Articles | Volume 15, issue 24
https://doi.org/10.5194/amt-15-7337-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-7337-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improving continuous-flow analysis of triple oxygen isotopes in ice cores: insights from replicate measurements
Department of Earth and Space Sciences, University of Washington,
Seattle, WA 98195, USA
Eric J. Steig
Department of Earth and Space Sciences, University of Washington,
Seattle, WA 98195, USA
Andrew J. Schauer
Department of Earth and Space Sciences, University of Washington,
Seattle, WA 98195, USA
Related authors
Benjamin Hmiel, Vasilii V. Petrenko, Christo Buizert, Andrew M. Smith, Michael N. Dyonisius, Philip Place, Bin Yang, Quan Hua, Ross Beaudette, Jeffrey P. Severinghaus, Christina Harth, Ray F. Weiss, Lindsey Davidge, Melisa Diaz, Matthew Pacicco, James A. Menking, Michael Kalk, Xavier Faïn, Alden Adolph, Isaac Vimont, and Lee T. Murray
The Cryosphere, 18, 3363–3382, https://doi.org/10.5194/tc-18-3363-2024, https://doi.org/10.5194/tc-18-3363-2024, 2024
Short summary
Short summary
The main aim of this research is to improve understanding of carbon-14 that is produced by cosmic rays in ice sheets. Measurements of carbon-14 in ice cores can provide a range of useful information (age of ice, past atmospheric chemistry, past cosmic ray intensity). Our results show that almost all (>99 %) of carbon-14 that is produced in the upper layer of ice sheets is rapidly lost to the atmosphere. Our results also provide better estimates of carbon-14 production rates in deeper ice.
Benjamin Hmiel, Vasilii V. Petrenko, Christo Buizert, Andrew M. Smith, Michael N. Dyonisius, Philip Place, Bin Yang, Quan Hua, Ross Beaudette, Jeffrey P. Severinghaus, Christina Harth, Ray F. Weiss, Lindsey Davidge, Melisa Diaz, Matthew Pacicco, James A. Menking, Michael Kalk, Xavier Faïn, Alden Adolph, Isaac Vimont, and Lee T. Murray
The Cryosphere, 18, 3363–3382, https://doi.org/10.5194/tc-18-3363-2024, https://doi.org/10.5194/tc-18-3363-2024, 2024
Short summary
Short summary
The main aim of this research is to improve understanding of carbon-14 that is produced by cosmic rays in ice sheets. Measurements of carbon-14 in ice cores can provide a range of useful information (age of ice, past atmospheric chemistry, past cosmic ray intensity). Our results show that almost all (>99 %) of carbon-14 that is produced in the upper layer of ice sheets is rapidly lost to the atmosphere. Our results also provide better estimates of carbon-14 production rates in deeper ice.
Mira Berdahl, Gunter R. Leguy, William H. Lipscomb, Bette L. Otto-Bliesner, Esther C. Brady, Robert A. Tomas, Nathan M. Urban, Ian Miller, Harriet Morgan, and Eric J. Steig
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-19, https://doi.org/10.5194/cp-2024-19, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Studying climate conditions near the Antarctic ice sheet (AIS) during Earth’s past warm periods informs us about how global warming may influence AIS ice loss. Using a global climate model, we investigate climate conditions near the AIS during the Last Interglacial (129 to 116 kyr ago), a period with warmer global temperatures and higher sea level than today. We identify the orbital and freshwater forcings that could cause ice loss and probe the mechanisms that lead to warmer climate conditions.
Gemma K. O'Connor, Paul R. Holland, Eric J. Steig, Pierre Dutrieux, and Gregory J. Hakim
The Cryosphere, 17, 4399–4420, https://doi.org/10.5194/tc-17-4399-2023, https://doi.org/10.5194/tc-17-4399-2023, 2023
Short summary
Short summary
Glaciers in West Antarctica are rapidly melting, but the causes are unknown due to limited observations. A leading hypothesis is that an unusually large wind event in the 1940s initiated the ocean-driven melting. Using proxy reconstructions (e.g., using ice cores) and climate model simulations, we find that wind events similar to the 1940s event are relatively common on millennial timescales, implying that ocean variability or climate trends are also necessary to explain the start of ice loss.
