Articles | Volume 15, issue 20
https://doi.org/10.5194/amt-15-6035-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-6035-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
DeepPrecip: a deep neural network for precipitation retrievals
Dept. of Geography & Environmental Management, University of Waterloo, 200 University Ave W, Waterloo, Ontario, Canada
George Duffy
Jet Propulsion Laboratory, NASA, 4800 Oak Grove Dr, Pasadena, 91109, California, USA
Earth and Environmental Sciences, University of Syracuse, 900 South Crouse Ave, Syracuse, New York, USA
Lisa Milani
Goddard Space Flight Center, NASA, 8800 Greenbelt Rd, Greenbelt, Maryland, USA
Earth System Science Interdisciplinary Center, University of Maryland, 5825 University Research Ct suite 4001, College Park, Maryland, USA
Christopher G. Fletcher
Dept. of Geography & Environmental Management, University of Waterloo, 200 University Ave W, Waterloo, Ontario, Canada
Claire Pettersen
Climate and Space Sciences and Engineering, University of Michigan, Climate and Space Research Building, 2455 Hayward St, Ann Arbor, Michigan, USA
Kerstin Ebell
Institute for Geophysics and Meteorology, University of Cologne, Albertus-Magnus-Platz, Cologne, Germany
Related authors
Fraser King, Andre R. Erler, Steven K. Frey, and Christopher G. Fletcher
Hydrol. Earth Syst. Sci., 24, 4887–4902, https://doi.org/10.5194/hess-24-4887-2020, https://doi.org/10.5194/hess-24-4887-2020, 2020
Short summary
Short summary
Snow is a critical contributor to our water and energy budget, with impacts on flooding and water resource management. Measuring the amount of snow on the ground each year is an expensive and time-consuming task. Snow models and gridded products help to fill these gaps, yet there exist considerable uncertainties associated with their estimates. We demonstrate that machine learning techniques are able to reduce biases in these products to provide more realistic snow estimates across Ontario.
Sebastian Zeppenfeld, Jonas Schaefer, Christian Pilz, Kerstin Ebell, Moritz Zeising, Frank Stratmann, Holger Siebert, Birgit Wehner, Matthias Wietz, Astrid Bracher, and Manuela van Pinxteren
EGUsphere, https://doi.org/10.5194/egusphere-2025-4336, https://doi.org/10.5194/egusphere-2025-4336, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Aerosol particles from sea spray transport inorganic salts and carbohydrates from the ocean into the atmosphere. In this field study conducted in Svalbard, we found that carbohydrates reach elevated altitudes that are relevant for cloud formation and properties.
Kerstin Ebell, Christian Buhren, Rosa Gierens, Giovanni Chellini, Melanie Lauer, Andreas Walbröl, Sandro Dahlke, Pavel Krobot, and Mario Mech
Atmos. Chem. Phys., 25, 7315–7342, https://doi.org/10.5194/acp-25-7315-2025, https://doi.org/10.5194/acp-25-7315-2025, 2025
Short summary
Short summary
Ground-based observations of precipitation are rare in the Arctic. Since 2017, additional temporally highly resolved precipitation measurements have been carried out by a precipitation gauge and an optical precipitation sensor at Ny-Ålesund, Svalbard. These new data facilitate the distinction between liquid and solid precipitation. Using reanalysis data, we also find that water vapor transport contributes strongly to precipitation and especially to extreme precipitation events.
Denghui Ji, Mathias Palm, Matthias Buschmann, Kerstin Ebell, Marion Maturilli, Xiaoyu Sun, and Justus Notholt
Atmos. Chem. Phys., 25, 3889–3904, https://doi.org/10.5194/acp-25-3889-2025, https://doi.org/10.5194/acp-25-3889-2025, 2025
Short summary
Short summary
Our study explores how certain aerosols, like sea salt, affect infrared heat radiation in the Arctic, potentially speeding up warming. We used advanced technology to measure aerosol composition and found that these particles grow with humidity, significantly increasing their heat-trapping effect in the infrared region, especially in winter. Our findings suggest these aerosols could be a key factor in Arctic warming, emphasizing the importance of understanding aerosols for climate prediction.
