Articles | Volume 15, issue 20
https://doi.org/10.5194/amt-15-6035-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-6035-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
DeepPrecip: a deep neural network for precipitation retrievals
Dept. of Geography & Environmental Management, University of Waterloo, 200 University Ave W, Waterloo, Ontario, Canada
George Duffy
Jet Propulsion Laboratory, NASA, 4800 Oak Grove Dr, Pasadena, 91109, California, USA
Earth and Environmental Sciences, University of Syracuse, 900 South Crouse Ave, Syracuse, New York, USA
Lisa Milani
Goddard Space Flight Center, NASA, 8800 Greenbelt Rd, Greenbelt, Maryland, USA
Earth System Science Interdisciplinary Center, University of Maryland, 5825 University Research Ct suite 4001, College Park, Maryland, USA
Christopher G. Fletcher
Dept. of Geography & Environmental Management, University of Waterloo, 200 University Ave W, Waterloo, Ontario, Canada
Claire Pettersen
Climate and Space Sciences and Engineering, University of Michigan, Climate and Space Research Building, 2455 Hayward St, Ann Arbor, Michigan, USA
Kerstin Ebell
Institute for Geophysics and Meteorology, University of Cologne, Albertus-Magnus-Platz, Cologne, Germany
Related authors
Fraser King, Andre R. Erler, Steven K. Frey, and Christopher G. Fletcher
Hydrol. Earth Syst. Sci., 24, 4887–4902, https://doi.org/10.5194/hess-24-4887-2020, https://doi.org/10.5194/hess-24-4887-2020, 2020
Short summary
Short summary
Snow is a critical contributor to our water and energy budget, with impacts on flooding and water resource management. Measuring the amount of snow on the ground each year is an expensive and time-consuming task. Snow models and gridded products help to fill these gaps, yet there exist considerable uncertainties associated with their estimates. We demonstrate that machine learning techniques are able to reduce biases in these products to provide more realistic snow estimates across Ontario.
Kameswara S. Vinjamuri, Marco Vountas, Luca Lelli, Martin Stengel, Matthew D. Shupe, Kerstin Ebell, and John P. Burrows
Atmos. Meas. Tech., 16, 2903–2918, https://doi.org/10.5194/amt-16-2903-2023, https://doi.org/10.5194/amt-16-2903-2023, 2023
Short summary
Short summary
Clouds play an important role in Arctic amplification. Cloud data from ground-based sites are valuable but cannot represent the whole Arctic. Therefore the use of satellite products is a measure to cover the entire Arctic. However, the quality of such cloud measurements from space is not well known. The paper discusses the differences and commonalities between satellite and ground-based measurements. We conclude that the satellite dataset, with a few exceptions, can be used in the Arctic.
Giovanni Chellini, Rosa Gierens, Kerstin Ebell, Theresa Kiszler, Pavel Krobot, Alexander Myagkov, Vera Schemann, and Stefan Kneifel
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-157, https://doi.org/10.5194/essd-2023-157, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
We present a comprehensive quality-controlled dataset of remote sensing observations of low-level mixed-phase clouds (LLMPCs) taken at the high Arctic site of Ny-Ålesund, Svalbard, Norway. LLMPCs occur frequently in the Arctic region, and substantially warm the surface. However, our understanding of microphysical processes in these clouds is incomplete. This dataset includes a comprehensive set of variables which allow for extensive investigation of such processes in LLMPCs at the site.
Charles Nelson Helms, Stephen Joseph Munchak, Ali Tokay, and Claire Pettersen
Atmos. Meas. Tech., 15, 6545–6561, https://doi.org/10.5194/amt-15-6545-2022, https://doi.org/10.5194/amt-15-6545-2022, 2022
Short summary
Short summary
This study compares the techniques used to measure snowflake shape by three instruments: PIP, MASC, and 2DVD. Our findings indicate that the MASC technique produces reliable shape measurements; the 2DVD technique performs better than expected considering the instrument was designed to measure raindrops; and the PIP technique does not produce reliable snowflake shape measurements. We also demonstrate that the PIP images can be reprocessed to correct the shape measurement issues.
Giovanni Chellini and Kerstin Ebell
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-22, https://doi.org/10.5194/amt-2022-22, 2022
Preprint withdrawn
Short summary
Short summary
Moisture inversions (MIs), i.e. atmospheric layers where specific humidity increases with height, are frequent in the Arctic. This study assesses the capability of two satellite instruments, IASI and AIRS, and one reanalysis, ERA5, to detect MIs at an Arctic site. The comparison with radiosonde data shows that humidity profiles from IASI and AIRS severely underestimate the occurrence of MIs. On the other hand, MI characteristics in ERA5 are comparable to those in the radiosonde data.
Hélène Bresson, Annette Rinke, Mario Mech, Daniel Reinert, Vera Schemann, Kerstin Ebell, Marion Maturilli, Carolina Viceto, Irina Gorodetskaya, and Susanne Crewell
Atmos. Chem. Phys., 22, 173–196, https://doi.org/10.5194/acp-22-173-2022, https://doi.org/10.5194/acp-22-173-2022, 2022
Short summary
Short summary
Arctic warming is pronounced, and one factor in this is the poleward atmospheric transport of heat and moisture. This study assesses the 4D structure of an Arctic moisture intrusion event which occurred in June 2017. For the first time, high-resolution pan-Arctic ICON simulations are performed and compared with global models, reanalysis, and observations. Results show the added value of high resolution in the event representation and the impact of the intrusion on the surface energy fluxes.
Heather Guy, Ian M. Brooks, Ken S. Carslaw, Benjamin J. Murray, Von P. Walden, Matthew D. Shupe, Claire Pettersen, David D. Turner, Christopher J. Cox, William D. Neff, Ralf Bennartz, and Ryan R. Neely III
Atmos. Chem. Phys., 21, 15351–15374, https://doi.org/10.5194/acp-21-15351-2021, https://doi.org/10.5194/acp-21-15351-2021, 2021
Short summary
Short summary
We present the first full year of surface aerosol number concentration measurements from the central Greenland Ice Sheet. Aerosol concentrations here have a distinct seasonal cycle from those at lower-altitude Arctic sites, which is driven by large-scale atmospheric circulation. Our results can be used to help understand the role aerosols might play in Greenland surface melt through the modification of cloud properties. This is crucial in a rapidly changing region where observations are sparse.
Susanne Crewell, Kerstin Ebell, Patrick Konjari, Mario Mech, Tatiana Nomokonova, Ana Radovan, David Strack, Arantxa M. Triana-Gómez, Stefan Noël, Raul Scarlat, Gunnar Spreen, Marion Maturilli, Annette Rinke, Irina Gorodetskaya, Carolina Viceto, Thomas August, and Marc Schröder
Atmos. Meas. Tech., 14, 4829–4856, https://doi.org/10.5194/amt-14-4829-2021, https://doi.org/10.5194/amt-14-4829-2021, 2021
Short summary
Short summary
Water vapor (WV) is an important variable in the climate system. Satellite measurements are thus crucial to characterize the spatial and temporal variability in WV and how it changed over time. In particular with respect to the observed strong Arctic warming, the role of WV still needs to be better understood. However, as shown in this paper, a detailed understanding is still hampered by large uncertainties in the various satellite WV products, showing the need for improved methods to derive WV.
Linn Karlsson, Radovan Krejci, Makoto Koike, Kerstin Ebell, and Paul Zieger
Atmos. Chem. Phys., 21, 8933–8959, https://doi.org/10.5194/acp-21-8933-2021, https://doi.org/10.5194/acp-21-8933-2021, 2021
Short summary
Short summary
Aerosol–cloud interactions in the Arctic are poorly understood largely due to a lack of observational data. We present the first direct, long-term measurements of cloud residuals, i.e. the particles that remain when cloud droplets and ice crystals are dried. These detailed observations of cloud residuals cover more than 2 years, which is unique for the Arctic and globally. This work studies the size distributions of cloud residuals, their seasonality, and dependence on meteorology.
Elin A. McIlhattan, Claire Pettersen, Norman B. Wood, and Tristan S. L'Ecuyer
The Cryosphere, 14, 4379–4404, https://doi.org/10.5194/tc-14-4379-2020, https://doi.org/10.5194/tc-14-4379-2020, 2020
Short summary
Short summary
Snowfall builds the mass of the Greenland Ice Sheet (GrIS) and reduces melt by brightening the surface. We present satellite observations of GrIS snowfall events divided into two regimes: those coincident with ice clouds and those coincident with mixed-phase clouds. Snowfall from ice clouds plays the dominant role in building the GrIS, producing ~ 80 % of total accumulation. The two regimes have similar snowfall frequency in summer, brightening the surface when solar insolation is at its peak.
Fraser King, Andre R. Erler, Steven K. Frey, and Christopher G. Fletcher
Hydrol. Earth Syst. Sci., 24, 4887–4902, https://doi.org/10.5194/hess-24-4887-2020, https://doi.org/10.5194/hess-24-4887-2020, 2020
Short summary
Short summary
Snow is a critical contributor to our water and energy budget, with impacts on flooding and water resource management. Measuring the amount of snow on the ground each year is an expensive and time-consuming task. Snow models and gridded products help to fill these gaps, yet there exist considerable uncertainties associated with their estimates. We demonstrate that machine learning techniques are able to reduce biases in these products to provide more realistic snow estimates across Ontario.
