Articles | Volume 15, issue 17
https://doi.org/10.5194/amt-15-5141-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-5141-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ice crystal images from optical array probes: classification with convolutional neural networks
Louis Jaffeux
CORRESPONDING AUTHOR
Laboratoire de Météorologie Physique (UMR6016)/UCA/CNRS, Aubière, France
Alfons Schwarzenböck
Laboratoire de Météorologie Physique (UMR6016)/UCA/CNRS, Aubière, France
Pierre Coutris
Laboratoire de Météorologie Physique (UMR6016)/UCA/CNRS, Aubière, France
Christophe Duroure
Laboratoire de Météorologie Physique (UMR6016)/UCA/CNRS, Aubière, France
Related authors
Louis Jaffeux, Jan Breiner, Pierre Coutris, and Alfons Schwarzenböck
Atmos. Meas. Tech., 18, 2311–2331, https://doi.org/10.5194/amt-18-2311-2025, https://doi.org/10.5194/amt-18-2311-2025, 2025
Short summary
Short summary
Airborne cloud observation relies on high-frequency black-and-white-image information. The study presents automatic shape recognition tools developed with machine learning techniques and adapted for this type of image. Applied on a recent field campaign, these tools produce morphology-specific size distributions that can be compared across four instruments covering different size ranges. The analysis show that the tools are performing well and are consistent across the different instruments.
Anne-Claire Billault-Roux, Paraskevi Georgakaki, Josué Gehring, Louis Jaffeux, Alfons Schwarzenboeck, Pierre Coutris, Athanasios Nenes, and Alexis Berne
Atmos. Chem. Phys., 23, 10207–10234, https://doi.org/10.5194/acp-23-10207-2023, https://doi.org/10.5194/acp-23-10207-2023, 2023
Short summary
Short summary
Secondary ice production plays a key role in clouds and precipitation. In this study, we analyze radar measurements from a snowfall event in the Jura Mountains. Complex signatures are observed, which reveal that ice crystals were formed through various processes. An analysis of multi-sensor data suggests that distinct ice multiplication processes were taking place. Both the methods used and the insights gained through this case study contribute to a better understanding of snowfall microphysics.
Anne-Claire Billault-Roux, Gionata Ghiggi, Louis Jaffeux, Audrey Martini, Nicolas Viltard, and Alexis Berne
Atmos. Meas. Tech., 16, 911–940, https://doi.org/10.5194/amt-16-911-2023, https://doi.org/10.5194/amt-16-911-2023, 2023
Short summary
Short summary
Better understanding and modeling snowfall properties and processes is relevant to many fields, ranging from weather forecasting to aircraft safety. Meteorological radars can be used to gain insights into the microphysics of snowfall. In this work, we propose a new method to retrieve snowfall properties from measurements of radars with different frequencies. It relies on an original deep-learning framework, which incorporates knowledge of the underlying physics, i.e., electromagnetic scattering.
Guillaume Feger, Jean-Pierre Chaboureau, Thibaut Dauhut, Julien Delanoë, and Pierre Coutris
Atmos. Chem. Phys., 25, 7447–7465, https://doi.org/10.5194/acp-25-7447-2025, https://doi.org/10.5194/acp-25-7447-2025, 2025
Short summary
Short summary
Saharan air at the trade wind layer, cold pools, and dry upper troposphere has these three main factors inhibiting the cyclogenesis of the Pierre Henri mesoscale convective system. The findings were obtained through observations made during two flights of the Clouds-Atmospheric Dynamics-Dust Interactions in West Africa (CADDIWA) campaign and a convection-permitting simulation run with the Meso-NH model. They provide new insights into the complex dynamics of cyclogenesis in the Cabo Verde region and challenge the existing model of the Saharan Air Layer (SAL).
Louis Jaffeux, Jan Breiner, Pierre Coutris, and Alfons Schwarzenböck
Atmos. Meas. Tech., 18, 2311–2331, https://doi.org/10.5194/amt-18-2311-2025, https://doi.org/10.5194/amt-18-2311-2025, 2025
Short summary
Short summary
Airborne cloud observation relies on high-frequency black-and-white-image information. The study presents automatic shape recognition tools developed with machine learning techniques and adapted for this type of image. Applied on a recent field campaign, these tools produce morphology-specific size distributions that can be compared across four instruments covering different size ranges. The analysis show that the tools are performing well and are consistent across the different instruments.