Andreas Walbröl, Hannes J. Griesche, Mario Mech, Susanne Crewell, and Kerstin Ebell
Atmos. Meas. Tech., 17, 6223–6245, https://doi.org/10.5194/amt-17-6223-2024, https://doi.org/10.5194/amt-17-6223-2024, 2024
Short summary
Short summary
We developed retrievals of integrated water vapour (IWV), temperature profiles, and humidity profiles from ground-based passive microwave remote sensing measurements gathered during the MOSAiC expedition. We demonstrate and quantify the benefit of combining low- and high-frequency microwave radiometers to improve humidity profiling and IWV estimates by comparing the retrieved quantities to single-instrument retrievals and reference datasets (radiosondes).
Andreas Walbröl, Janosch Michaelis, Sebastian Becker, Henning Dorff, Kerstin Ebell, Irina Gorodetskaya, Bernd Heinold, Benjamin Kirbus, Melanie Lauer, Nina Maherndl, Marion Maturilli, Johanna Mayer, Hanno Müller, Roel A. J. Neggers, Fiona M. Paulus, Johannes Röttenbacher, Janna E. Rückert, Imke Schirmacher, Nils Slättberg, André Ehrlich, Manfred Wendisch, and Susanne Crewell
Atmos. Chem. Phys., 24, 8007–8029, https://doi.org/10.5194/acp-24-8007-2024, https://doi.org/10.5194/acp-24-8007-2024, 2024
Short summary
Short summary
To support the interpretation of the data collected during the HALO-(AC)3 campaign, which took place in the North Atlantic sector of the Arctic from 7 March to 12 April 2022, we analyze how unusual the weather and sea ice conditions were with respect to the long-term climatology. From observations and ERA5 reanalysis, we found record-breaking warm air intrusions and a large variety of marine cold air outbreaks. Sea ice concentration was mostly within the climatological interquartile range.
Giovanni Chellini, Rosa Gierens, Kerstin Ebell, Theresa Kiszler, Pavel Krobot, Alexander Myagkov, Vera Schemann, and Stefan Kneifel
Earth Syst. Sci. Data, 15, 5427–5448, https://doi.org/10.5194/essd-15-5427-2023, https://doi.org/10.5194/essd-15-5427-2023, 2023
Short summary
Short summary
We present a comprehensive quality-controlled dataset of remote sensing observations of low-level mixed-phase clouds (LLMPCs) taken at the high Arctic site of Ny-Ålesund, Svalbard, Norway. LLMPCs occur frequently in the Arctic region, and substantially warm the surface. However, our understanding of microphysical processes in these clouds is incomplete. This dataset includes a comprehensive set of variables which allow for extensive investigation of such processes in LLMPCs at the site.
Kameswara S. Vinjamuri, Marco Vountas, Luca Lelli, Martin Stengel, Matthew D. Shupe, Kerstin Ebell, and John P. Burrows
Atmos. Meas. Tech., 16, 2903–2918, https://doi.org/10.5194/amt-16-2903-2023, https://doi.org/10.5194/amt-16-2903-2023, 2023
Short summary
Short summary
Clouds play an important role in Arctic amplification. Cloud data from ground-based sites are valuable but cannot represent the whole Arctic. Therefore the use of satellite products is a measure to cover the entire Arctic. However, the quality of such cloud measurements from space is not well known. The paper discusses the differences and commonalities between satellite and ground-based measurements. We conclude that the satellite dataset, with a few exceptions, can be used in the Arctic.
Charles Nelson Helms, Stephen Joseph Munchak, Ali Tokay, and Claire Pettersen
Atmos. Meas. Tech., 15, 6545–6561, https://doi.org/10.5194/amt-15-6545-2022, https://doi.org/10.5194/amt-15-6545-2022, 2022
Short summary
Short summary
This study compares the techniques used to measure snowflake shape by three instruments: PIP, MASC, and 2DVD. Our findings indicate that the MASC technique produces reliable shape measurements; the 2DVD technique performs better than expected considering the instrument was designed to measure raindrops; and the PIP technique does not produce reliable snowflake shape measurements. We also demonstrate that the PIP images can be reprocessed to correct the shape measurement issues.