Tatiana Nomokonova, Kerstin Ebell, Ulrich Löhnert, Marion Maturilli, and Christoph Ritter
Atmos. Chem. Phys., 20, 5157–5173, https://doi.org/10.5194/acp-20-5157-2020, https://doi.org/10.5194/acp-20-5157-2020, 2020
Short summary
Short summary
This paper presents an influence of water vapor anomalies on cloud properties and their radiative effect at Ny-Ålesund. The study is based on a 2.5-year active and passive cloud observation and a radiative transfer model. The results show that moist and dry conditions are related to strong changes in cloud occurrence, phase partitioning, water path, and, consequently, modulate the surface radiative budget.
Rosa Gierens, Stefan Kneifel, Matthew D. Shupe, Kerstin Ebell, Marion Maturilli, and Ulrich Löhnert
Atmos. Chem. Phys., 20, 3459–3481, https://doi.org/10.5194/acp-20-3459-2020, https://doi.org/10.5194/acp-20-3459-2020, 2020
Short summary
Short summary
Multiyear statistics of persistent low-level mixed-phase clouds observed at an Arctic fjord environment in Svalbard are presented. The effects the local boundary layer (i.e. the fjords' wind climate and surface coupling), regional wind direction, and seasonality have on the cloud occurrence and properties are evaluated using a synergy of ground-based remote sensing methods and auxiliary data. The phenomena considered were found to modify the amount of liquid and ice in the studied clouds.
Vera Schemann and Kerstin Ebell
Atmos. Chem. Phys., 20, 475–485, https://doi.org/10.5194/acp-20-475-2020, https://doi.org/10.5194/acp-20-475-2020, 2020
Short summary
Short summary
In this study, we apply a high-resolution model at the observation supersite Ny-Ålesund (Svalbard) to evaluate mixed-phase clouds. These clouds are a potential driver for the stronger warming in the Arctic compared to the global mean, but their representation in climate models is typically rather poor due to complex microphysical processes. The presented combination of high-resolution modeling and long-term state-of-the-art observations can lead to improved process understanding.
Ralf Bennartz, Frank Fell, Claire Pettersen, Matthew D. Shupe, and Dirk Schuettemeyer
Atmos. Chem. Phys., 19, 8101–8121, https://doi.org/10.5194/acp-19-8101-2019, https://doi.org/10.5194/acp-19-8101-2019, 2019
Short summary
Short summary
The Greenland Ice Sheet (GrIS) is rapidly melting. Snowfall is the only source of ice mass over the GrIS. We use satellite observations to assess how much snow on average falls over the GrIS and what the annual cycle and spatial distribution of snowfall is. We find the annual mean snowfall over the GrIS inferred from CloudSat to be 34 ± 7.5 cm yr−1 liquid equivalent.
Tatiana Nomokonova, Kerstin Ebell, Ulrich Löhnert, Marion Maturilli, Christoph Ritter, and Ewan O'Connor
Atmos. Chem. Phys., 19, 4105–4126, https://doi.org/10.5194/acp-19-4105-2019, https://doi.org/10.5194/acp-19-4105-2019, 2019
Short summary
Short summary
In this study, properties of clouds at the French–German Arctic research station in Ny-Ålesund are related to in-cloud thermodynamic conditions. The dataset used was collected within the Arctic Amplification project with a set of active and passive remote instruments. The results are compared with a model output. Significant divergence in observations and modelling of single-layer ice and mixed-phase clouds was found.
Marion Maturilli and Kerstin Ebell
Earth Syst. Sci. Data, 10, 1451–1456, https://doi.org/10.5194/essd-10-1451-2018, https://doi.org/10.5194/essd-10-1451-2018, 2018
Short summary
Short summary
We present a 25-year data record of cloud base height measured by ceilometer at the Ny-Ålesund, Svalbard, Arctic site. The long-term time series allows derivation of an annual cycle of the cloud occurrence frequency, revealing more frequent cloud cover in summer and the lowest cloud cover amount in April. The cloud base data further provide essential information for the interpretation of the surface radiation balance and contribute to understanding meteorological processes at high latitudes.
Claire Pettersen, Ralf Bennartz, Aronne J. Merrelli, Matthew D. Shupe, David D. Turner, and Von P. Walden
Atmos. Chem. Phys., 18, 4715–4735, https://doi.org/10.5194/acp-18-4715-2018, https://doi.org/10.5194/acp-18-4715-2018, 2018
Short summary
Short summary
A novel method for classifying Arctic precipitation using ground based remote sensors is presented. The classification reveals two distinct, primary regimes of precipitation over the central Greenland Ice Sheet: snowfall coupled to deep, fully glaciated ice clouds or to shallow, mixed-phase clouds. The ice clouds are associated with low-pressure storm systems from the southeast, while the mixed-phase clouds slowly propagate from the southwest along a quiescent flow.
Claire Pettersen, Ralf Bennartz, Mark S. Kulie, Aronne J. Merrelli, Matthew D. Shupe, and David D. Turner
Atmos. Chem. Phys., 16, 4743–4756, https://doi.org/10.5194/acp-16-4743-2016, https://doi.org/10.5194/acp-16-4743-2016, 2016
Short summary
Short summary
We examined four summers of data from a ground-based atmospheric science instrument suite at Summit Station, Greenland, to isolate the signature of the ice precipitation. By using a combination of instruments with different specialities, we identified a passive microwave signature of the ice precipitation. This ice signature compares well to models using synthetic data characteristic of the site.
D. Casella, G. Panegrossi, P. Sanò, L. Milani, M. Petracca, and S. Dietrich
Atmos. Meas. Tech., 8, 1217–1232, https://doi.org/10.5194/amt-8-1217-2015, https://doi.org/10.5194/amt-8-1217-2015, 2015
Short summary
Short summary
The CCA algorithm is applicable to any modern passive microwave radiometer on board polar orbiting satellites; it has been developed using a data set of co-located SSMIS and TRMM-PR measurements and AMSU-MHS and TRMM-PR measurements. The algorithm shows a small rate of false alarms and superior detection capability and can efficiently detect (POD between 0.55 and 0.71) minimum rain rate varying from 0.14 mm/h (AMSU over ocean) to 0.41 (SSMIS over coast).
J. Slobodda, A. Hünerbein, R. Lindstrot, R. Preusker, K. Ebell, and J. Fischer
Atmos. Meas. Tech., 8, 567–578, https://doi.org/10.5194/amt-8-567-2015, https://doi.org/10.5194/amt-8-567-2015, 2015
Short summary
Short summary
In this paper the representativeness of ground-based cloud observatories and their comparability to satellite data and weather prediction models is examined. It is performed by analysing correlation of time series of SEVIRI pixels. The representativeness strongly depends on the used channels and ranges between 1km and over 20km.
L. Milani, F. Porcù, D. Casella, S. Dietrich, G. Panegrossi, M. Petracca, and P. Sanò
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-141-2015, https://doi.org/10.5194/tcd-9-141-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
The aim of this work is to show that the CloudSat Cloud Profiling Radar (CPR) can be a valuable source of snowfall rate data in Antarctica that can be used at different temporal scales. Two years of CloudSat data over Antarctica are analyzed and two different approaches for precipitation estimates are considered. The results show that CPR can provide valuable support to the sparse network of ground-based instruments both for numerical model validation and climatological studies.
