Articles | Volume 15, issue 24
Research article
22 Dec 2022
Research article |  | 22 Dec 2022

Improving continuous-flow analysis of triple oxygen isotopes in ice cores: insights from replicate measurements

Lindsey Davidge, Eric J. Steig, and Andrew J. Schauer

Related authors

Characterization of in situ cosmogenic 14CO production, retention and loss in firn and shallow ice at Summit, Greenland
Benjamin Hmiel, Vasilii V. Petrenko, Christo Buizert, Andrew M. Smith, Michael N. Dyonisius, Philip Place, Bin Yang, Quan Hua, Ross Beaudette, Jeffrey P. Severinghaus, Christina Harth, Ray F. Weiss, Lindsey Davidge, Melisa Diaz, Matthew Pacicco, James A. Menking, Michael Kalk, Xavier Faïn, Alden Adolph, Isaac Vimont, and Lee T. Murray
The Cryosphere Discuss.,,, 2023
Preprint under review for TC
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Laboratory Measurement | Topic: Instruments and Platforms
Measuring diameters and velocities of artificial raindrops with a neuromorphic event camera
Kire Micev, Jan Steiner, Asude Aydin, Jörg Rieckermann, and Tobi Delbruck
Atmos. Meas. Tech., 17, 335–357,,, 2024
Short summary
Optimization of a Picarro L2140-i cavity ring-down spectrometer for routine measurement of triple oxygen isotope ratios in meteoric waters
Jack A. Hutchings and Bronwen L. Konecky
Atmos. Meas. Tech., 16, 1663–1682,,, 2023
Short summary
Contactless optical hygrometry in LACIS-T
Jakub L. Nowak, Robert Grosz, Wiebke Frey, Dennis Niedermeier, Jędrzej Mijas, Szymon P. Malinowski, Linda Ort, Silvio Schmalfuß, Frank Stratmann, Jens Voigtländer, and Tadeusz Stacewicz
Atmos. Meas. Tech., 15, 4075–4089,,, 2022
Short summary
Laboratory characterisation and intercomparison sounding test of dual thermistor radiosondes for radiation correction
Sang-Wook Lee, Sunghun Kim, Young-Suk Lee, Jae-Keun Yoo, Sungjun Lee, Suyong Kwon, Byung Il Choi, Jaewon So, and Yong-Gyoo Kim
Atmos. Meas. Tech., 15, 2531–2545,,, 2022
Short summary
Radiation correction and uncertainty evaluation of RS41 temperature sensors by using an upper-air simulator
Sang-Wook Lee, Sunghun Kim, Young-Suk Lee, Byung Il Choi, Woong Kang, Youn Kyun Oh, Seongchong Park, Jae-Keun Yoo, Joohyun Lee, Sungjun Lee, Suyong Kwon, and Yong-Gyoo Kim
Atmos. Meas. Tech., 15, 1107–1121,,, 2022
Short summary

Cited articles

Allan, D.: Statistics of atomic frequency standards, Proc. IEEE, 52, 221–230,, 1966. 
Angert, A., Cappa, C. D., and DePaolo, D. J.: Kinetic 17O effects in the hydrologic cycle: Indirect evidence and implications, Geochim. Cosmochim. Ac., 68 , 3487–3495,, 2004. 
Aron, P. G., Levin, N. E., Beverly, E. J., Huth, T. E., Passey, B. H., Pelletier, E. M., Poulsen, C. J., Winkelstern, I. Z., and Yarian, D. A.: Triple oxygen isotopes in the water cycle, Chem. Geol., 565, 120026,, 2021. 
Barkan, E. and Luz, B.: High precision measurements of 17O /16O and 18O /16O ratios in H2O, Rapid Commun. Mass Spectrom., 19, 3737–3742,, 2005. 
Barkan, E. and Luz, B.: Diffusivity fractionations of H216O/H217O and H216O / H218O in air and their implications for isotope hydrology, Rapid Commun. Mass Spectrom., 21, 2999–3005,, 2007. 
Short summary
We describe a continuous-flow analysis (CFA) method to measure Δ17O by laser spectroscopy, and we show that centimeter-scale information can be measured reliably in ice cores by this method. We present seasonally resolved Δ17O data from Greenland and demonstrate that the measurement precision is not reduced by the CFA process. Our results encourage the development and use of CFA methods for Δ17O, and they identify calibration strategies as a target for method improvement.