Giovanni Chellini and Kerstin Ebell
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-22, https://doi.org/10.5194/amt-2022-22, 2022
Preprint withdrawn
Short summary
Short summary
Moisture inversions (MIs), i.e. atmospheric layers where specific humidity increases with height, are frequent in the Arctic. This study assesses the capability of two satellite instruments, IASI and AIRS, and one reanalysis, ERA5, to detect MIs at an Arctic site. The comparison with radiosonde data shows that humidity profiles from IASI and AIRS severely underestimate the occurrence of MIs. On the other hand, MI characteristics in ERA5 are comparable to those in the radiosonde data.
Hélène Bresson, Annette Rinke, Mario Mech, Daniel Reinert, Vera Schemann, Kerstin Ebell, Marion Maturilli, Carolina Viceto, Irina Gorodetskaya, and Susanne Crewell
Atmos. Chem. Phys., 22, 173–196, https://doi.org/10.5194/acp-22-173-2022, https://doi.org/10.5194/acp-22-173-2022, 2022
Short summary
Short summary
Arctic warming is pronounced, and one factor in this is the poleward atmospheric transport of heat and moisture. This study assesses the 4D structure of an Arctic moisture intrusion event which occurred in June 2017. For the first time, high-resolution pan-Arctic ICON simulations are performed and compared with global models, reanalysis, and observations. Results show the added value of high resolution in the event representation and the impact of the intrusion on the surface energy fluxes.
Heather Guy, Ian M. Brooks, Ken S. Carslaw, Benjamin J. Murray, Von P. Walden, Matthew D. Shupe, Claire Pettersen, David D. Turner, Christopher J. Cox, William D. Neff, Ralf Bennartz, and Ryan R. Neely III
Atmos. Chem. Phys., 21, 15351–15374, https://doi.org/10.5194/acp-21-15351-2021, https://doi.org/10.5194/acp-21-15351-2021, 2021
Short summary
Short summary
We present the first full year of surface aerosol number concentration measurements from the central Greenland Ice Sheet. Aerosol concentrations here have a distinct seasonal cycle from those at lower-altitude Arctic sites, which is driven by large-scale atmospheric circulation. Our results can be used to help understand the role aerosols might play in Greenland surface melt through the modification of cloud properties. This is crucial in a rapidly changing region where observations are sparse.
Susanne Crewell, Kerstin Ebell, Patrick Konjari, Mario Mech, Tatiana Nomokonova, Ana Radovan, David Strack, Arantxa M. Triana-Gómez, Stefan Noël, Raul Scarlat, Gunnar Spreen, Marion Maturilli, Annette Rinke, Irina Gorodetskaya, Carolina Viceto, Thomas August, and Marc Schröder
Atmos. Meas. Tech., 14, 4829–4856, https://doi.org/10.5194/amt-14-4829-2021, https://doi.org/10.5194/amt-14-4829-2021, 2021
Short summary
Short summary
Water vapor (WV) is an important variable in the climate system. Satellite measurements are thus crucial to characterize the spatial and temporal variability in WV and how it changed over time. In particular with respect to the observed strong Arctic warming, the role of WV still needs to be better understood. However, as shown in this paper, a detailed understanding is still hampered by large uncertainties in the various satellite WV products, showing the need for improved methods to derive WV.
Linn Karlsson, Radovan Krejci, Makoto Koike, Kerstin Ebell, and Paul Zieger
Atmos. Chem. Phys., 21, 8933–8959, https://doi.org/10.5194/acp-21-8933-2021, https://doi.org/10.5194/acp-21-8933-2021, 2021
Short summary
Short summary
Aerosol–cloud interactions in the Arctic are poorly understood largely due to a lack of observational data. We present the first direct, long-term measurements of cloud residuals, i.e. the particles that remain when cloud droplets and ice crystals are dried. These detailed observations of cloud residuals cover more than 2 years, which is unique for the Arctic and globally. This work studies the size distributions of cloud residuals, their seasonality, and dependence on meteorology.
Elin A. McIlhattan, Claire Pettersen, Norman B. Wood, and Tristan S. L'Ecuyer
The Cryosphere, 14, 4379–4404, https://doi.org/10.5194/tc-14-4379-2020, https://doi.org/10.5194/tc-14-4379-2020, 2020
Short summary
Short summary
Snowfall builds the mass of the Greenland Ice Sheet (GrIS) and reduces melt by brightening the surface. We present satellite observations of GrIS snowfall events divided into two regimes: those coincident with ice clouds and those coincident with mixed-phase clouds. Snowfall from ice clouds plays the dominant role in building the GrIS, producing ~ 80 % of total accumulation. The two regimes have similar snowfall frequency in summer, brightening the surface when solar insolation is at its peak.