A. Mugnai, D. Casella, E. Cattani, S. Dietrich, S. Laviola, V. Levizzani, G. Panegrossi, M. Petracca, P. Sanò, F. Di Paola, D. Biron, L. De Leonibus, D. Melfi, P. Rosci, A. Vocino, F. Zauli, P. Pagliara, S. Puca, A. Rinollo, L. Milani, F. Porcù, and F. Gattari
Nat. Hazards Earth Syst. Sci., 13, 1959–1981, https://doi.org/10.5194/nhess-13-1959-2013, https://doi.org/10.5194/nhess-13-1959-2013, 2013
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Version 8 IMK–IAA MIPAS temperatures from 12–15 µm spectra: Middle and Upper Atmosphere modes
GNSS radio occultation excess-phase processing for climate applications including uncertainty estimation
Impact analysis of processing strategies for long-term GPS zenith tropospheric delay (ZTD)
Irradiance and cloud optical properties from solar photovoltaic systems
Single field-of-view sounder atmospheric product retrieval algorithm: establishing radiometric consistency for hyper-spectral sounder retrievals
Higher-order calibration on WindRAD (Wind Radar) scatterometer winds
On the polarimetric backscatter by a still or quasi-still wind turbine
OH airglow observations with two identical spectrometers: benefits of increased data homogeneity in the identification of variations induced by the 11-year solar cycle, the QBO, and other factors
Broadband radiative quantities for the EarthCARE mission: the ACM-COM and ACM-RT products
Difference spectrum fitting of the ion-neutral collision frequency from dual-frequency EISCAT measurements
Long-term multi-source precipitation estimation with high resolution (RainGRS Clim)
Retrieval of snow layer and melt pond properties on Arctic sea ice from airborne imaging spectrometer observations
Using optimal estimation to retrieve winds from velocity-azimuth display (VAD) scans by a Doppler lidar
Angular sampling of a monochromatic, wide-field-of-view camera to augment next-generation Earth radiation budget satellite observations
Radar and Environment-based Hail Damage Estimates using Machine Learning
Performance evaluation of three bio-optical models in aerosol and ocean color joint retrievals
Efficient collocation of global navigation satellite system radio occultation soundings with passive nadir microwave soundings
Analysis of 2D airglow imager data with respect to dynamics using machine learning
Estimation of extreme precipitation events in Estonia and Italy using dual-polarization weather radar quantitative precipitation estimations
Observation of horizontal temperature variations by a spatial heterodyne interferometer using single-sided interferograms
Joint 1DVar Retrievals of Tropospheric Temperature and Water Vapor from GNSS-RO and Microwave Radiometer Observations
Detection and localization of F-layer ionospheric irregularities with the back-propagation method along the radio occultation ray path
Observations of anomalous propagation over waters near Sweden
Suppression of precipitation bias on wind velocity from continuous-wave Doppler lidars
Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at Réunion island and the Observatoire de Haute-Provence
Dual-frequency spectral radar retrieval of snowfall microphysics: a physics-driven deep-learning approach
High-resolution 3D winds derived from a modified WISSDOM synthesis scheme using multiple Doppler lidars and observations
Atmospheric boundary layer height from ground-based remote sensing: a review of capabilities and limitations
Assessing and mitigating the radar–radar interference in the German C-band weather radar network
Spectral replacement using machine learning methods for continuous mapping of the Geostationary Environment Monitoring Spectrometer (GEMS)
Doppler spectra from DWD's operational C-band radar birdbath scan: sampling strategy, spectral postprocessing, and multimodal analysis for the retrieval of precipitation processes
High-fidelity retrieval from instantaneous line-of-sight returns of nacelle-mounted lidar including supervised machine learning
Horizontal small-scale variability of water vapor in the atmosphere: implications for intercomparison of data from different measuring systems
Satellite observations of gravity wave momentum flux in the mesosphere and lower thermosphere (MLT): feasibility and requirements
An improved near-real-time precipitation retrieval for Brazil
Radio frequency interference detection and mitigation in the DWD C-band weather radar network
Quality control and error assessment of the Aeolus L2B wind results from the Joint Aeolus Tropical Atlantic Campaign
Long-distance propagation of 162 MHz shipping information links associated with sporadic E
Estimation of refractivity uncertainties and vertical error correlations in collocated radio occultations, radiosondes, and model forecasts
Machine learning-based prediction of Alpine foehn events using GNSS troposphere products: first results for Altdorf, Switzerland
Meteor radar vertical wind observation biases and mathematical debiasing strategies including the 3DVAR+DIV algorithm
Adaptive thermal image velocimetry of spatial wind movement on landscapes using near-target infrared cameras
Image muting of mixed precipitation to improve identification of regions of heavy snow in radar data
Extending water vapor measurement capability of photon-limited differential absorption lidars through simultaneous denoising and inversion
GPROF-NN: a neural-network-based implementation of the Goddard Profiling Algorithm
Sensitivity analysis of DSD retrievals from polarimetric radar in stratiform rain based on the μ–Λ relationship
On the use of high-frequency surface wave oceanographic research radars as bistatic single-frequency oblique ionospheric sounders
A statistically optimal analysis of systematic differences between Aeolus horizontal line-of-sight winds and NOAA's Global Forecast System
Hierarchical deconvolution for incoherent scatter radar data
An alternative cloud index for estimating downwelling surface solar irradiance from various satellite imagers in the framework of a Heliosat-V method
Maya García-Comas, Bernd Funke, Manuel López-Puertas, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Andrea Linden, Belén Martínez-Mondéjar, Gabriele P. Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 16, 5357–5386, https://doi.org/10.5194/amt-16-5357-2023, https://doi.org/10.5194/amt-16-5357-2023, 2023
Short summary
Short summary
We have released version 8 of MIPAS IMK–IAA temperatures and pointing information retrieved from MIPAS Middle and Upper Atmosphere mode version 8.03 calibrated spectra, covering 20–115 km altitude. We considered non-local thermodynamic equilibrium emission explicitly for each limb scan, essential to retrieve accurate temperatures above the mid-mesosphere. Comparisons of this temperature dataset with SABER measurements show excellent agreement, improving those of previous MIPAS versions.
Josef Innerkofler, Gottfried Kirchengast, Marc Schwärz, Christian Marquardt, and Yago Andres
Atmos. Meas. Tech., 16, 5217–5247, https://doi.org/10.5194/amt-16-5217-2023, https://doi.org/10.5194/amt-16-5217-2023, 2023
Short summary
Short summary
Atmosphere remote sensing using GNSS radio occultation provides a highly valuable basis for atmospheric and climate science. For the highest-quality demands, the Wegener Center set up a rigorous system for processing low-level measurement data. This excess-phase processing setup includes integrated quality control and uncertainty estimation. It was successfully evaluated and inter-compared, ensuring the capability of producing reliable long-term data records for climate applications.
Jingna Bai, Yidong Lou, Weixing Zhang, Yaozong Zhou, Zhenyi Zhang, Chuang Shi, and Jingnan Liu
Atmos. Meas. Tech., 16, 5249–5259, https://doi.org/10.5194/amt-16-5249-2023, https://doi.org/10.5194/amt-16-5249-2023, 2023
Short summary
Short summary
Homogenized atmospheric water vapor data are an important prerequisite for climate analysis. Compared to other techniques, GPS has an inherent homogeneity advantage but requires reprocessing and homogenization to eliminate impacts of applied strategy and observation environmental changes. The low-elevation cut-off angles are suggested for the best estimates of zenith tropospheric delay (ZTD) reprocessing time series when compared to homogenized radiosonde data or ERA5 reference time series.
James Barry, Stefanie Meilinger, Klaus Pfeilsticker, Anna Herman-Czezuch, Nicola Kimiaie, Christopher Schirrmeister, Rone Yousif, Tina Buchmann, Johannes Grabenstein, Hartwig Deneke, Jonas Witthuhn, Claudia Emde, Felix Gödde, Bernhard Mayer, Leonhard Scheck, Marion Schroedter-Homscheidt, Philipp Hofbauer, and Matthias Struck
Atmos. Meas. Tech., 16, 4975–5007, https://doi.org/10.5194/amt-16-4975-2023, https://doi.org/10.5194/amt-16-4975-2023, 2023
Short summary
Short summary
Measured power data from solar photovoltaic (PV) systems contain information about the state of the atmosphere. In this work, power data from PV systems in the Allgäu region in Germany were used to determine the solar irradiance at each location, using state-of-the-art simulation and modelling. The results were validated using concurrent measurements of the incoming solar radiation in each case. If applied on a wider scale, this algorithm could help improve weather and climate models.
Wan Wu, Xu Liu, Liqiao Lei, Xiaozhen Xiong, Qiguang Yang, Qing Yue, Daniel K. Zhou, and Allen M. Larar
Atmos. Meas. Tech., 16, 4807–4832, https://doi.org/10.5194/amt-16-4807-2023, https://doi.org/10.5194/amt-16-4807-2023, 2023
Short summary
Short summary
We present a new operational physical retrieval algorithm that is used to retrieve atmospheric properties for each single field-of-view measurement of hyper-spectral IR sounders. The physical scheme includes a cloud-scattering calculation in its forward-simulation part. The data product generated using this algorithm has an advantage over traditional IR sounder data production algorithms in terms of improved spatial resolution and minimized error due to cloud contamination.
Zhen Li, Ad Stoffelen, Anton Verhoef, Zhixiong Wang, Jian Shang, and Honggang Yin
Atmos. Meas. Tech., 16, 4769–4783, https://doi.org/10.5194/amt-16-4769-2023, https://doi.org/10.5194/amt-16-4769-2023, 2023
Short summary
Short summary
WindRAD (Wind Radar) is the first dual-frequency rotating fan-beam scatterometer in orbit. We observe non-linearity in the backscatter distribution. Therefore, higher-order calibration (HOC) is proposed, which removes the non-linearities per incidence angle. The combination of HOC and NOCant is discussed. It can remove not only the non-linearity but also the anomalous harmonic azimuth dependencies caused by the antenna rotation; hence the optimal winds can be achieved with this combination.
Marco Gabella, Martin Lainer, Daniel Wolfensberger, and Jacopo Grazioli
Atmos. Meas. Tech., 16, 4409–4422, https://doi.org/10.5194/amt-16-4409-2023, https://doi.org/10.5194/amt-16-4409-2023, 2023
Short summary
Short summary
A still wind turbine observed with a fixed-pointing radar antenna has shown distinctive polarimetric signatures: the correlation coefficient between the two orthogonal polarization states was persistently equal to 1. The differential reflectivity and the radar reflectivity factors were also stable in time. Over 2 min (2000 Hz, 128 pulses were used; consequently, the sampling time was 64 ms), the standard deviation of the differential backscattering phase shift was only a few degrees.
Carsten Schmidt, Lisa Küchelbacher, Sabine Wüst, and Michael Bittner
Atmos. Meas. Tech., 16, 4331–4356, https://doi.org/10.5194/amt-16-4331-2023, https://doi.org/10.5194/amt-16-4331-2023, 2023
Short summary
Short summary
Two identical instruments in a parallel setup were used to observe the mesospheric OH airglow for more than 10 years (2009–2020) at 47.42°N, 10.98°E. This allows unique analyses of data quality aspects and their impact on the obtained results. During solar cycle 24 the influence of the sun was strong (∼6 K per 100 sfu). A quasi-2-year oscillation (QBO) of ±1 K is observed mainly during the maximum of the solar cycle. Unlike the stratospheric QBO the variation has a period of or below 24 months.
Jason N. S. Cole, Howard W. Barker, Zhipeng Qu, Najda Villefranque, and Mark W. Shephard
Atmos. Meas. Tech., 16, 4271–4288, https://doi.org/10.5194/amt-16-4271-2023, https://doi.org/10.5194/amt-16-4271-2023, 2023
Short summary
Short summary
Measurements from the EarthCARE satellite mission will be used to retrieve profiles of cloud and aerosol properties. These retrievals are combined with auxiliary information about surface properties and atmospheric state, e.g., temperature and water vapor. This information allows computation of 1D and 3D solar and thermal radiative transfer for small domains, which are compared with coincident radiometer observations to continually assess EarthCARE retrievals.
