Articles | Volume 15, issue 19
https://doi.org/10.5194/amt-15-5793-2022
https://doi.org/10.5194/amt-15-5793-2022
Research article
 | 
14 Oct 2022
Research article |  | 14 Oct 2022

Neural network processing of holographic images

John S. Schreck, Gabrielle Gantos, Matthew Hayman, Aaron Bansemer, and David John Gagne

Related authors

How does riming influence the observed spatial variability of ice water in mixed-phase clouds?
Nina Maherndl, Manuel Moser, Imke Schirmacher, Aaron Bansemer, Johannes Lucke, Christiane Voigt, and Maximilian Maahn
Atmos. Chem. Phys., 24, 13935–13960, https://doi.org/10.5194/acp-24-13935-2024,https://doi.org/10.5194/acp-24-13935-2024, 2024
Short summary
Lessons learned in coupling atmospheric models across scales for onshore and offshore wind energy
Sue Ellen Haupt, Branko Kosović, Larry K. Berg, Colleen M. Kaul, Matthew Churchfield, Jeffrey Mirocha, Dries Allaerts, Thomas Brummet, Shannon Davis, Amy DeCastro, Susan Dettling, Caroline Draxl, David John Gagne, Patrick Hawbecker, Pankaj Jha, Timothy Juliano, William Lassman, Eliot Quon, Raj K. Rai, Michael Robinson, William Shaw, and Regis Thedin
Wind Energ. Sci., 8, 1251–1275, https://doi.org/10.5194/wes-8-1251-2023,https://doi.org/10.5194/wes-8-1251-2023, 2023
Short summary
The influence of multiple groups of biological ice nucleating particles on microphysical properties of mixed-phase clouds observed during MC3E
Sachin Patade, Deepak Waman, Akash Deshmukh, Ashok Kumar Gupta, Arti Jadav, Vaughan T. J. Phillips, Aaron Bansemer, Jacob Carlin, and Alexander Ryzhkov
Atmos. Chem. Phys., 22, 12055–12075, https://doi.org/10.5194/acp-22-12055-2022,https://doi.org/10.5194/acp-22-12055-2022, 2022
Short summary
Extending water vapor measurement capability of photon-limited differential absorption lidars through simultaneous denoising and inversion
Willem J. Marais and Matthew Hayman
Atmos. Meas. Tech., 15, 5159–5180, https://doi.org/10.5194/amt-15-5159-2022,https://doi.org/10.5194/amt-15-5159-2022, 2022
Short summary
MicroPulse DIAL (MPD) – a diode-laser-based lidar architecture for quantitative atmospheric profiling
Scott M. Spuler, Matthew Hayman, Robert A. Stillwell, Joshua Carnes, Todd Bernatsky, and Kevin S. Repasky
Atmos. Meas. Tech., 14, 4593–4616, https://doi.org/10.5194/amt-14-4593-2021,https://doi.org/10.5194/amt-14-4593-2021, 2021
Short summary

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Distribution characteristics of the summer precipitation raindrop spectrum on the Qinghai–Tibet Plateau
Fuzeng Wang, Yuanyu Duan, Yao Huo, Yaxi Cao, Qiusong Wang, Tong Zhang, Junqing Liu, and Guangmin Cao
Atmos. Meas. Tech., 17, 6933–6944, https://doi.org/10.5194/amt-17-6933-2024,https://doi.org/10.5194/amt-17-6933-2024, 2024
Short summary
In situ observations of supercooled liquid water clouds over Dome C, Antarctica, by balloon-borne sondes
Philippe Ricaud, Pierre Durand, Paolo Grigioni, Massimo Del Guasta, Giuseppe Camporeale, Axel Roy, Jean-Luc Attié, and John Bognar
Atmos. Meas. Tech., 17, 5071–5089, https://doi.org/10.5194/amt-17-5071-2024,https://doi.org/10.5194/amt-17-5071-2024, 2024
Short summary
Partition between supercooled liquid droplets and ice crystals in mixed-phase clouds based on airborne in situ observations
Flor Vanessa Maciel, Minghui Diao, and Ching An Yang
Atmos. Meas. Tech., 17, 4843–4861, https://doi.org/10.5194/amt-17-4843-2024,https://doi.org/10.5194/amt-17-4843-2024, 2024
Short summary
Innovative cloud quantification: deep learning classification and finite-sector clustering for ground-based all-sky imaging
Jingxuan Luo, Yubing Pan, Debin Su, Jinhua Zhong, Lingxiao Wu, Wei Zhao, Xiaoru Hu, Zhengchao Qi, Daren Lu, and Yinan Wang
Atmos. Meas. Tech., 17, 3765–3781, https://doi.org/10.5194/amt-17-3765-2024,https://doi.org/10.5194/amt-17-3765-2024, 2024
Short summary
Revealing halos concealed by cirrus clouds
Yuji Ayatsuka
Atmos. Meas. Tech., 17, 3739–3750, https://doi.org/10.5194/amt-17-3739-2024,https://doi.org/10.5194/amt-17-3739-2024, 2024
Short summary

Cited articles

Agrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen, C., and Hickey, J.: Machine learning for precipitation nowcasting from radar images, arXiv [preprint], https://doi.org/10.48550/arXiv.1912.12132, 11 December 2019. a
Berman, M., Triki, A. R., and Blaschko, M. B.: The lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 18–22 June 2018, Salt Lake City, Utah, USA, 4413–4421, https://doi.org/10.1109/CVPR.2018.00464, 2018. a
Bernauer, F., Hürkamp, K., Rühm, W., and Tschiersch, J.: Snow event classification with a 2D video disdrometer – A decision tree approach, Atmos. Res., 172, 186–195, 2016. a
Chaurasia, A. and Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation, Proceedings of the IEEE Visual Communications and Image Processing (VCIP), 10–13 December 2017, St. Petersburg, FL, USA, IEEE, 1–4, https://doi.org/10.1109/VCIP.2017.8305148, 2017. a
Download
Short summary
We show promising results for a new machine-learning based paradigm for processing field-acquired cloud droplet holograms. The approach is fast, scalable, and leverages GPUs and other heterogeneous computing platforms. It combines applications of transfer and active learning by using synthetic data for training and a small set of hand-labeled data for refinement and validation. Artificial noise applied during synthetic training enables optimized models for real-world situations.