Leonie Villiger, Marina Dütsch, Sandrine Bony, Marie Lothon, Stephan Pfahl, Heini Wernli, Pierre-Etienne Brilouet, Patrick Chazette, Pierre Coutris, Julien Delanoë, Cyrille Flamant, Alfons Schwarzenboeck, Martin Werner, and Franziska Aemisegger
Atmos. Chem. Phys., 23, 14643–14672, https://doi.org/10.5194/acp-23-14643-2023, https://doi.org/10.5194/acp-23-14643-2023, 2023
Short summary
Short summary
This study evaluates three numerical simulations performed with an isotope-enabled weather forecast model and investigates the coupling between shallow trade-wind cumulus clouds and atmospheric circulations on different scales. We show that the simulations reproduce key characteristics of shallow trade-wind clouds as observed during the field experiment EUREC4A and that the spatial distribution of stable-water-vapour isotopes is shaped by the overturning circulation associated with these clouds.
Anne-Claire Billault-Roux, Paraskevi Georgakaki, Josué Gehring, Louis Jaffeux, Alfons Schwarzenboeck, Pierre Coutris, Athanasios Nenes, and Alexis Berne
Atmos. Chem. Phys., 23, 10207–10234, https://doi.org/10.5194/acp-23-10207-2023, https://doi.org/10.5194/acp-23-10207-2023, 2023
Short summary
Short summary
Secondary ice production plays a key role in clouds and precipitation. In this study, we analyze radar measurements from a snowfall event in the Jura Mountains. Complex signatures are observed, which reveal that ice crystals were formed through various processes. An analysis of multi-sensor data suggests that distinct ice multiplication processes were taking place. Both the methods used and the insights gained through this case study contribute to a better understanding of snowfall microphysics.
Valerian Hahn, Ralf Meerkötter, Christiane Voigt, Sonja Gisinger, Daniel Sauer, Valéry Catoire, Volker Dreiling, Hugh Coe, Cyrille Flamant, Stefan Kaufmann, Jonas Kleine, Peter Knippertz, Manuel Moser, Philip Rosenberg, Hans Schlager, Alfons Schwarzenboeck, and Jonathan Taylor
Atmos. Chem. Phys., 23, 8515–8530, https://doi.org/10.5194/acp-23-8515-2023, https://doi.org/10.5194/acp-23-8515-2023, 2023
Short summary
Short summary
During the DACCIWA campaign in West Africa, we found a 35 % increase in the cloud droplet concentration that formed in a polluted compared with a less polluted environment and a decrease of 17 % in effective droplet diameter. Radiative transfer simulations, based on the measured cloud properties, reveal that these low-level polluted clouds radiate only 2.6 % more energy back to space, compared with a less polluted cloud. The corresponding additional decrease in temperature is rather small.
Manuel Moser, Christiane Voigt, Tina Jurkat-Witschas, Valerian Hahn, Guillaume Mioche, Olivier Jourdan, Régis Dupuy, Christophe Gourbeyre, Alfons Schwarzenboeck, Johannes Lucke, Yvonne Boose, Mario Mech, Stephan Borrmann, André Ehrlich, Andreas Herber, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys., 23, 7257–7280, https://doi.org/10.5194/acp-23-7257-2023, https://doi.org/10.5194/acp-23-7257-2023, 2023
Short summary
Short summary
This study provides a comprehensive microphysical and thermodynamic phase analysis of low-level clouds in the northern Fram Strait, above the sea ice and the open ocean, during spring and summer. Using airborne in situ cloud data, we show that the properties of Arctic low-level clouds vary significantly with seasonal meteorological situations and surface conditions. The observations presented in this study can help one to assess the role of clouds in the Arctic climate system.
Anne-Claire Billault-Roux, Gionata Ghiggi, Louis Jaffeux, Audrey Martini, Nicolas Viltard, and Alexis Berne
Atmos. Meas. Tech., 16, 911–940, https://doi.org/10.5194/amt-16-911-2023, https://doi.org/10.5194/amt-16-911-2023, 2023
Short summary
Short summary
Better understanding and modeling snowfall properties and processes is relevant to many fields, ranging from weather forecasting to aircraft safety. Meteorological radars can be used to gain insights into the microphysics of snowfall. In this work, we propose a new method to retrieve snowfall properties from measurements of radars with different frequencies. It relies on an original deep-learning framework, which incorporates knowledge of the underlying physics, i.e., electromagnetic scattering.