Paul R. Holland, Gemma K. O'Connor, Thomas J. Bracegirdle, Pierre Dutrieux, Kaitlin A. Naughten, Eric J. Steig, David P. Schneider, Adrian Jenkins, and James A. Smith
The Cryosphere, 16, 5085–5105, https://doi.org/10.5194/tc-16-5085-2022, https://doi.org/10.5194/tc-16-5085-2022, 2022
Short summary
Short summary
The Antarctic Ice Sheet is losing ice, causing sea-level rise. However, it is not known whether human-induced climate change has contributed to this ice loss. In this study, we use evidence from climate models and palaeoclimate measurements (e.g. ice cores) to suggest that the ice loss was triggered by natural climate variations but is now sustained by human-forced climate change. This implies that future greenhouse-gas emissions may influence sea-level rise from Antarctica.
Bradley R. Markle and Eric J. Steig
Clim. Past, 18, 1321–1368, https://doi.org/10.5194/cp-18-1321-2022, https://doi.org/10.5194/cp-18-1321-2022, 2022
Short summary
Short summary
The geochemistry preserved in polar ice can provide detailed histories of Earth’s climate over millennia. Here we use the stable isotope ratios of ice from many Antarctic ice cores to reconstruct temperature variability of Antarctica and the midlatitude Southern Hemisphere over tens of thousands of years. We improve upon existing methods to estimate temperature from the geochemical measurements and investigate the patterns of climate change in the past.
Jenna A. Epifanio, Edward J. Brook, Christo Buizert, Jon S. Edwards, Todd A. Sowers, Emma C. Kahle, Jeffrey P. Severinghaus, Eric J. Steig, Dominic A. Winski, Erich C. Osterberg, Tyler J. Fudge, Murat Aydin, Ekaterina Hood, Michael Kalk, Karl J. Kreutz, David G. Ferris, and Joshua A. Kennedy
Clim. Past, 16, 2431–2444, https://doi.org/10.5194/cp-16-2431-2020, https://doi.org/10.5194/cp-16-2431-2020, 2020
Short summary
Short summary
A new ice core drilled at the South Pole provides a 54 000-year paleo-environmental record including the composition of the past atmosphere. This paper describes the gas chronology for the South Pole ice core, based on a high-resolution methane record. The new gas chronology, in combination with the existing ice age scale from Winski et al. (2019), allows a model-independent reconstruction of the delta age record.
Jessica A. Badgeley, Eric J. Steig, Gregory J. Hakim, and Tyler J. Fudge
Clim. Past, 16, 1325–1346, https://doi.org/10.5194/cp-16-1325-2020, https://doi.org/10.5194/cp-16-1325-2020, 2020
Tyler J. Fudge, David A. Lilien, Michelle Koutnik, Howard Conway, C. Max Stevens, Edwin D. Waddington, Eric J. Steig, Andrew J. Schauer, and Nicholas Holschuh
Clim. Past, 16, 819–832, https://doi.org/10.5194/cp-16-819-2020, https://doi.org/10.5194/cp-16-819-2020, 2020
Short summary
Short summary
A 1750 m ice core at the South Pole was recently drilled. The oldest ice is ~55 000 years old. Since ice at the South Pole flows at 10 m per year, the ice in the core originated upstream, where the climate is different. We made measurements of the ice flow, snow accumulation, and temperature upstream. We determined the ice came from ~150 km away near the Titan Dome where the accumulation rate was similar but the temperature was colder. Our measurements improve the interpretation of the ice core.
Dominic A. Winski, Tyler J. Fudge, David G. Ferris, Erich C. Osterberg, John M. Fegyveresi, Jihong Cole-Dai, Zayta Thundercloud, Thomas S. Cox, Karl J. Kreutz, Nikolas Ortman, Christo Buizert, Jenna Epifanio, Edward J. Brook, Ross Beaudette, Jeffrey Severinghaus, Todd Sowers, Eric J. Steig, Emma C. Kahle, Tyler R. Jones, Valerie Morris, Murat Aydin, Melinda R. Nicewonger, Kimberly A. Casey, Richard B. Alley, Edwin D. Waddington, Nels A. Iverson, Nelia W. Dunbar, Ryan C. Bay, Joseph M. Souney, Michael Sigl, and Joseph R. McConnell
Clim. Past, 15, 1793–1808, https://doi.org/10.5194/cp-15-1793-2019, https://doi.org/10.5194/cp-15-1793-2019, 2019
Short summary
Short summary
A deep ice core was recently drilled at the South Pole to understand past variations in the Earth's climate. To understand the information contained within the ice, we present the relationship between the depth and age of the ice in the South Pole Ice Core. We found that the oldest ice in our record is from 54 302 ± 519 years ago. Our results show that, on average, 7.4 cm of snow falls at the South Pole each year.