Florian Günzkofer, Gunter Stober, Dimitry Pokhotelov, Yasunobu Miyoshi, and Claudia Borries
EGUsphere, https://doi.org/10.5194/egusphere-2023-1495, https://doi.org/10.5194/egusphere-2023-1495, 2023
Short summary
Short summary
Electric currents in the ionosphere can impact both satellite and ground-based infrastructure. These currents depend strongly on the collisions of ions and neutral particles. Measuring ion-neutral collisions is often only possible via certain assumptions. Direct measurement of ion-neutral collision frequencies is possible with multifrequency Incoherent Scatter Radar measurements. This paper presents one analysis method of such measurements and discusses its advantages and disadvantages.
Anna Jurczyk, Katarzyna Ośródka, Jan Szturc, Magdalena Pasierb, and Agnieszka Kurcz
Atmos. Meas. Tech., 16, 4067–4079, https://doi.org/10.5194/amt-16-4067-2023, https://doi.org/10.5194/amt-16-4067-2023, 2023
Short summary
Short summary
A data-processing algorithm, RainGRS Clim, has been developed to work on precipitation accumulations such as daily or monthly totals. The algorithm makes the most of additional opportunities: access to high-quality data that are not operationally available and greater efficiency of the algorithms for data quality control and merging for longer accumulations. Monthly accumulations estimated by RainGRS Clim were found to be significantly more reliable than accumulations generated operationally.
Sophie Rosenburg, Charlotte Lange, Evelyn Jäkel, Michael Schäfer, André Ehrlich, and Manfred Wendisch
Atmos. Meas. Tech., 16, 3915–3930, https://doi.org/10.5194/amt-16-3915-2023, https://doi.org/10.5194/amt-16-3915-2023, 2023
Short summary
Short summary
Snow layer melting and melt pond formation on Arctic sea ice are important seasonal processes affecting the surface reflection and energy budget. Sea ice reflectivity was surveyed by airborne imaging spectrometers in May–June 2017. Adapted retrieval approaches were applied to find snow layer liquid water fraction, snow grain effective radius, and melt pond depth. The retrievals show the potential and limitations of spectral airborne imaging to map melting snow layer and melt pond properties.
Sunil Baidar, Timothy J. Wagner, David D. Turner, and W. Alan Brewer
Atmos. Meas. Tech., 16, 3715–3726, https://doi.org/10.5194/amt-16-3715-2023, https://doi.org/10.5194/amt-16-3715-2023, 2023
Short summary
Short summary
This paper provides a new method to retrieve wind profiles from coherent Doppler lidar (CDL) measurements. It takes advantage of layer-to-layer correlation in wind profiles to provide continuous profiles of up to 3 km by filling in the gaps where the CDL signal is too small to retrieve reliable results by itself. Comparison with the current method and collocated radiosonde wind measurements showed excellent agreement with no degradation in results where the current method gives valid results.
Jake J. Gristey, K. Sebastian Schmidt, Hong Chen, Daniel R. Feldman, Bruce C. Kindel, Joshua Mauss, Mathew van den Heever, Maria Z. Hakuba, and Peter Pilewskie
Atmos. Meas. Tech., 16, 3609–3630, https://doi.org/10.5194/amt-16-3609-2023, https://doi.org/10.5194/amt-16-3609-2023, 2023
Short summary
Short summary
The concept of a satellite-based camera is demonstrated for sampling the angular distribution of outgoing radiance from Earth needed to generate data products for new radiation budget spectral channels.
Luis Ackermann, Joshua Soderholm, Alain Protat, Rhys Whitley, Lisa Ye, and Nina Ridder
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-161, https://doi.org/10.5194/amt-2023-161, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
The manuscript addresses the crucial topic of hail damage quantification using radar observations. We propose a new radar-derived hail product that utilises a large dataset of insurance hail damage claims and radar observations. A deep neural network was employed, trained with local meteorological variables and the radar observations, to better quantify hail damage. Key meteorological variables were identified to have the most predictive capability in this regards.
Neranga K. Hannadige, Peng-Wang Zhai, Meng Gao, Yongxiang Hu, P. Jeremy Werdell, Kirk Knobelspiesse, and Brian Cairns
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-142, https://doi.org/10.5194/amt-2023-142, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
We evaluated the impact of three ocean optical models with different numbers of free parameters on the performance of an aerosol and ocean color remote sensing algorithm using the multi-angle polarimeter (MAP) measurements. It was demonstrated that the 3 and 7-parameter bio-optical models can be used to accurately represent both open and coastal waters, whereas the 1-parameter model does have smaller retrieval uncertainty over open waters.
Alex Meredith, Stephen Leroy, Lucy Halperin, and Kerri Cahoy
Atmos. Meas. Tech., 16, 3345–3361, https://doi.org/10.5194/amt-16-3345-2023, https://doi.org/10.5194/amt-16-3345-2023, 2023
Short summary
Short summary
We developed a new efficient algorithm leveraging orbital dynamics to collocate radio occultation soundings with microwave radiance soundings. This new algorithm is 99 % accurate and is much faster than traditional collocation-finding approaches. Speeding up collocation finding is useful for calibrating and validating microwave radiometers and for data assimilation into numerical weather prediction models. Our algorithm can also be used to predict collocation yield for new satellite missions.
René Sedlak, Andreas Welscher, Patrick Hannawald, Sabine Wüst, Rainer Lienhart, and Michael Bittner
Atmos. Meas. Tech., 16, 3141–3153, https://doi.org/10.5194/amt-16-3141-2023, https://doi.org/10.5194/amt-16-3141-2023, 2023
Short summary
Short summary
We show that machine learning can help in classifying images of the OH* airglow, a thin layer in the middle atmosphere (ca. 86 km height) emitting infrared radiation, in an efficient way. By doing this,
dynamicepisodes of strong movement in the OH* airglow caused predominantly by waves can be extracted automatically from large data sets. Within these dynamic episodes, turbulent wave breaking can also be found. We use these observations of turbulence to derive the energy released by waves.
Roberto Cremonini, Tanel Voormansik, Piia Post, and Dmitri Moisseev
Atmos. Meas. Tech., 16, 2943–2956, https://doi.org/10.5194/amt-16-2943-2023, https://doi.org/10.5194/amt-16-2943-2023, 2023
Short summary
Short summary
Extreme rainfall for a specific location is commonly evaluated when designing stormwater management systems. This study investigates the use of quantitative precipitation estimations (QPEs) based on polarimetric weather radar data, without rain gauge corrections, to estimate 1 h rainfall total maxima in Italy and Estonia. We show that dual-polarization weather radar provides reliable QPEs and effective estimations of return periods for extreme rainfall in climatologically homogeneous regions.
Konstantin Franz Fotios Ntokas, Jörn Ungermann, Martin Kaufmann, Tom Neubert, and Martin Riese
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-74, https://doi.org/10.5194/amt-2023-74, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
A nano-satellite was developed to obtain 1-D vertical temperature profiles in the mesosphere and lower thermosphere, which can be used to derive wave parameters needed for atmospheric models. A new processing method is shown, which allows to extract two 1-D temperature profiles. The location of the two profiles is analyzed, as it is needed for deriving wave parameters. We show that this method is feasible, which however will increase the requirements of an accurate calibration and processing.
Kuo-Nung Wang, Chi O. Ao, Mary G. Morris, George A. Hajj, Marcin J. Kurowski, Francis J. Turk, and Angelyn W. Moore
EGUsphere, https://doi.org/10.5194/egusphere-2023-85, https://doi.org/10.5194/egusphere-2023-85, 2023
Short summary
Short summary
In this article we described a joint retrieval approach combining two techniques, RO and MWR, to obtain high vertical resolution and solve for temperature and moisture independently. The results show that the complicated structure in the lower troposphere can be better resolved with much smaller biases, and the RO/MWR combination is the most stable scenario in our sensitivity analysis. This approach is also applied to real data (COSMIC-2/Suomi-NPP) to show the promise of joint RO/MWR retrieval.
Vinícius Ludwig-Barbosa, Joel Rasch, Thomas Sievert, Anders Carlström, Mats I. Pettersson, Viet Thuy Vu, and Jacob Christensen
Atmos. Meas. Tech., 16, 1849–1864, https://doi.org/10.5194/amt-16-1849-2023, https://doi.org/10.5194/amt-16-1849-2023, 2023
Short summary
Short summary
In this paper, the back-propagation method's capabilities and limitations regarding the location of irregularity regions in the ionosphere, e.g. equatorial plasma bubbles, are evaluated. The assessment was performed with simulations in which different scenarios were assumed. The results showed that the location estimate is possible if the amplitude of the ionospheric disturbance is stronger than the instrument noise level. Further, multiple patches can be located if regions are well separated.
Lars Norin
Atmos. Meas. Tech., 16, 1789–1801, https://doi.org/10.5194/amt-16-1789-2023, https://doi.org/10.5194/amt-16-1789-2023, 2023
Short summary
Short summary
The atmosphere can cause radar beams to bend more or less towards the ground. When the atmosphere differs from standard atmospheric conditions, the propagation is considered anomalous. Radars affected by anomalous propagation can observe ground clutter far beyond the radar horizon. Here, 4.5 years' worth of data from five operational Swedish weather radars are presented. Analyses of the data reveal a strong seasonal cycle and weaker diurnal cycle in ground clutter from across nearby waters.