Sandrine Bony, Marie Lothon, Julien Delanoë, Pierre Coutris, Jean-Claude Etienne, Franziska Aemisegger, Anna Lea Albright, Thierry André, Hubert Bellec, Alexandre Baron, Jean-François Bourdinot, Pierre-Etienne Brilouet, Aurélien Bourdon, Jean-Christophe Canonici, Christophe Caudoux, Patrick Chazette, Michel Cluzeau, Céline Cornet, Jean-Philippe Desbios, Dominique Duchanoy, Cyrille Flamant, Benjamin Fildier, Christophe Gourbeyre, Laurent Guiraud, Tetyana Jiang, Claude Lainard, Christophe Le Gac, Christian Lendroit, Julien Lernould, Thierry Perrin, Frédéric Pouvesle, Pascal Richard, Nicolas Rochetin, Kevin Salaün, Alfons Schwarzenboeck, Guillaume Seurat, Bjorn Stevens, Julien Totems, Ludovic Touzé-Peiffer, Gilles Vergez, Jessica Vial, Leonie Villiger, and Raphaela Vogel
Earth Syst. Sci. Data, 14, 2021–2064, https://doi.org/10.5194/essd-14-2021-2022, https://doi.org/10.5194/essd-14-2021-2022, 2022
Short summary
Short summary
The French ATR42 research aircraft participated in the EUREC4A international field campaign that took place in 2020 over the tropical Atlantic, east of Barbados. We present the extensive instrumentation of the aircraft, the research flights and the different measurements. We show that the ATR measurements of humidity, wind, aerosols and cloudiness in the lower atmosphere are robust and consistent with each other. They will make it possible to advance understanding of cloud–climate interactions.
Adrien Deroubaix, Laurent Menut, Cyrille Flamant, Peter Knippertz, Andreas H. Fink, Anneke Batenburg, Joel Brito, Cyrielle Denjean, Cheikh Dione, Régis Dupuy, Valerian Hahn, Norbert Kalthoff, Fabienne Lohou, Alfons Schwarzenboeck, Guillaume Siour, Paolo Tuccella, and Christiane Voigt
Atmos. Chem. Phys., 22, 3251–3273, https://doi.org/10.5194/acp-22-3251-2022, https://doi.org/10.5194/acp-22-3251-2022, 2022
Short summary
Short summary
During the summer monsoon in West Africa, pollutants emitted in urbanized areas modify cloud cover and precipitation patterns. We analyze these patterns with the WRF-CHIMERE model, integrating the effects of aerosols on meteorology, based on the numerous observations provided by the Dynamics-Aerosol-Climate-Interactions campaign. This study adds evidence to recent findings that increased pollution levels in West Africa delay the breakup time of low-level clouds and reduce precipitation.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Yongjie Huang, Wei Wu, Greg M. McFarquhar, Xuguang Wang, Hugh Morrison, Alexander Ryzhkov, Yachao Hu, Mengistu Wolde, Cuong Nguyen, Alfons Schwarzenboeck, Jason Milbrandt, Alexei V. Korolev, and Ivan Heckman
Atmos. Chem. Phys., 21, 6919–6944, https://doi.org/10.5194/acp-21-6919-2021, https://doi.org/10.5194/acp-21-6919-2021, 2021
Short summary
Short summary
Numerous small ice crystals in the tropical convective storms are difficult to detect and could be potentially hazardous for commercial aircraft. This study evaluated the numerical models against the airborne observations and investigated the potential cloud processes that could lead to the production of these large numbers of small ice crystals. It is found that key microphysical processes are still lacking or misrepresented in current numerical models to realistically simulate the phenomenon.