Fraser King, Andre R. Erler, Steven K. Frey, and Christopher G. Fletcher
Hydrol. Earth Syst. Sci., 24, 4887–4902, https://doi.org/10.5194/hess-24-4887-2020, https://doi.org/10.5194/hess-24-4887-2020, 2020
Short summary
Short summary
Snow is a critical contributor to our water and energy budget, with impacts on flooding and water resource management. Measuring the amount of snow on the ground each year is an expensive and time-consuming task. Snow models and gridded products help to fill these gaps, yet there exist considerable uncertainties associated with their estimates. We demonstrate that machine learning techniques are able to reduce biases in these products to provide more realistic snow estimates across Ontario.
Cited articles
Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., and Inman, D. J.: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks, J. Sound Vib., 388, 154–170, https://doi.org/10.1016/j.jsv.2016.10.043, 2017. a
Adhikari, A., Ehsani, M. R., Song, Y., and Behrangi, A.: Comparative
Assessment of Snowfall Retrieval From Microwave Humidity
Sounders Using Machine Learning Methods, Earth and Space Science,
7, e2020EA001357, https://doi.org/10.1029/2020EA001357, 2020. a
Bennartz, R., Fell, F., Pettersen, C., Shupe, M. D., and Schuettemeyer, D.: Spatial and temporal variability of snowfall over Greenland from CloudSat observations, Atmos. Chem. Phys., 19, 8101–8121, https://doi.org/10.5194/acp-19-8101-2019, 2019. a
Boudala, F. S., Gultepe, I., and Milbrandt, J. A.: The Performance of Commonly Used Surface-Based Instruments for Measuring Visibility, Cloud Ceiling, and Humidity at Cold Lake, Alberta,
Remote Sens., 13, 5058, https://doi.org/10.3390/rs13245058, 2021. a
Buttle, J. M., Allen, D. M., Caissie, D., Davison, B., Hayashi, M., Peters, D. L., Pomeroy, J. W., Simonovic, S., St-Hilaire, A., and Whitfield, P. H.: Flood processes in Canada: Regional and special aspects, Can. Water Resour. J., 41, 7–30, https://doi.org/10.1080/07011784.2015.1131629, 2016. a
Chen, H., Chandrasekar, V., Cifelli, R., and Xie, P.: A Machine Learning
System for Precipitation Estimation Using Satellite and Ground
Radar Network Observations, IEEE T. Geosci. Remote, 58, 982–994, https://doi.org/10.1109/TGRS.2019.2942280, 2020. a
Chen, L., Cao, Y., Ma, L., and Zhang, J.: A Deep Learning-Based
Methodology for Precipitation Nowcasting With Radar, Earth and
Space Science, 7, e2019EA000812, https://doi.org/10.1029/2019EA000812, 2020. a
Choubin, B., Khalighi-Sigaroodi, S., and Malekian, A.: Multiple linear regression, multi-layer perceptron network and adaptive neuro-fuzzy inference
system for forecasting precipitation based on large-scale climate signals,
Hydrolog. Sci. J., 61, 1001–1009, https://doi.org/10.1080/02626667.2014.966721, 2016. a
Colli, M., Lanza, L. G., La Barbera, P., and Chan, P. W.: Measurement accuracy of weighing and tipping-bucket rainfall intensity gauges under dynamic laboratory testing, Atmos. Res., 144, 186–194,
https://doi.org/10.1016/j.atmosres.2013.08.007, 2014. a, b
Ehsani, M. R. and Behrangi, A.: A comparison of correction factors for the systematic gauge-measurement errors to improve the global land precipitation
estimate, J. Hydrol., 610, 127884,
https://doi.org/10.1016/j.jhydrol.2022.127884, 2022. a
Ehsani, M. R., Behrangi, A., Adhikari, A., Song, Y., Huffman, G. J., Adler, R. F., Bolvin, D. T., and Nelkin, E. J.: Assessment of the Advanced Very
High Resolution Radiometer (AVHRR) for Snowfall Retrieval in
High Latitudes Using CloudSat and Machine Learning, J.