Robert Tardif, Gregory J. Hakim, Walter A. Perkins, Kaleb A. Horlick, Michael P. Erb, Julien Emile-Geay, David M. Anderson, Eric J. Steig, and David Noone
Clim. Past, 15, 1251–1273, https://doi.org/10.5194/cp-15-1251-2019, https://doi.org/10.5194/cp-15-1251-2019, 2019
Short summary
Short summary
An updated Last Millennium Reanalysis is presented, using an expanded multi-proxy database, and proxy models representing the seasonal characteristics of proxy records, in addition to the dual sensitivity to temperature and moisture of tree-ring-width chronologies. We show enhanced skill in spatial reconstructions of key climate variables in the updated reanalysis, compared to an earlier version, resulting from the combined influences of the enhanced proxy network and improved proxy modeling.
Frazer D. W. Christie, Robert G. Bingham, Noel Gourmelen, Eric J. Steig, Rosie R. Bisset, Hamish D. Pritchard, Kate Snow, and Simon F. B. Tett
The Cryosphere, 12, 2461–2479, https://doi.org/10.5194/tc-12-2461-2018, https://doi.org/10.5194/tc-12-2461-2018, 2018
Short summary
Short summary
With a focus on the hitherto little-studied Marie Byrd Land coastline linking Antarctica's more comprehensively studied Amundsen and Ross Sea Embayments, this paper uses both satellite remote sensing (Landsat, ASTER, ICESat, and CryoSat2) and climate and ocean records (i.e. ERA-Interim, Met Office EN4 data) to examine links between ice recession, inter-decadal atmosphere-ocean forcing and other influences acting upon the Pacific-facing coastline of West Antarctica.
Nancy A. N. Bertler, Howard Conway, Dorthe Dahl-Jensen, Daniel B. Emanuelsson, Mai Winstrup, Paul T. Vallelonga, James E. Lee, Ed J. Brook, Jeffrey P. Severinghaus, Taylor J. Fudge, Elizabeth D. Keller, W. Troy Baisden, Richard C. A. Hindmarsh, Peter D. Neff, Thomas Blunier, Ross Edwards, Paul A. Mayewski, Sepp Kipfstuhl, Christo Buizert, Silvia Canessa, Ruzica Dadic, Helle A. Kjær, Andrei Kurbatov, Dongqi Zhang, Edwin D. Waddington, Giovanni Baccolo, Thomas Beers, Hannah J. Brightley, Lionel Carter, David Clemens-Sewall, Viorela G. Ciobanu, Barbara Delmonte, Lukas Eling, Aja Ellis, Shruthi Ganesh, Nicholas R. Golledge, Skylar Haines, Michael Handley, Robert L. Hawley, Chad M. Hogan, Katelyn M. Johnson, Elena Korotkikh, Daniel P. Lowry, Darcy Mandeno, Robert M. McKay, James A. Menking, Timothy R. Naish, Caroline Noerling, Agathe Ollive, Anaïs Orsi, Bernadette C. Proemse, Alexander R. Pyne, Rebecca L. Pyne, James Renwick, Reed P. Scherer, Stefanie Semper, Marius Simonsen, Sharon B. Sneed, Eric J. Steig, Andrea Tuohy, Abhijith Ulayottil Venugopal, Fernando Valero-Delgado, Janani Venkatesh, Feitang Wang, Shimeng Wang, Dominic A. Winski, V. Holly L. Winton, Arran Whiteford, Cunde Xiao, Jiao Yang, and Xin Zhang
Clim. Past, 14, 193–214, https://doi.org/10.5194/cp-14-193-2018, https://doi.org/10.5194/cp-14-193-2018, 2018
Short summary
Short summary
Temperature and snow accumulation records from the annually dated Roosevelt Island Climate Evolution (RICE) ice core show that for the past 2 700 years, the eastern Ross Sea warmed, while the western Ross Sea showed no trend and West Antarctica cooled. From the 17th century onwards, this dipole relationship changed. Now all three regions show concurrent warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea.