Cited articles
Bailey, M. P. and Hallett, J.: A Comprehensive Habit Diagram for Atmospheric
Ice Crystals: Confirmation from the Laboratory, AIRS II, and Other Field
Studies, J. Atmos. Sci., 66, 2888–2899,
https://doi.org/10.1175/2009JAS2883.1, 2009. a
Baumgardner, D., Avallone, L., Bansemer, A., Borrmann, S., Brown, P., Bundke,
U., Chuang, P., Cziczo, D., Field, P., Gallagher, M., and Gayet, J. F.: In situ, airborne instrumentation: Addressing and solving measurement problems in ice clouds, Bull. Am. Meteorol. Soc., 93, p. 9.1,
2012. a
Bony, S., Lothon, M., Delanoë, J., Coutris, P., Etienne, J.-C., Aemisegger, F., Albright, A. L., André, T., Bellec, H., Baron, A., Bourdinot, J.-F., Brilouet, P.-E., Bourdon, A., Canonici, J.-C., Caudoux, C., Chazette, P., Cluzeau, M., Cornet, C., Desbios, J.-P., Duchanoy, D., Flamant, C., Fildier, B., Gourbeyre, C., Guiraud, L., Jiang, T., Lainard, C., Le Gac, C., Lendroit, C., Lernould, J., Perrin, T., Pouvesle, F., Richard, P., Rochetin, N., Salaün, K., Schwarzenboeck, A., Seurat, G., Stevens, B., Totems, J., Touzé-Peiffer, L., Vergez, G., Vial, J., Villiger, L., and Vogel, R.: EUREC4A observations from the SAFIRE ATR42 aircraft, Earth Syst. Sci. Data, 14, 2021–2064, https://doi.org/10.5194/essd-14-2021-2022, 2022. a
Defer, E., Pinty, J.-P., Coquillat, S., Martin, J.-M., Prieur, S., Soula, S.,
Richard, E., Rison, W., Krehbiel, P., Thomas, R., Rodeheffer, D., Vergeiner,
C., Malaterre, F., Pedeboy, S., Schulz, W., Farges, T., Gallin, L.-J.,
Ortéga, P., Ribaud, J.-F., Anderson, G., Betz, H.-D., Meneux, B., Kotroni,
V., Lagouvardos, K., Roos, S., Ducrocq, V., Roussot, O., Labatut, L., and
Molinié, G.: An overview of the lightning and atmospheric electricity
observations collected in southern France during the HYdrological cycle in
Mediterranean EXperiment (HyMeX), Special Observation Period 1, Atmos.
Meas. Tech., 8, 649–669, https://doi.org/10.5194/amt-8-649-2015, 2015. a, b, c
Dezitter, F., Grandin, A., Brenguier, J.-L., Hervy, F., Schlager, H.,
Villedieu, P., and Zalamansky, G.: HAIC-High Altitude Ice Crystals, in: 5th
AIAA Atmospheric and Space Environments Conference, San Diego, United States, 25 June 2013, p. 2674, https://doi.org/10.2514/6.2013-2674,
2013. a, b
Duroure, C.: Une nouvelle méthode de traitement des images
d'hydrométéores données par les sondes bidimensionnelles,
Journal de recherches atmosphériques,
https://hal.uca.fr/hal-01950254 (last access: 7 September 2022), 1982. a
Gao, J., Jiang, Q., Zhou, B., and Chen, D.: Convolutional neural networks for
computer-aided detection or diagnosis in medical image analysis: an overview,
Math. Biosci. Eng., 16, 6536–6561, 2019. a
He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learning for Image
Recognition, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Tours,
France, 27–30 June 2016, https://doi.org/10.1109/CVPR.2016.90, 2016. a
Hobbs, P. V., Chang, S., and Locatelli, J. D.: The dimensions and aggregation
of ice crystals in natural clouds, J. Geophys. Res., 79, 2199–2206, https://doi.org/10.1029/JC079i015p02199, 1974. a
Houze, R. A., McMurdie, L. A., Petersen, W. A., Schwaller, M. R., Baccus, W.,
Lundquist, J. D., Mass, C. F., Nijssen, B., Rutledge, S. A., Hudak, D. R.,
Tanelli, S., Mace, G. G., Poellot, M. R., Lettenmaier, D. P., Zagrodnik,
J. P., Rowe, A. K., DeHart, J. C., Madaus, L. E., Barnes, H. C., and
Chandrasekar, V.: The Olympic Mountains Experiment (OLYMPEX), Bull.