Hydrometeorol., 22, 1591–1608, https://doi.org/10.1175/JHM-D-20-0240.1, 2021. a
Gergel, D. R., Nijssen, B., Abatzoglou, J. T., Lettenmaier, D. P., and Stumbaugh, M. R.: Effects of climate change on snowpack and fire potential in
the western USA, Climatic Change, 141, 287–299,
https://doi.org/10.1007/s10584-017-1899-y, 2017. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Muaoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Halm, E., Janiskova, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thacpaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hiley, M. J., Kulie, M. S., and Bennartz, R.: Uncertainty Analysis for
CloudSat Snowfall Retrievals, J. Appl. Meteorol. Clim., 50, 399–418, https://doi.org/10.1175/2010JAMC2505.1, 2010. a, b
Houze, R. A., McMurdie, L. A., Petersen, W. A., Schwaller, M. R., Baccus, W.,
Lundquist, J. D., Mass, C. F., Nijssen, B., Rutledge, S. A., Hudak, D. R.,
Tanelli, S., Mace, G. G., Poellot, M. R., Lettenmaier, D. P., Zagrodnik,
J. P., Rowe, A. K., DeHart, J. C., Madaus, L. E., Barnes, H. C., and
Chandrasekar, V.: The Olympic Mountains Experiment (OLYMPEX),
B. Am. Meteorol. Soc., 98, 2167–2188,
https://doi.org/10.1175/BAMS-D-16-0182.1, 2017. a, b, c
Jakubovitz, D., Giryes, R., and Rodrigues, M. R. D.: Generalization Error in Deep Learning, in: Compressed Sensing and Its Applications: Third International MATHEON Conference 2017, 4–8 December 2017, Berlin, Germany, edited by: Boche, H., Caire, G., Calderbank, R., Kutyniok, G., Mathar, R., and Petersen, P., Springer International Publishing, Cham, 153–193, https://www3.math.tu-berlin.de/numerik/csa2017/index.html (last access: 10 July 2022), 2019. a
Jameson, A. R. and Kostinski, A. B.: Spurious power-law relations among rainfall and radar parameters, Q. J. Roy. Meteor. Soc., 128, 2045–2058, https://doi.org/10.1256/003590002320603520, 2002. a, b
Jash, D., Resmi, E. A., Unnikrishnan, C. K., Sumesh, R. K., Sreekanth, T. S.,
Sukumar, N., and Ramachandran, K. K.: Variation in rain drop size
distribution and rain integral parameters during southwest monsoon over a
tropical station: An inter-comparison of disdrometer and Micro Rain
Radar, Atmos. Res., 217, 24–36, https://doi.org/10.1016/j.atmosres.2018.10.014, 2019. a, b, c
Jennings, K. S., Winchell, T. S., Livneh, B., and Molotch, N. P.: Spatial
variation of the rain–snow temperature threshold across the Northern
Hemisphere, Nat. Commun., 9, 1148, https://doi.org/10.1038/s41467-018-03629-7, 2018. a
Jia, R., Dao, D., Wang, B., Hubis, F. A., Hynes, N., Gurel, N. M., Li, B.,
Zhang, C., Song, D., and Spanos, C.: Towards Efficient Data Valuation
Based on the Shapley Value, arXiv [preprint], https://doi.org/10.48550/arXiv.1902.10275, 17 August 2020. a
Kim, H.-U. and Bae, T.-S.: Preliminary Study of Deep Learning-based Precipitation, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 35, 423–430, https://doi.org/10.7848/ksgpc.2017.35.5.423, 2017. a
Kim, K., Bang, W., Chang, E.-C., Tapiador, F. J., Tsai, C.-L., Jung, E., and Lee, G.: Impact of wind pattern and complex topography on snow microphysics during International Collaborative Experiment for PyeongChang 2018 Olympic and Paralympic winter games (ICE-POP 2018), Atmos. Chem. Phys., 21, 11955–11978, https://doi.org/10.5194/acp-21-11955-2021, 2021. a
King, F.: frasertheking/DeepPrecip: Full Release (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.7221133, 2022a. a
King, F.: DeepPrecip Training Data, Zenodo [data set], https://doi.org/10.5281/zenodo.5976046, 2022b. a
King, F., Duffy, G., and Fletcher, C. G.: A Centimeter Wavelength
Snowfall Retrieval Algorithm Using Machine Learning, J.
