Articles | Volume 15, issue 19
https://doi.org/10.5194/amt-15-5793-2022
https://doi.org/10.5194/amt-15-5793-2022
Research article
 | 
14 Oct 2022
Research article |  | 14 Oct 2022

Neural network processing of holographic images

John S. Schreck, Gabrielle Gantos, Matthew Hayman, Aaron Bansemer, and David John Gagne

Related authors

Signal processing to denoise and retrieve water vapor from multi-pulse-length lidar data
Matthew Hayman, Robert A. Stillwell, Adam Karboski, and Scott M. Spuler
EGUsphere, https://doi.org/10.5194/egusphere-2025-3523,https://doi.org/10.5194/egusphere-2025-3523, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Mixed Layer Height Retrievals Using MicroPulse Differential Absorption Lidar
Luke Colberg, Kevin S. Repasky, Matthew Hayman, Robert A. Stillwell, and Scott M. Spuler
EGUsphere, https://doi.org/10.5194/egusphere-2025-1989,https://doi.org/10.5194/egusphere-2025-1989, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Expanding Observational Capabilities of A Diode-Laser-Based Lidar Through Shot-To-Shot Modification of Laser Pulse Characteristics
Robert A. Stillwell, Adam Karboski, Matthew Hayman, and Scott M. Spuler
EGUsphere, https://doi.org/10.5194/egusphere-2025-1288,https://doi.org/10.5194/egusphere-2025-1288, 2025
Short summary
How does riming influence the observed spatial variability of ice water in mixed-phase clouds?
Nina Maherndl, Manuel Moser, Imke Schirmacher, Aaron Bansemer, Johannes Lucke, Christiane Voigt, and Maximilian Maahn
Atmos. Chem. Phys., 24, 13935–13960, https://doi.org/10.5194/acp-24-13935-2024,https://doi.org/10.5194/acp-24-13935-2024, 2024
Short summary
Lessons learned in coupling atmospheric models across scales for onshore and offshore wind energy
Sue Ellen Haupt, Branko Kosović, Larry K. Berg, Colleen M. Kaul, Matthew Churchfield, Jeffrey Mirocha, Dries Allaerts, Thomas Brummet, Shannon Davis, Amy DeCastro, Susan Dettling, Caroline Draxl, David John Gagne, Patrick Hawbecker, Pankaj Jha, Timothy Juliano, William Lassman, Eliot Quon, Raj K. Rai, Michael Robinson, William Shaw, and Regis Thedin
Wind Energ. Sci., 8, 1251–1275, https://doi.org/10.5194/wes-8-1251-2023,https://doi.org/10.5194/wes-8-1251-2023, 2023
Short summary

Cited articles

Agrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen, C., and Hickey, J.: Machine learning for precipitation nowcasting from radar images, arXiv [preprint], https://doi.org/10.48550/arXiv.1912.12132, 11 December 2019. a
Berman, M., Triki, A. R., and Blaschko, M. B.: The lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 18–22 June 2018, Salt Lake City, Utah, USA, 4413–4421, https://doi.org/10.1109/CVPR.2018.00464, 2018. a
Bernauer, F., Hürkamp, K., Rühm, W., and Tschiersch, J.: Snow event classification with a 2D video disdrometer – A decision tree approach, Atmos. Res., 172, 186–195, 2016. a
Chaurasia, A. and Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation, Proceedings of the IEEE Visual Communications and Image Processing (VCIP), 10–13 December 2017, St. Petersburg, FL, USA, IEEE, 1–4, https://doi.org/10.1109/VCIP.2017.8305148, 2017. a
Download
Short summary
We show promising results for a new machine-learning based paradigm for processing field-acquired cloud droplet holograms. The approach is fast, scalable, and leverages GPUs and other heterogeneous computing platforms. It combines applications of transfer and active learning by using synthetic data for training and a small set of hand-labeled data for refinement and validation. Artificial noise applied during synthetic training enables optimized models for real-world situations.
Share