu, D.: A new cloud and
aerosol layer detection method based on micropulse lidar measurements, J.
Geophys. Res.-Atmos., 119, 6788–6802, https://doi.org/10.1002/2014JD021760, 2014.
Zheng, J., Zhang, J., Zhu, K., Liu, L., and Liu, Y.: Gust front statistical
characteristics and automatic identification algorithm for CINRAD, J.
Meteorol. Res.-Prc., 28, 607–623, https://doi.org/10.1007/s13351-014-3240-2, 2014.
Zhou, C., Zelinka, M. D., and Klein, S. A.: Impact of decadal cloud
variations on the Earth's energy budget, Nat. Geosci., 9, 871–874,
https://doi.org/10.1038/ngeo2828, 2016.
Zhou, Q., Zhang, Y., Li, B., Li, L., Feng, J., Jia, S., Lv, S., Tao, F., and
Guo, J.: Cloud-base and Cloud-top Heights Determined from a Ground-based
Cloud Radar in Beijing, China, Atmos. Environ., 201, 381–390,
https://doi.org/10.1016/j.atmosenv.2019.01.012, 2019.
Short summary
We put forward a new algorithm for joint observation of the cloud boundary by lidar and Ka-band millimetre-wave cloud radar. Cloud cover and boundary distribution characteristics are analysed from December 2020 to November 2021 in Xi'an. More than 34 % of clouds appear as a single layer every month. The maximum and minimum normalized cloud cover occurs in summer and winter, respectively. The study can provide more information on aerosol–cloud interactions and forecasting numerical models.
We put forward a new algorithm for joint observation of the cloud boundary by lidar and Ka-band...