Articles | Volume 15, issue 20
https://doi.org/10.5194/amt-15-6035-2022
https://doi.org/10.5194/amt-15-6035-2022
Research article
 | 
21 Oct 2022
Research article |  | 21 Oct 2022

DeepPrecip: a deep neural network for precipitation retrievals

Fraser King, George Duffy, Lisa Milani, Christopher G. Fletcher, Claire Pettersen, and Kerstin Ebell

Related authors

Application of machine learning techniques for regional bias correction of snow water equivalent estimates in Ontario, Canada
Fraser King, Andre R. Erler, Steven K. Frey, and Christopher G. Fletcher
Hydrol. Earth Syst. Sci., 24, 4887–4902, https://doi.org/10.5194/hess-24-4887-2020,https://doi.org/10.5194/hess-24-4887-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Combining commercial microwave links and weather radar for classification of dry snow and rainfall
Erlend Øydvin, Renaud Gaban, Jafet Andersson, Remco (C. Z.) van de Beek, Mareile Astrid Wolff, Nils-Otto Kitterød, Christian Chwala, and Vegard Nilsen
Atmos. Meas. Tech., 18, 2279–2293, https://doi.org/10.5194/amt-18-2279-2025,https://doi.org/10.5194/amt-18-2279-2025, 2025
Short summary
Improved consistency in solar-induced fluorescence retrievals from GOME-2A with the SIFTER v3 algorithm
Juliëtte C. S. Anema, K. Folkert Boersma, Lieuwe G. Tilstra, Olaf N. E. Tuinder, and Willem W. Verstraeten
Atmos. Meas. Tech., 18, 1961–1979, https://doi.org/10.5194/amt-18-1961-2025,https://doi.org/10.5194/amt-18-1961-2025, 2025
Short summary
An information content approach to diagnosing and improving CLIMCAPS retrieval consistency across instruments and satellites
Nadia Smith and Christopher D. Barnet
Atmos. Meas. Tech., 18, 1823–1839, https://doi.org/10.5194/amt-18-1823-2025,https://doi.org/10.5194/amt-18-1823-2025, 2025
Short summary
Characterizing urban planetary boundary layer dynamics using 3-year Doppler wind lidar measurements in a western Yangtze River Delta city, China
Tianwen Wei, Mengya Wang, Kenan Wu, Jinlong Yuan, Haiyun Xia, and Simone Lolli
Atmos. Meas. Tech., 18, 1841–1857, https://doi.org/10.5194/amt-18-1841-2025,https://doi.org/10.5194/amt-18-1841-2025, 2025
Short summary
Radar-based high-resolution ensemble precipitation analyses over the French Alps
Matthieu Vernay, Matthieu Lafaysse, and Clotilde Augros
Atmos. Meas. Tech., 18, 1731–1755, https://doi.org/10.5194/amt-18-1731-2025,https://doi.org/10.5194/amt-18-1731-2025, 2025
Short summary

Cited articles

Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., and Inman, D. J.: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks, J. Sound Vib., 388, 154–170, https://doi.org/10.1016/j.jsv.2016.10.043, 2017. a
Adhikari, A., Ehsani, M. R., Song, Y., and Behrangi, A.: Comparative Assessment of Snowfall Retrieval From Microwave Humidity Sounders Using Machine Learning Methods, Earth and Space Science, 7, e2020EA001357, https://doi.org/10.1029/2020EA001357, 2020. a
Bennartz, R., Fell, F., Pettersen, C., Shupe, M. D., and Schuettemeyer, D.: Spatial and temporal variability of snowfall over Greenland from CloudSat observations, Atmos. Chem. Phys., 19, 8101–8121, https://doi.org/10.5194/acp-19-8101-2019, 2019. a
Boudala, F. S., Gultepe, I., and Milbrandt, J. A.: The Performance of Commonly Used Surface-Based Instruments for Measuring Visibility, Cloud Ceiling, and Humidity at Cold Lake, Alberta, Remote Sens., 13, 5058, https://doi.org/10.3390/rs13245058, 2021. a
Buttle, J. M., Allen, D. M., Caissie, D., Davison, B., Hayashi, M., Peters, D. L., Pomeroy, J. W., Simonovic, S., St-Hilaire, A., and Whitfield, P. H.: Flood processes in Canada: Regional and special aspects, Can. Water Resour. J., 41, 7–30, https://doi.org/10.1080/07011784.2015.1131629, 2016. a
Download
Short summary
Under warmer global temperatures, precipitation patterns are expected to shift substantially, with critical impact on the global water-energy budget. In this work, we develop a deep learning model for predicting snow and rain accumulation based on surface radar observations of the lower atmosphere. Our model demonstrates improved skill over traditional methods and provides new insights into the regions of the atmosphere that provide the most significant contributions to high model accuracy.
Share