Am. Meteorol. Soc., 98, 2167–2188,
https://doi.org/10.1175/BAMS-D-16-0182.1, 2017. a, b
Jaffeux, L.: LJaffeux/AMT-2022-72: Ice crystals images from
Optical Array Probes: classification with Convolutional Neural Networks, Zenodo [code and data set], https://doi.org/10.5281/zenodo.6912294, 2022. a
Kikuchi, K., Kameda, T., Higuchi, K., and Yamashita, A.: A global
classification of snow crystals, ice crystals, and solid precipitation based
on observations from middle latitudes to polar regions, Atmos. Res.,
132/133, 460–472, https://doi.org/10.1016/j.atmosres.2013.06.006,
2013. a, b, c
Knollenberg, R. G.: The Optical Array: An Alternative to Scattering or
Extinction for Airborne Particle Size Determination, J. Appl.
Meteorol., 9, 86–103,
https://doi.org/10.1175/1520-0450(1970)009<0086:TOAAAT>2.0.CO;2, 1970. a
Korolev, A. and Sussman, B.: A technique for habit classification of cloud
particles, J. Atmos. Ocean. Technol., 17, 1048–1057,
2000. a
Lawson, R. P., Baker, B. A., Zmarly, P., O'Connor, D., Mo, Q., Gayet, J.-F.,
and Shcherbakov, V.: Microphysical and optical properties of atmospheric ice
crystals at South Pole Station, J. Appl. Meteorol.
Clim., 45, 1505–1524, 2006. a
Leinonen, J., Grazioli, J., and Berne, A.: Reconstruction of the mass and geometry of snowfall particles from multi-angle snowflake camera (MASC) images, Atmos. Meas. Tech., 14, 6851–6866, https://doi.org/10.5194/amt-14-6851-2021, 2021. a
Leroy, D., Fontaine, E., Schwarzenboeck, A., Strapp, J. W., Korolev, A.,
McFarquhar, G. M., Dupuy, R., Gourbeyre, C., Lilie, L., Protat, A.,
Delanoë, J., Dezitter, F., and Grandin, A.: Ice crystal sizes in high
ice water content clouds. Part 2: Statistics of mass diameter percentiles in
tropical convection observed during the HAIC/HIWC project, J.
Atmos. Ocean. Technol., 34, 117–136,
https://doi.org/10.1175/jtech-d-15-0246.1, 2017. a
Lindqvist, H., Muinonen, K., Nousiainen, T., Um, J., McFarquhar, G. M.,
Haapanala, P., Makkonen, R., and Hakkarainen, H.: Ice-cloud particle habit
classification using principal components, J. Geophys. Res.-Atmos., 117, D16, https://doi.org/10.1029/2012JD017573, 2012. a
Luo, J. Y., Irisson, J.-O., Graham, B., Guigand, C., Sarafraz, A., Mader, C.,
and Cowen, R. K.: Automated plankton image analysis using convolutional
neural networks, Limnol. Oceanogr.-Method., 16, 814–827, 2018. a
McFarquhar, G. M., Ghan, S., Verlinde, J., Korolev, A., Strapp, J. W., Schmid,
B., Tomlinson, J. M., Wolde, M., Brooks, S. D., Cziczo, D., Dubey, M. K.,
Fan, J., Flynn, C., Gultepe, I., Hubbe, J., Gilles, M. K., Laskin, A.,
Lawson, P., Leaitch, W. R., Liu, P., Liu, X., Lubin, D., Mazzoleni, C.,
Macdonald, A.-M., Moffet, R. C., Morrison, H., Ovchinnikov, M., Shupe, M. D.,
Turner, D. D., Xie, S., Zelenyuk, A., Bae, K., Freer, M., and Glen, A.:
Indirect and Semi-direct Aerosol Campaign: The Impact of Arctic Aerosols on
Clouds, Bull. Am. Meteorol. Soc., 92, 183–201,
https://doi.org/10.1175/2010BAMS2935.1, 2011. a
Nakaya, U.: Snow crystal, natural and artificial, Harvard University Press, https://doi.org/10.4159/harvard.9780674182769,
1954. a
Park, S. and Kwak, N.: Analysis on the dropout effect in convolutional neural
networks, in: Asian conference on computer vision, 189–204, S pringer International Publishing, https://doi.org/10.1007/978-3-319-54184-6_12,
2016. a
Praz, C., Roulet, Y.-A., and Berne, A.: Solid hydrometeor classification and
riming degree estimation from pictures collected with a Multi-Angle Snowflake
Camera, Atmos. Meas. Tech., 10, 1335–1357,
https://doi.org/10.5194/amt-10-1335-2017, 2017. a