Liqin Jin, Jakob Mann, Nikolas Angelou, and Mikael Sjöholm
EGUsphere, https://doi.org/10.5194/egusphere-2023-464, https://doi.org/10.5194/egusphere-2023-464, 2023
Short summary
Short summary
By sampling the spectra of a Doppler lidar faster than the raindrop's beam transit time, the rain signal can be filtered away and the bias on the wind velocity estimation can be reduced. In the method we propose, 3 kHz spectra are normalized with their peak values before retrieving the radial wind velocity. In three hours period, we have observed a significant reduction of the bias of the lidar data relative to the sonic. The tendency is that the more it rains, the more the bias is reduced.
Mathieu Ratynski, Sergey Khaykin, Alain Hauchecorne, Robin Wing, Jean-Pierre Cammas, Yann Hello, and Philippe Keckhut
Atmos. Meas. Tech., 16, 997–1016, https://doi.org/10.5194/amt-16-997-2023, https://doi.org/10.5194/amt-16-997-2023, 2023
Short summary
Short summary
Aeolus is the first spaceborne wind lidar providing global wind measurements since 2018. This study offers a comprehensive analysis of Aeolus instrument performance, using ground-based wind lidars and meteorological radiosondes, at tropical and mid-latitudes sites. The analysis allows assessing the long-term evolution of the satellite's performance for more than 3 years. The results will help further elaborate the understanding of the error sources and the behavior of the Doppler wind lidar.
Anne-Claire Billault-Roux, Gionata Ghiggi, Louis Jaffeux, Audrey Martini, Nicolas Viltard, and Alexis Berne
Atmos. Meas. Tech., 16, 911–940, https://doi.org/10.5194/amt-16-911-2023, https://doi.org/10.5194/amt-16-911-2023, 2023
Short summary
Short summary
Better understanding and modeling snowfall properties and processes is relevant to many fields, ranging from weather forecasting to aircraft safety. Meteorological radars can be used to gain insights into the microphysics of snowfall. In this work, we propose a new method to retrieve snowfall properties from measurements of radars with different frequencies. It relies on an original deep-learning framework, which incorporates knowledge of the underlying physics, i.e., electromagnetic scattering.
Chia-Lun Tsai, Kwonil Kim, Yu-Chieng Liou, and GyuWon Lee
Atmos. Meas. Tech., 16, 845–869, https://doi.org/10.5194/amt-16-845-2023, https://doi.org/10.5194/amt-16-845-2023, 2023
Short summary
Short summary
Since the winds in clear-air conditions usually play an important role in the initiation of various weather systems and phenomena, the modified Wind Synthesis System using Doppler Measurements (WISSDOM) synthesis scheme was developed to derive high-quality and high-spatial-resolution 3D winds under clear-air conditions. The performance and accuracy of derived 3D winds from this modified scheme were evaluated with an extreme strong wind event over complex terrain in Pyeongchang, South Korea.
Simone Kotthaus, Juan Antonio Bravo-Aranda, Martine Collaud Coen, Juan Luis Guerrero-Rascado, Maria João Costa, Domenico Cimini, Ewan J. O'Connor, Maxime Hervo, Lucas Alados-Arboledas, María Jiménez-Portaz, Lucia Mona, Dominique Ruffieux, Anthony Illingworth, and Martial Haeffelin
Atmos. Meas. Tech., 16, 433–479, https://doi.org/10.5194/amt-16-433-2023, https://doi.org/10.5194/amt-16-433-2023, 2023
Short summary
Short summary
Profile observations of the atmospheric boundary layer now allow for layer heights and characteristics to be derived at high temporal and vertical resolution. With novel high-density ground-based remote-sensing measurement networks emerging, horizontal information content is also increasing. This review summarises the capabilities and limitations of various sensors and retrieval algorithms which need to be considered during the harmonisation of data products for high-impact applications.
Michael Frech, Cornelius Hald, Maximilian Schaper, Bertram Lange, and Benjamin Rohrdantz
Atmos. Meas. Tech., 16, 295–309, https://doi.org/10.5194/amt-16-295-2023, https://doi.org/10.5194/amt-16-295-2023, 2023
Short summary
Short summary
Weather radar data are the backbone of a lot of meteorological products. In order to obtain a better low-level coverage with radar data, additional systems have to be included. The frequency range in which radars are allowed to operate is limited. A potential radar-to-radar interference has to be avoided. The paper derives guidelines on how additional radars can be included into a C-band weather radar network and how interferences can be avoided.
Yeeun Lee, Myoung-Hwan Ahn, Mina Kang, and Mijin Eo
Atmos. Meas. Tech., 16, 153–168, https://doi.org/10.5194/amt-16-153-2023, https://doi.org/10.5194/amt-16-153-2023, 2023
Short summary
Short summary
This study aims to verify that a partly defective hyperspectral measurement can be successfully reproduced with concise machine learning models coupled with principal component analysis. Evaluation of the approach is performed with radiances and retrieval results of ozone and cloud properties. Considering that GEMS is the first geostationary UV–VIS hyperspectral spectrometer, we expect our findings can be introduced further to similar geostationary environmental instruments to be launched soon.
Mathias Gergely, Maximilian Schaper, Matthias Toussaint, and Michael Frech
Atmos. Meas. Tech., 15, 7315–7335, https://doi.org/10.5194/amt-15-7315-2022, https://doi.org/10.5194/amt-15-7315-2022, 2022
Short summary
Short summary
This study presents the new vertically pointing birdbath scan of the German C-band radar network, which provides high-resolution profiles of precipitating clouds above all DWD weather radars since the spring of 2021. Our AI-based postprocessing method for filtering and analyzing the recorded radar data offers a unique quantitative view into a wide range of precipitation events from snowfall over stratiform rain to intense frontal showers and will be used to complement DWD's operational services.
Kenneth A. Brown and Thomas G. Herges
Atmos. Meas. Tech., 15, 7211–7234, https://doi.org/10.5194/amt-15-7211-2022, https://doi.org/10.5194/amt-15-7211-2022, 2022
Short summary
Short summary
The character of the airflow around and within wind farms has a significant impact on the energy output and longevity of the wind turbines in the farm. For both research and control purposes, accurate measurements of the wind speed are required, and these are often accomplished with remote sensing devices. This article pertains to a field experiment of a lidar mounted to a wind turbine and demonstrates three data post-processing techniques with efficacy at extracting useful airflow information.
Xavier Calbet, Cintia Carbajal Henken, Sergio DeSouza-Machado, Bomin Sun, and Tony Reale
Atmos. Meas. Tech., 15, 7105–7118, https://doi.org/10.5194/amt-15-7105-2022, https://doi.org/10.5194/amt-15-7105-2022, 2022
Short summary
Short summary
Water vapor concentration in the atmosphere at small scales (< 6 km) is considered. The measurements show Gaussian random field behavior following Kolmogorov's theory of turbulence two-thirds law. These properties can be useful when estimating the water vapor variability within a given observed satellite scene or when different water vapor measurements have to be merged consistently.
Qiuyu Chen, Konstantin Ntokas, Björn Linder, Lukas Krasauskas, Manfred Ern, Peter Preusse, Jörn Ungermann, Erich Becker, Martin Kaufmann, and Martin Riese
Atmos. Meas. Tech., 15, 7071–7103, https://doi.org/10.5194/amt-15-7071-2022, https://doi.org/10.5194/amt-15-7071-2022, 2022
Short summary
Short summary
Observations of phase speed and direction spectra as well as zonal mean net gravity wave momentum flux are required to understand how gravity waves reach the mesosphere–lower thermosphere and how they there interact with background flow. To this end we propose flying two CubeSats, each deploying a spatial heterodyne spectrometer for limb observation of the airglow. End-to-end simulations demonstrate that individual gravity waves are retrieved faithfully for the expected instrument performance.
Simon Pfreundschuh, Ingrid Ingemarsson, Patrick Eriksson, Daniel A. Vila, and Alan J. P. Calheiros
Atmos. Meas. Tech., 15, 6907–6933, https://doi.org/10.5194/amt-15-6907-2022, https://doi.org/10.5194/amt-15-6907-2022, 2022
Short summary
Short summary
We used methods from the field of artificial intelligence to train an algorithm to estimate rain from satellite observations. In contrast to other methods, our algorithm not only estimates rain, but also the uncertainty of the estimate. Using independent measurements from rain gauges, we show that our method performs better than currently available methods and that the provided uncertainty estimates are reliable. Our method makes satellite-based measurements of rain more accurate and reliable.
Maximilian Schaper, Michael Frech, David Michaelis, Cornelius Hald, and Benjamin Rohrdantz
Atmos. Meas. Tech., 15, 6625–6642, https://doi.org/10.5194/amt-15-6625-2022, https://doi.org/10.5194/amt-15-6625-2022, 2022
Short summary
Short summary
C-band weather radar data are commonly compromised by radio frequency interference (RFI) from external sources. It is not possible to separate a superimposed interference signal from the radar data. Therefore, the best course of action is to shut down RFI sources as quickly as possible. An automated RFI detection algorithm has been developed. Since its implementation, persistent RFI sources are eliminated much more quickly, while the number of short-lived RFI sources keeps steadily increasing.
Oliver Lux, Benjamin Witschas, Alexander Geiß, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Stephan Rahm, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 15, 6467–6488, https://doi.org/10.5194/amt-15-6467-2022, https://doi.org/10.5194/amt-15-6467-2022, 2022
Short summary
Short summary
We discuss the influence of different quality control schemes on the results of Aeolus wind product validation and present statistical tools for ensuring consistency and comparability among diverse validation studies with regard to the specific error characteristics of the Rayleigh-clear and Mie-cloudy winds. The developed methods are applied for the validation of Aeolus winds against an ECMWF model background and airborne wind lidar data from the Joint Aeolus Tropical Atlantic Campaign.