Appl. Meteorol. Clim., 61, 1029–1039, https://doi.org/10.1175/JAMC-D-22-0036.1, 2022. a
Kochendorfer, J., Nitu, R., Wolff, M., Mekis, E., Rasmussen, R., Baker, B., Earle, M. E., Reverdin, A., Wong, K., Smith, C. D., Yang, D., Roulet, Y.-A., Buisan, S., Laine, T., Lee, G., Aceituno, J. L. C., Alastrué, J., Isaksen, K., Meyers, T., Brækkan, R., Landolt, S., Jachcik, A., and Poikonen, A.: Analysis of single-Alter-shielded and unshielded measurements of mixed and solid precipitation from WMO-SPICE, Hydrol. Earth Syst. Sci., 21, 3525–3542, https://doi.org/10.5194/hess-21-3525-2017, 2017. a
Kochendorfer, J., Earle, M., Rasmussen, R., Smith, C., Yang, D., Morin, S.,
Mekis, E., Buisan, S., Roulet, Y.-A., Landolt, S., Wolff, M., Hoover, J.,
Thériault, J. M., Lee, G., Baker, B., Nitu, R., Lanza, L., Colli, M., and
Meyers, T.: How Well Are We Measuring Snow Post-SPICE?,
B. Am. Meteorol. Soc., 103, E370–E388,
https://doi.org/10.1175/BAMS-D-20-0228.1, 2022. a, b, c, d
Kulie, M. S. and Bennartz, R.: Utilizing Spaceborne Radars to Retrieve
Dry Snowfall, J. Appl. Meteorol. Clim., 48, 2564–2580, https://doi.org/10.1175/2009JAMC2193.1, 2009. a, b, c, d
Kulie, M. S., Pettersen, C., Merrelli, A. J., Wagner, T. J., Wood, N. B., Dutter, M., Beachler, D., Kluber, T., Turner, R., Mateling, M., Lenters, J.,
Blanken, P., Maahn, M., Spence, C., Kneifel, S., Kucera, P. A., Tokay, A.,
Bliven, L. F., Wolff, D. B., and Petersen, W. A.: Snowfall in the Northern Great Lakes: Lessons Learned from a Multisensor Observatory, B. Am. Meteorol. Soc., 102, E1317–E1339,
https://doi.org/10.1175/BAMS-D-19-0128.1, 2021. a
Lahnert, U., Schween, J. H., Acquistapace, C., Ebell, K., Maahn, M., Barrera-Verdejo, M., Hirsikko, A., Bohn, B., Knaps, A., OConnor, E., Simmer, C., Wahner, A., and Crewell, S.: JOYCE: Jaelich Observatory for Cloud
Evolution, B. Am. Meteorol. Soc., 96, 1157–1174,
https://doi.org/10.1175/BAMS-D-14-00105.1, 2015. a
Lemonnier, F., Madeleine, J.-B., Claud, C., Genthon, C., Durán-Alarcón, C., Palerme, C., Berne, A., Souverijns, N., van Lipzig, N., Gorodetskaya, I. V., L'Ecuyer, T., and Wood, N.: Evaluation of CloudSat snowfall rate profiles by a comparison with in situ micro-rain radar observations in East Antarctica, The Cryosphere, 13, 943–954, https://doi.org/10.5194/tc-13-943-2019, 2019. a
Levizzani, V., Laviola, S., and Cattani, E.: Detection and Measurement of
Snowfall from Space, Remote Sens., 3, 145–166,
https://doi.org/10.3390/rs3010145,2011. a, b
Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A.: Hyperband: a novel bandit-based approach to hyperparameter optimization, J. Mach. Learn. Res., 18, 6765–6816, 2017. a
Li, L., Qiao, J., Yu, G., Wang, L., Li, H., Liao, C., and Zhu, Z.:
Interpretable tree-based ensemble model for predicting beach water quality,
Water Res., 211, 118078, https://doi.org/10.1016/j.watres.2022.118078, 2022. a
Liu, G.: Deriving snow cloud characteristics from CloudSat observations,
J. Geophys. Res.-Atmos., 113, D00A09, https://doi.org/10.1029/2007JD009766, 2008. a, b
Louw, T. and McIntosh-Smith, S.: Using the Graphcore IPU for Traditional HPC Applications, AccML, 4896, EasyChair, https://easychair.org/publications/preprint/ztfj (last access: 10 June 2022), 2021. a
Lundberg, S. M. and Lee, S.-I.: A unified approach to interpreting model