Praz, C., Ding, S., McFarquhar, G. M., and Berne, A.: A Versatile Method for
Ice Particle Habit Classification Using Airborne Imaging Probe Data, J. Geophys. Res.-Atmos., 123, 13472–13495,
https://doi.org/10.1029/2018JD029163, 2018. a, b, c, d
Pruppacher, H. and Klett, J.: Microphysics of Clouds and Precipitation, Springer Dordrecht,
18, p. 39, https://doi.org/10.1007/978-0-306-48100-0, 2010. a
Przybylo, V., Sulia, K. J., Lebo, Z. J., and Schmitt, C.: Automated
Classification of Cloud Particle Imagery through the Use of Convolutional
Neural Networks, in: 101st American Meteorological Society Annual Meeting,
AMS, 10–15 January 2021,
https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/377736, last access: 7 September 2021. a
Rahman, M. M., Quincy, E. A., Jacquot, R. G., and Magee, M. J.: Feature
Extraction and Selection for Pattern Recognition of Two-Dimensional
Hydrometeor Images, J. Appl. Meteorol., 20, 521–535,
https://doi.org/10.1175/1520-0450(1981)020<0521:FEASFP>2.0.CO;2, 1981. a, b
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L.:
ImageNet Large Scale Visual Recognition Challenge, Int. J.
Comput. Vis., 115, 211–252, https://doi.org/10.1007/s11263-015-0816-y, 2015. a
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov,
R.: Dropout: A Simple Way to Prevent Neural Networks from Overfitting,
J. Mach. Learn. Res., 15, 1929–1958,
http://jmlr.org/papers/v15/srivastava14a.html (last access: 7 September 2022), 2014. a
Sukovich, E. M., Kingsmill, D. E., and Yuter, S. E.: Variability of graupel and
snow observed in tropical oceanic convection by aircraft during TRMM KWAJEX,
J. Appl. Meteorol. Clim., 48, 185–198, 2009. a
Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., Hurst, R. T., Kendall, C. B.,
Gotway, M. B., and Liang, J.: Convolutional neural networks for medical image
analysis: Full training or fine tuning?, IEEE T. Med.
Imaging, 35, 1299–1312, 2016. a
Vaillant de Guélis, T., Schwarzenböck, A., Shcherbakov, V., Gourbeyre, C., Laurent, B., Dupuy, R., Coutris, P., and Duroure, C.: Study of the diffraction pattern of cloud particles and the respective responses of optical array probes, Atmos. Meas. Tech., 12, 2513–2529, https://doi.org/10.5194/amt-12-2513-2019, 2019. a, b
Woods, S., Lawson, R. P., Jensen, E., Bui, T., Thornberry, T., Rollins, A.,
Pfister, L., and Avery, M.: Microphysical properties of tropical tropopause
layer cirrus, J. Geophys. Res.-Atmos., 123, 6053–6069,
2018. a
Wyser, K.: Ice crystal habits and solar radiation, Tellus A, 51, 937–950, 1999. a
Xiao, H., Zhang, F., He, Q., Liu, P., Yan, F., Miao, L., and Yang, Z.:
Classification of Ice Crystal Habits Observed From Airborne Cloud Particle
Imager by Deep Transfer Learning, Earth Space Sci., 6, 1877–1886,
https://doi.org/10.1029/2019EA000636, 2019.
a
Yi, B., Yang, P., Liu, Q., van Delst, P., Boukabara, S.-A., and Weng, F.:
Improvements on the ice cloud modeling capabilities of the Community
Radiative Transfer Model, J. Geophys. Res.-Atmos., 121,
13–577, 2016. a
Short summary
Optical array probes are instruments used aboard research aircraft to capture 2D images of ice or water particles in clouds. This study presents a new tool using innovative machine learning, called convolutional neural networks, designed to identify the shape of imaged ice particles for two of these imagers, namely 2DS and PIP. Such a tool will be a very strong asset for understanding cloud microphysics. Beyond traditional evaluation metrics, human inspections were performed of unknown data.
Optical array probes are instruments used aboard research aircraft to capture 2D images of ice...