Alex T. Chartier, Thomas R. Hanley, and Daniel J. Emmons
Atmos. Meas. Tech., 15, 6387–6393, https://doi.org/10.5194/amt-15-6387-2022, https://doi.org/10.5194/amt-15-6387-2022, 2022
Short summary
Short summary
This is a study of anomalous long-distance (>1000 km) radio propagation that was identified in United States Coast Guard monitors of automatic identification system (AIS) shipping transmissions at 162 MHz. Our results indicate this long-distance propagation is caused by dense sporadic E layers in the daytime ionosphere, which were observed by nearby ionosondes at the same time. This finding is surprising because it indicates these sporadic E layers may be far more dense than previously thought.
Johannes K. Nielsen, Hans Gleisner, Stig Syndergaard, and Kent B. Lauritsen
Atmos. Meas. Tech., 15, 6243–6256, https://doi.org/10.5194/amt-15-6243-2022, https://doi.org/10.5194/amt-15-6243-2022, 2022
Short summary
Short summary
This paper provides a new way to estimate uncertainties and error correlations. The method is a generalization of a known method called the
three-cornered hat: Instead of calculating uncertainties from assumed knowledge about the observation method, uncertainties and error correlations are estimated statistically from tree independent observation series, measuring the same variable. The results are useful for future estimation of atmospheric-specific humidity from the bending of radio waves.
Matthias Aichinger-Rosenberger, Elmar Brockmann, Laura Crocetti, Benedikt Soja, and Gregor Moeller
Atmos. Meas. Tech., 15, 5821–5839, https://doi.org/10.5194/amt-15-5821-2022, https://doi.org/10.5194/amt-15-5821-2022, 2022
Short summary
Short summary
This study develops an innovative approach for the detection and prediction of foehn winds. The approach uses products generated from GNSS (Global Navigation Satellite Systems) in combination with machine learning-based classification algorithms to detect and predict foehn winds at Altdorf, Switzerland. Results are encouraging and comparable to similar studies using meteorological data, which might qualify the method as an additional tool for short-term foehn forecasting in the future.
Gunter Stober, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Ales Kuchar, Christoph Jacobi, Chris Meek, Diego Janches, Guiping Liu, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Meas. Tech., 15, 5769–5792, https://doi.org/10.5194/amt-15-5769-2022, https://doi.org/10.5194/amt-15-5769-2022, 2022
Short summary
Short summary
Precise and accurate measurements of vertical winds at the mesosphere and lower thermosphere are rare. Although meteor radars have been used for decades to observe horizontal winds, their ability to derive reliable vertical wind measurements was always questioned. In this article, we provide mathematical concepts to retrieve mathematically and physically consistent solutions, which are compared to the state-of-the-art non-hydrostatic model UA-ICON.
Benjamin Schumacher, Marwan Katurji, Jiawei Zhang, Peyman Zawar-Reza, Benjamin Adams, and Matthias Zeeman
Atmos. Meas. Tech., 15, 5681–5700, https://doi.org/10.5194/amt-15-5681-2022, https://doi.org/10.5194/amt-15-5681-2022, 2022
Short summary
Short summary
This investigation presents adaptive thermal image velocimetry (A-TIV), a newly developed algorithm to spatially measure near-surface atmospheric velocities using an infrared camera mounted on uncrewed aerial vehicles. A validation and accuracy assessment of the retrieved velocity fields shows the successful application of the algorithm over short-cut grass and turf surfaces in dry conditions. This provides new opportunities for atmospheric scientists to study surface–atmosphere interactions.
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, and Luke R. Allen
Atmos. Meas. Tech., 15, 5515–5525, https://doi.org/10.5194/amt-15-5515-2022, https://doi.org/10.5194/amt-15-5515-2022, 2022
Short summary
Short summary
Locally higher radar reflectivity values in winter storms can mean more snowfall or a transition from snow to mixtures of snow, partially melted snow, and/or rain. We use the correlation coefficient to de-emphasize regions of mixed precipitation. Visual muting is valuable for analyzing and monitoring evolving weather conditions during winter storm events.
Willem J. Marais and Matthew Hayman
Atmos. Meas. Tech., 15, 5159–5180, https://doi.org/10.5194/amt-15-5159-2022, https://doi.org/10.5194/amt-15-5159-2022, 2022
Short summary
Short summary
For atmospheric science and weather prediction, it is important to make water vapor measurements in real time. A low-cost lidar instrument has been developed by Montana State University and the National Center for Atmospheric Research. We developed an advanced signal-processing method to extend the scientific capability of the lidar instrument. With the new method we show that the maximum altitude at which the MPD can make water vapor measurements can be extended up to 8 km.
Simon Pfreundschuh, Paula J. Brown, Christian D. Kummerow, Patrick Eriksson, and Teodor Norrestad
Atmos. Meas. Tech., 15, 5033–5060, https://doi.org/10.5194/amt-15-5033-2022, https://doi.org/10.5194/amt-15-5033-2022, 2022
Short summary
Short summary
The Global Precipitation Measurement mission is an international satellite mission providing regular global rain measurements. We present two newly developed machine-learning-based implementations of one of the algorithms responsible for turning the satellite observations into rain measurements. We show that replacing the current algorithm with a neural network improves the accuracy of the measurements. A neural network that also makes use of spatial information unlocks further improvements.
Christos Gatidis, Marc Schleiss, and Christine Unal
Atmos. Meas. Tech., 15, 4951–4969, https://doi.org/10.5194/amt-15-4951-2022, https://doi.org/10.5194/amt-15-4951-2022, 2022
Short summary
Short summary
Knowledge of the raindrop size distribution (DSD) is crucial for understanding rainfall microphysics and quantifying uncertainty in quantitative precipitation estimates. In this study a general overview of the DSD retrieval approach from a polarimetric radar is discussed, highlighting sensitivity to potential sources of errors, either directly linked to the radar measurements or indirectly through the critical modeling assumptions behind the method such as the shape–size (μ–Λ) relationship.
Stephen R. Kaeppler, Ethan S. Miller, Daniel Cole, and Teresa Updyke
Atmos. Meas. Tech., 15, 4531–4545, https://doi.org/10.5194/amt-15-4531-2022, https://doi.org/10.5194/amt-15-4531-2022, 2022
Short summary
Short summary
This investigation demonstrates how useful ionospheric parameters can be extracted from existing high-frequency radars that are used for oceanographic research. The methodology presented can be used by scientists and radio amateurs to understand ionospheric dynamics.
Hui Liu, Kevin Garrett, Kayo Ide, Ross N. Hoffman, and Katherine E. Lukens
Atmos. Meas. Tech., 15, 3925–3940, https://doi.org/10.5194/amt-15-3925-2022, https://doi.org/10.5194/amt-15-3925-2022, 2022
Short summary
Short summary
A total least squares (TLS) regression is used to optimally estimate linear speed-dependent biases between Aeolus Level-2B winds and short-term (6 h) forecasts of NOAA’s FV3GFS. The winds for 1–7 September 2019 are examined. Clear speed-dependent biases for both Mie and Rayleigh winds are found, particularly in the tropics and Southern Hemisphere. Use of the TLS correction improves the forecast of the 26–28 November 2019 winter storm over the USA.
Snizhana Ross, Arttu Arjas, Ilkka I. Virtanen, Mikko J. Sillanpää, Lassi Roininen, and Andreas Hauptmann
Atmos. Meas. Tech., 15, 3843–3857, https://doi.org/10.5194/amt-15-3843-2022, https://doi.org/10.5194/amt-15-3843-2022, 2022
Short summary
Short summary
Radar measurements of thermal fluctuations in the Earth's ionosphere produce weak signals, and tuning to specific altitudes results in suboptimal resolution for other regions, making an accurate analysis of these changes difficult. A novel approach to improve the resolution and remove measurement noise is considered. The method can capture variable characteristics, making it ideal for the study of a large range of data. Synthetically generated examples and two measured datasets were considered.
Benoît Tournadre, Benoît Gschwind, Yves-Marie Saint-Drenan, Xuemei Chen, Rodrigo Amaro E Silva, and Philippe Blanc
Atmos. Meas. Tech., 15, 3683–3704, https://doi.org/10.5194/amt-15-3683-2022, https://doi.org/10.5194/amt-15-3683-2022, 2022
Short summary
Short summary
Solar radiation received by the Earth's surface is valuable information for various fields like the photovoltaic industry or climate research. Pictures taken from satellites can be used to estimate the solar radiation from cloud reflectivity. Two issues for a good estimation are different instrumentations and orbits. We modify a widely used method that is today only used on geostationary satellites, so it can be applied on instruments on different orbits and with different sensitivities.