predictions, in: Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS'17, 4–9 December 2017, Long Beach, California, USA, Curran Associates Inc., Red Hook, NY, USA, 4768–4777, ISBN 978-1-5108-6096-4, 2017. a, b
Maahn, M. and Kollias, P.: Improved Micro Rain Radar snow measurements using Doppler spectra post-processing, Atmos. Meas. Tech., 5, 2661–2673, https://doi.org/10.5194/amt-5-2661-2012, 2012. a
Maahn, M., Burgard, C., Crewell, S., Gorodetskaya, I. V., Kneifel, S.,
Lhermitte, S., Van Tricht, K., and van Lipzig, N. P. M.: How does the
spaceborne radar blind zone affect derived surface snowfall statistics in
polar regions?, J. Geophys. Res.-Atmos., 119, 13604–13620, https://doi.org/10.1002/2014JD022079, 2014. a
Marshall, J. S. and Palmer, W. M. K.: The Distribution Of Raindrops
With Size, J. Atmos. Sci., 5, 165–166,
https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2, 1948. a
Matrosov, S. Y.: Modeling Backscatter Properties of Snowfall at
Millimeter Wavelengths, J. Atmos. Sci., 64, 1727–1736, https://doi.org/10.1175/JAS3904.1, 2007. a
Matrosov, S. Y., Shupe, M. D., and Djalalova, I. V.: Snowfall Retrievals
Using Millimeter-Wavelength Cloud Radars, J. Appl. Meteorol. Clim., 47, 769–777, https://doi.org/10.1175/2007JAMC1768.1, 2008. a, b
Maxwell, A. and Shobe, C.: Land-surface parameters for spatial predictive
mapping and modeling, Earth-Sci. Rev., 226, 103944,
https://doi.org/10.1016/j.earscirev.2022.103944, 2022. a
Munchak, S. J., Schrom, R. S., Helms, C. N., and Tokay, A.: Snow microphysical retrieval from the NASA D3R radar during ICE-POP 2018, Atmos. Meas. Tech., 15, 1439–1464, https://doi.org/10.5194/amt-15-1439-2022, 2022. a
Pettersen, C., Kulie, M. S., Bliven, L. F., Merrelli, A. J., Petersen, W. A., Wagner, T. J., Wolff, D. B., and Wood, N. B.: A Composite Analysis of Snowfall Modes from Four Winter Seasons in Marquette, Michigan,
J. Appl. Meteorol. Clim., 59, 103–124, https://doi.org/10.1175/JAMC-D-19-0099.1, 2020. a
Quirita, V. A. A., da Costa, G. A. O. P., Happ, P. N., Feitosa, R. Q.,
Ferreira, R. d. S., Oliveira, D. A. B., and Plaza, A.: A New Cloud
Computing Architecture for the Classification of Remote Sensing
Data, IEEE J. Sel. Top. Appl., 10, 409–416, https://doi.org/10.1109/JSTARS.2016.2603120, 2017. a
Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A. P., Black, J., Thériault, J. M., Kucera, P., Gochis, D., Smith, C., Nitu,
R., Hall, M., Ikeda, K., and Gutmann, E.: How Well Are We Measuring
Snow: The NOAA/FAA/NCAR Winter Precipitation Test Bed,
B. Am. Meteorol. Soc., 93, 811–829, https://doi.org/10.1175/BAMS-D-11-00052.1, 2012. a, b
Schoger, S. Y., Moisseev, D., Lerber, A. V., Crewell, S., and Ebell, K.:
Snowfall-Rate Retrieval for K- and W-Band Radar Measurements
Designed in Hyyti, Finland, and Tested at Ny-Alesund, Svalbard,
Norway, J. Appl. Meteorol. Clim., 60, 273–289,
https://doi.org/10.1175/JAMC-D-20-0095.1, 2021. a, b, c, d
Shi, X., Gao, Z., Lausen, L., Wang, H., Yeung, D.-Y., Wong, W.-K., and Woo,
W.-C.: Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model, NeurIPS, arXiv [preprint], https://doi.org/10.48550/arXiv.1706.03458, 12 June 2017. a
Sims, E. M. and Liu, G.: A Parameterization of the Probability of
Snow–Rain Transition, J. Hydrometeorol., 16, 1466–1477,
https://doi.org/10.1175/JHM-D-14-0211.1, 2015. a