Cited articles
Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., and Inman, D. J.: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks, J. Sound Vib., 388, 154–170, https://doi.org/10.1016/j.jsv.2016.10.043, 2017. a
Adhikari, A., Ehsani, M. R., Song, Y., and Behrangi, A.: Comparative
Assessment of Snowfall Retrieval From Microwave Humidity
Sounders Using Machine Learning Methods, Earth and Space Science,
7, e2020EA001357, https://doi.org/10.1029/2020EA001357, 2020. a
Bennartz, R., Fell, F., Pettersen, C., Shupe, M. D., and Schuettemeyer, D.: Spatial and temporal variability of snowfall over Greenland from CloudSat observations, Atmos. Chem. Phys., 19, 8101–8121, https://doi.org/10.5194/acp-19-8101-2019, 2019. a
Boudala, F. S., Gultepe, I., and Milbrandt, J. A.: The Performance of Commonly Used Surface-Based Instruments for Measuring Visibility, Cloud Ceiling, and Humidity at Cold Lake, Alberta,
Remote Sens., 13, 5058, https://doi.org/10.3390/rs13245058, 2021. a
Buttle, J. M., Allen, D. M., Caissie, D., Davison, B., Hayashi, M., Peters, D. L., Pomeroy, J. W., Simonovic, S., St-Hilaire, A., and Whitfield, P. H.: Flood processes in Canada: Regional and special aspects, Can. Water Resour. J., 41, 7–30, https://doi.org/10.1080/07011784.2015.1131629, 2016. a
Chen, H., Chandrasekar, V., Cifelli, R., and Xie, P.: A Machine Learning
System for Precipitation Estimation Using Satellite and Ground
Radar Network Observations, IEEE T. Geosci. Remote, 58, 982–994, https://doi.org/10.1109/TGRS.2019.2942280, 2020. a
Chen, L., Cao, Y., Ma, L., and Zhang, J.: A Deep Learning-Based
Methodology for Precipitation Nowcasting With Radar, Earth and
Space Science, 7, e2019EA000812, https://doi.org/10.1029/2019EA000812, 2020. a
Choubin, B., Khalighi-Sigaroodi, S., and Malekian, A.: Multiple linear regression, multi-layer perceptron network and adaptive neuro-fuzzy inference
system for forecasting precipitation based on large-scale climate signals,
Hydrolog. Sci. J., 61, 1001–1009, https://doi.org/10.1080/02626667.2014.966721, 2016. a
Colli, M., Lanza, L. G., La Barbera, P., and Chan, P. W.: Measurement accuracy of weighing and tipping-bucket rainfall intensity gauges under dynamic laboratory testing, Atmos. Res., 144, 186–194,
https://doi.org/10.1016/j.atmosres.2013.08.007, 2014. a, b
Ehsani, M. R. and Behrangi, A.: A comparison of correction factors for the systematic gauge-measurement errors to improve the global land precipitation
estimate, J. Hydrol., 610, 127884,
https://doi.org/10.1016/j.jhydrol.2022.127884, 2022. a
Ehsani, M. R., Behrangi, A., Adhikari, A., Song, Y., Huffman, G. J., Adler, R. F., Bolvin, D. T., and Nelkin, E. J.: Assessment of the Advanced Very
High Resolution Radiometer (AVHRR) for Snowfall Retrieval in
High Latitudes Using CloudSat and Machine Learning, J.
Hydrometeorol., 22, 1591–1608, https://doi.org/10.1175/JHM-D-20-0240.1, 2021. a
Gergel, D. R., Nijssen, B., Abatzoglou, J. T., Lettenmaier, D. P., and Stumbaugh, M. R.: Effects of climate change on snowpack and fire potential in
the western USA, Climatic Change, 141, 287–299,
https://doi.org/10.1007/s10584-017-1899-y, 2017. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Muaoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Halm, E., Janiskova, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thacpaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hiley, M. J., Kulie, M. S., and Bennartz, R.: Uncertainty Analysis for
CloudSat Snowfall Retrievals, J. Appl. Meteorol. Clim., 50, 399–418, https://doi.org/10.1175/2010JAMC2505.1, 2010. a, b
Houze, R. A., McMurdie, L. A., Petersen, W. A., Schwaller, M. R., Baccus, W.,
Lundquist, J. D., Mass, C. F., Nijssen, B., Rutledge, S. A., Hudak, D. R.,
Tanelli, S., Mace, G. G., Poellot, M. R., Lettenmaier, D. P., Zagrodnik,
J. P., Rowe, A. K., DeHart, J. C., Madaus, L. E., Barnes, H. C., and
Chandrasekar, V.: The Olympic Mountains Experiment (OLYMPEX),
B. Am. Meteorol. Soc., 98, 2167–2188,
https://doi.org/10.1175/BAMS-D-16-0182.1, 2017. a, b, c
Jakubovitz, D., Giryes, R., and Rodrigues, M. R. D.: Generalization Error in Deep Learning, in: Compressed Sensing and Its Applications: Third International MATHEON Conference 2017, 4–8 December 2017, Berlin, Germany, edited by: Boche, H., Caire, G., Calderbank, R., Kutyniok, G., Mathar, R., and Petersen, P., Springer International Publishing, Cham, 153–193, https://www3.math.tu-berlin.de/numerik/csa2017/index.html (last access: 10 July 2022), 2019. a
Jameson, A. R. and Kostinski, A. B.: Spurious power-law relations among rainfall and radar parameters, Q. J. Roy. Meteor. Soc., 128, 2045–2058, https://doi.org/10.1256/003590002320603520, 2002. a, b
Jash, D., Resmi, E. A., Unnikrishnan, C. K., Sumesh, R. K., Sreekanth, T. S.,
Sukumar, N., and Ramachandran, K. K.: Variation in rain drop size
distribution and rain integral parameters during southwest monsoon over a
tropical station: An inter-comparison of disdrometer and Micro Rain
Radar, Atmos. Res., 217, 24–36, https://doi.org/10.1016/j.atmosres.2018.10.014, 2019. a, b, c
Jennings, K. S., Winchell, T. S., Livneh, B., and Molotch, N. P.: Spatial
variation of the rain–snow temperature threshold across the Northern
Hemisphere, Nat. Commun., 9, 1148, https://doi.org/10.1038/s41467-018-03629-7, 2018. a
Jia, R., Dao, D., Wang, B., Hubis, F. A., Hynes, N., Gurel, N. M., Li, B.,
Zhang, C., Song, D., and Spanos, C.: Towards Efficient Data Valuation
Based on the Shapley Value, arXiv [preprint], https://doi.org/10.48550/arXiv.1902.10275, 17 August 2020. a
Kim, H.-U. and Bae, T.-S.: Preliminary Study of Deep Learning-based Precipitation, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 35, 423–430, https://doi.org/10.7848/ksgpc.2017.35.5.423, 2017. a
Kim, K., Bang, W., Chang, E.-C., Tapiador, F. J., Tsai, C.-L., Jung, E., and Lee, G.: Impact of wind pattern and complex topography on snow microphysics during International Collaborative Experiment for PyeongChang 2018 Olympic and Paralympic winter games (ICE-POP 2018), Atmos. Chem. Phys., 21, 11955–11978, https://doi.org/10.5194/acp-21-11955-2021, 2021. a
King, F.: frasertheking/DeepPrecip: Full Release (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.7221133, 2022a. a
King, F.: DeepPrecip Training Data, Zenodo [data set], https://doi.org/10.5281/zenodo.5976046, 2022b. a
King, F., Duffy, G., and Fletcher, C. G.: A Centimeter Wavelength
Snowfall Retrieval Algorithm Using Machine Learning, J.
Appl. Meteorol. Clim., 61, 1029–1039, https://doi.org/10.1175/JAMC-D-22-0036.1, 2022. a
Kochendorfer, J., Nitu, R., Wolff, M., Mekis, E., Rasmussen, R., Baker, B., Earle, M. E., Reverdin, A., Wong, K., Smith, C. D., Yang, D., Roulet, Y.-A., Buisan, S., Laine, T., Lee, G., Aceituno, J. L. C., Alastrué, J., Isaksen, K., Meyers, T., Brækkan, R., Landolt, S., Jachcik, A., and Poikonen, A.: Analysis of single-Alter-shielded and unshielded measurements of mixed and solid precipitation from WMO-SPICE, Hydrol. Earth Syst. Sci., 21, 3525–3542, https://doi.org/10.5194/hess-21-3525-2017, 2017. a
Kochendorfer, J., Earle, M., Rasmussen, R., Smith, C., Yang, D., Morin, S.,
Mekis, E., Buisan, S., Roulet, Y.-A., Landolt, S., Wolff, M., Hoover, J.,
Thériault, J. M., Lee, G., Baker, B., Nitu, R., Lanza, L., Colli, M., and
Meyers, T.: How Well Are We Measuring Snow Post-SPICE?,
B. Am. Meteorol. Soc., 103, E370–E388,
https://doi.org/10.1175/BAMS-D-20-0228.1, 2022. a, b, c, d
Kulie, M. S. and Bennartz, R.: Utilizing Spaceborne Radars to Retrieve
Dry Snowfall, J. Appl. Meteorol. Clim., 48, 2564–2580, https://doi.org/10.1175/2009JAMC2193.1, 2009. a, b, c, d
Kulie, M. S., Pettersen, C., Merrelli, A. J., Wagner, T. J., Wood, N. B., Dutter, M., Beachler, D., Kluber, T., Turner, R., Mateling, M., Lenters, J.,
Blanken, P., Maahn, M., Spence, C., Kneifel, S., Kucera, P. A., Tokay, A.,
Bliven, L. F., Wolff, D. B., and Petersen, W. A.: Snowfall in the Northern Great Lakes: Lessons Learned from a Multisensor Observatory, B. Am. Meteorol. Soc., 102, E1317–E1339,
https://doi.org/10.1175/BAMS-D-19-0128.1, 2021. a
Lahnert, U., Schween, J. H., Acquistapace, C., Ebell, K., Maahn, M., Barrera-Verdejo, M., Hirsikko, A., Bohn, B., Knaps, A., OConnor, E., Simmer, C., Wahner, A., and Crewell, S.: JOYCE: Jaelich Observatory for Cloud
Evolution, B. Am. Meteorol. Soc., 96, 1157–1174,