Skofronick-Jackson, G., Hudak, D., Petersen, W., Nesbitt, S. W., Chandrasekar, V., Durden, S., Gleicher, K. J., Huang, G.-J., Joe, P., Kollias, P., Reed, K. A., Schwaller, M. R., Stewart, R., Tanelli, S., Tokay, A., Wang, J. R., and Wolde, M.: Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEX): For Measurement Sake Let It Snow, B. Am. Meteorol. Soc., 96, 1719–1741, https://doi.org/10.1175/BAMS-D-13-00262.1, 2015. a, b
Skofronick-Jackson, G., Petersen, W. A., Berg, W., Kidd, C., Stocker, E. F.,
Kirschbaum, D. B., Kakar, R., Braun, S. A., Huffman, G. J., Iguchi, T.,
Kirstetter, P. E., Kummerow, C., Meneghini, R., Oki, R., Olson, W. S.,
Takayabu, Y. N., Furukawa, K., and Wilheit, T.: The Global Precipitation Measurement (GPM) Mission for Science and Society, B. Am. Meteorol. Soc., 98, 1679–1695,
https://doi.org/10.1175/BAMS-D-15-00306.1, 2017. a
Souverijns, N., Gossart, A., Lhermitte, S., Gorodetskaya, I. V., Kneifel, S.,
Maahn, M., Bliven, F. L., and van Lipzig, N. P. M.: Estimating radar
reflectivity – Snowfall rate relationships and their uncertainties over
Antarctica by combining disdrometer and radar observations, Atmos.
Res., 196, 211–223, https://doi.org/10.1016/j.atmosres.2017.06.001, 2017. a
Stephens, G. L., Vane, D. G., Tanelli, S., Im, E., Durden, S., Rokey, M.,
Reinke, D., Partain, P., Mace, G. G., Austin, R., L'Ecuyer, T., Haynes, J.,
Lebsock, M., Suzuki, K., Waliser, D., Wu, D., Kay, J., Gettelman, A., Wang,
Z., and Marchand, R.: CloudSat mission: Performance and early science
after the first year of operation, J. Geophys. Res.-Atmos., 113, D00A18, https://doi.org/10.1029/2008JD009982, 2008. a, b
Van Baelen, J., Tridon, F., and Pointin, Y.: Simultaneous X-band and K-band study of precipitation to derive specific ZR relationships, Atmos. Res., 94, 596–605, https://doi.org/10.1016/j.atmosres.2009.04.003, 2009.
a, b
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng,
Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors:
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,
Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Wood, N. B., L'Ecuyer, T. S., Bliven, F. L., and Stephens, G. L.: Characterization of video disdrometer uncertainties and impacts on estimates of snowfall rate and radar reflectivity, Atmos. Meas. Tech., 6, 3635–3648, https://doi.org/10.5194/amt-6-3635-2013, 2013. a, b
Xiao, R., Chandrasekar, V., and Liu, H.: Development of a neural network based algorithm for radar snowfall estimation, IEEE T. Geosci. Remote, 36, 716–724, https://doi.org/10.1109/36.673664, 1998. a
Yang, D.: Double Fence Intercomparison Reference (DFIR) vs. Bush
Gauge for “true” snowfall measurement, J. Hydrol., 509, 94–100, https://doi.org/10.1016/j.jhydrol.2013.08.052, 2014. a
Yu, T., Chandrasekar, V., Xiao, H., and Joshil, S. S.: Characteristics of
Snow Particle Size Distribution in the PyeongChang Region of
South Korea, Atmosphere, 11, 1093, https://doi.org/10.3390/atmos11101093, 2020. a
Short summary
Under warmer global temperatures, precipitation patterns are expected to shift substantially, with critical impact on the global water-energy budget. In this work, we develop a deep learning model for predicting snow and rain accumulation based on surface radar observations of the lower atmosphere. Our model demonstrates improved skill over traditional methods and provides new insights into the regions of the atmosphere that provide the most significant contributions to high model accuracy.
Under warmer global temperatures, precipitation patterns are expected to shift substantially,...