https://doi.org/10.1175/BAMS-D-14-00105.1, 2015. a
Lemonnier, F., Madeleine, J.-B., Claud, C., Genthon, C., Durán-Alarcón, C., Palerme, C., Berne, A., Souverijns, N., van Lipzig, N., Gorodetskaya, I. V., L'Ecuyer, T., and Wood, N.: Evaluation of CloudSat snowfall rate profiles by a comparison with in situ micro-rain radar observations in East Antarctica, The Cryosphere, 13, 943–954, https://doi.org/10.5194/tc-13-943-2019, 2019. a
Levizzani, V., Laviola, S., and Cattani, E.: Detection and Measurement of
Snowfall from Space, Remote Sens., 3, 145–166,
https://doi.org/10.3390/rs3010145,2011. a, b
Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A.: Hyperband: a novel bandit-based approach to hyperparameter optimization, J. Mach. Learn. Res., 18, 6765–6816, 2017. a
Li, L., Qiao, J., Yu, G., Wang, L., Li, H., Liao, C., and Zhu, Z.:
Interpretable tree-based ensemble model for predicting beach water quality,
Water Res., 211, 118078, https://doi.org/10.1016/j.watres.2022.118078, 2022. a
Liu, G.: Deriving snow cloud characteristics from CloudSat observations,
J. Geophys. Res.-Atmos., 113, D00A09, https://doi.org/10.1029/2007JD009766, 2008. a, b
Louw, T. and McIntosh-Smith, S.: Using the Graphcore IPU for Traditional HPC Applications, AccML, 4896, EasyChair, https://easychair.org/publications/preprint/ztfj (last access: 10 June 2022), 2021. a
Lundberg, S. M. and Lee, S.-I.: A unified approach to interpreting model
predictions, in: Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS'17, 4–9 December 2017, Long Beach, California, USA, Curran Associates Inc., Red Hook, NY, USA, 4768–4777, ISBN 978-1-5108-6096-4, 2017. a, b
Maahn, M. and Kollias, P.: Improved Micro Rain Radar snow measurements using Doppler spectra post-processing, Atmos. Meas. Tech., 5, 2661–2673, https://doi.org/10.5194/amt-5-2661-2012, 2012. a
Maahn, M., Burgard, C., Crewell, S., Gorodetskaya, I. V., Kneifel, S.,
Lhermitte, S., Van Tricht, K., and van Lipzig, N. P. M.: How does the
spaceborne radar blind zone affect derived surface snowfall statistics in
polar regions?, J. Geophys. Res.-Atmos., 119, 13604–13620, https://doi.org/10.1002/2014JD022079, 2014. a
Marshall, J. S. and Palmer, W. M. K.: The Distribution Of Raindrops
With Size, J. Atmos. Sci., 5, 165–166,
https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2, 1948. a
Matrosov, S. Y.: Modeling Backscatter Properties of Snowfall at
Millimeter Wavelengths, J. Atmos. Sci., 64, 1727–1736, https://doi.org/10.1175/JAS3904.1, 2007. a
Matrosov, S. Y., Shupe, M. D., and Djalalova, I. V.: Snowfall Retrievals
Using Millimeter-Wavelength Cloud Radars, J. Appl. Meteorol. Clim., 47, 769–777, https://doi.org/10.1175/2007JAMC1768.1, 2008. a, b
Maxwell, A. and Shobe, C.: Land-surface parameters for spatial predictive
mapping and modeling, Earth-Sci. Rev., 226, 103944,
https://doi.org/10.1016/j.earscirev.2022.103944, 2022. a
Munchak, S. J., Schrom, R. S., Helms, C. N., and Tokay, A.: Snow microphysical retrieval from the NASA D3R radar during ICE-POP 2018, Atmos. Meas. Tech., 15, 1439–1464, https://doi.org/10.5194/amt-15-1439-2022, 2022. a
Pettersen, C., Kulie, M. S., Bliven, L. F., Merrelli, A. J., Petersen, W. A., Wagner, T. J., Wolff, D. B., and Wood, N. B.: A Composite Analysis of Snowfall Modes from Four Winter Seasons in Marquette, Michigan,
J. Appl. Meteorol. Clim., 59, 103–124, https://doi.org/10.1175/JAMC-D-19-0099.1, 2020. a
Quirita, V. A. A., da Costa, G. A. O. P., Happ, P. N., Feitosa, R. Q.,
Ferreira, R. d. S., Oliveira, D. A. B., and Plaza, A.: A New Cloud
Computing Architecture for the Classification of Remote Sensing
Data, IEEE J. Sel. Top. Appl., 10, 409–416, https://doi.org/10.1109/JSTARS.2016.2603120, 2017. a
Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A. P., Black, J., Thériault, J. M., Kucera, P., Gochis, D., Smith, C., Nitu,
R., Hall, M., Ikeda, K., and Gutmann, E.: How Well Are We Measuring
Snow: The NOAA/FAA/NCAR Winter Precipitation Test Bed,
B. Am. Meteorol. Soc., 93, 811–829, https://doi.org/10.1175/BAMS-D-11-00052.1, 2012. a, b
Schoger, S. Y., Moisseev, D., Lerber, A. V., Crewell, S., and Ebell, K.:
Snowfall-Rate Retrieval for K- and W-Band Radar Measurements
Designed in Hyyti, Finland, and Tested at Ny-Alesund, Svalbard,
Norway, J. Appl. Meteorol. Clim., 60, 273–289,
https://doi.org/10.1175/JAMC-D-20-0095.1, 2021. a, b, c, d
Shi, X., Gao, Z., Lausen, L., Wang, H., Yeung, D.-Y., Wong, W.-K., and Woo,
W.-C.: Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model, NeurIPS, arXiv [preprint], https://doi.org/10.48550/arXiv.1706.03458, 12 June 2017. a
Sims, E. M. and Liu, G.: A Parameterization of the Probability of
Snow–Rain Transition, J. Hydrometeorol., 16, 1466–1477,
https://doi.org/10.1175/JHM-D-14-0211.1, 2015. a
Skofronick-Jackson, G., Hudak, D., Petersen, W., Nesbitt, S. W., Chandrasekar, V., Durden, S., Gleicher, K. J., Huang, G.-J., Joe, P., Kollias, P., Reed, K. A., Schwaller, M. R., Stewart, R., Tanelli, S., Tokay, A., Wang, J. R., and Wolde, M.: Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEX): For Measurement Sake Let It Snow, B. Am. Meteorol. Soc., 96, 1719–1741, https://doi.org/10.1175/BAMS-D-13-00262.1, 2015. a, b
Skofronick-Jackson, G., Petersen, W. A., Berg, W., Kidd, C., Stocker, E. F.,
Kirschbaum, D. B., Kakar, R., Braun, S. A., Huffman, G. J., Iguchi, T.,
Kirstetter, P. E., Kummerow, C., Meneghini, R., Oki, R., Olson, W. S.,
Takayabu, Y. N., Furukawa, K., and Wilheit, T.: The Global Precipitation Measurement (GPM) Mission for Science and Society, B. Am. Meteorol. Soc., 98, 1679–1695,
https://doi.org/10.1175/BAMS-D-15-00306.1, 2017. a
Souverijns, N., Gossart, A., Lhermitte, S., Gorodetskaya, I. V., Kneifel, S.,
Maahn, M., Bliven, F. L., and van Lipzig, N. P. M.: Estimating radar
reflectivity – Snowfall rate relationships and their uncertainties over
Antarctica by combining disdrometer and radar observations, Atmos.
Res., 196, 211–223, https://doi.org/10.1016/j.atmosres.2017.06.001, 2017. a
Stephens, G. L., Vane, D. G., Tanelli, S., Im, E., Durden, S., Rokey, M.,
Reinke, D., Partain, P., Mace, G. G., Austin, R., L'Ecuyer, T., Haynes, J.,
Lebsock, M., Suzuki, K., Waliser, D., Wu, D., Kay, J., Gettelman, A., Wang,
Z., and Marchand, R.: CloudSat mission: Performance and early science
after the first year of operation, J. Geophys. Res.-Atmos., 113, D00A18, https://doi.org/10.1029/2008JD009982, 2008. a, b
Van Baelen, J., Tridon, F., and Pointin, Y.: Simultaneous X-band and K-band study of precipitation to derive specific ZR relationships, Atmos. Res., 94, 596–605, https://doi.org/10.1016/j.atmosres.2009.04.003, 2009.
a, b
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng,
Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors:
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,
Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Wood, N. B., L'Ecuyer, T. S., Bliven, F. L., and Stephens, G. L.: Characterization of video disdrometer uncertainties and impacts on estimates of snowfall rate and radar reflectivity, Atmos. Meas. Tech., 6, 3635–3648, https://doi.org/10.5194/amt-6-3635-2013, 2013. a, b
Xiao, R., Chandrasekar, V., and Liu, H.: Development of a neural network based algorithm for radar snowfall estimation, IEEE T. Geosci. Remote, 36, 716–724, https://doi.org/10.1109/36.673664, 1998. a
Yang, D.: Double Fence Intercomparison Reference (DFIR) vs. Bush
Gauge for “true” snowfall measurement, J. Hydrol., 509, 94–100, https://doi.org/10.1016/j.jhydrol.2013.08.052, 2014. a
Yu, T., Chandrasekar, V., Xiao, H., and Joshil, S. S.: Characteristics of
Snow Particle Size Distribution in the PyeongChang Region of
South Korea, Atmosphere, 11, 1093, https://doi.org/10.3390/atmos11101093, 2020. a
Short summary
Under warmer global temperatures, precipitation patterns are expected to shift substantially, with critical impact on the global water-energy budget. In this work, we develop a deep learning model for predicting snow and rain accumulation based on surface radar observations of the lower atmosphere. Our model demonstrates improved skill over traditional methods and provides new insights into the regions of the atmosphere that provide the most significant contributions to high model accuracy.
Under warmer global temperatures, precipitation patterns are expected to shift substantially,...