Barbara Stenni, Mark A. J. Curran, Nerilie J. Abram, Anais Orsi, Sentia Goursaud, Valerie Masson-Delmotte, Raphael Neukom, Hugues Goosse, Dmitry Divine, Tas van Ommen, Eric J. Steig, Daniel A. Dixon, Elizabeth R. Thomas, Nancy A. N. Bertler, Elisabeth Isaksson, Alexey Ekaykin, Martin Werner, and Massimo Frezzotti
Clim. Past, 13, 1609–1634, https://doi.org/10.5194/cp-13-1609-2017, https://doi.org/10.5194/cp-13-1609-2017, 2017
Short summary
Short summary
Within PAGES Antarctica2k, we build an enlarged database of ice core water stable isotope records. We produce isotopic composites and temperature reconstructions since 0 CE for seven distinct Antarctic regions. We find a significant cooling trend from 0 to 1900 CE across all regions. Since 1900 CE, significant warming trends are identified for three regions. Only for the Antarctic Peninsula is this most recent century-scale trend unusual in the context of last-2000-year natural variability.
Tyler R. Jones, James W. C. White, Eric J. Steig, Bruce H. Vaughn, Valerie Morris, Vasileios Gkinis, Bradley R. Markle, and Spruce W. Schoenemann
Atmos. Meas. Tech., 10, 617–632, https://doi.org/10.5194/amt-10-617-2017, https://doi.org/10.5194/amt-10-617-2017, 2017
Short summary
Short summary
New measurement systems have been developed that continuously melt ice core samples, in contrast to other methods that analyze a single sample at a time. These newer systems are capable of reducing analysis time by many years and improving data set resolution. In this study, we introduce improved methodologies that optimize the speed, accuracy, and precision of a water isotope continuous-flow system. The presented system will be used for Antarctic and Greenland ice core projects.
Qianjie Chen, Lei Geng, Johan A. Schmidt, Zhouqing Xie, Hui Kang, Jordi Dachs, Jihong Cole-Dai, Andrew J. Schauer, Madeline G. Camp, and Becky Alexander
Atmos. Chem. Phys., 16, 11433–11450, https://doi.org/10.5194/acp-16-11433-2016, https://doi.org/10.5194/acp-16-11433-2016, 2016
Short summary
Short summary
The formation mechanisms of sulfate in the marine boundary layer are not well understood, which could result in large uncertainties in aerosol radiative forcing. We measure the oxygen isotopic composition (Δ17O) of sulfate collected in the MBL and analyze with a global transport model. Our results suggest that 33–50 % of MBL sulfate is formed via oxidation of S(IV) by hypohalous acids HOBr / HOCl in the aqueous phase, and the daily-mean HOBr/HOCl concentrations are on the order of 0.01–0.1 ppt.
C. Buizert, K. M. Cuffey, J. P. Severinghaus, D. Baggenstos, T. J. Fudge, E. J. Steig, B. R. Markle, M. Winstrup, R. H. Rhodes, E. J. Brook, T. A. Sowers, G. D. Clow, H. Cheng, R. L. Edwards, M. Sigl, J. R. McConnell, and K. C. Taylor
Clim. Past, 11, 153–173, https://doi.org/10.5194/cp-11-153-2015, https://doi.org/10.5194/cp-11-153-2015, 2015
L. Geng, J. Cole-Dai, B. Alexander, J. Erbland, J. Savarino, A. J. Schauer, E. J. Steig, P. Lin, Q. Fu, and M. C. Zatko
Atmos. Chem. Phys., 14, 13361–13376, https://doi.org/10.5194/acp-14-13361-2014, https://doi.org/10.5194/acp-14-13361-2014, 2014
Short summary
Short summary
Examinations on snowpit and firn core results from Summit, Greenland suggest that there are two mechanisms leading to the observed double nitrate peaks in some years in the industrial era: 1) long-rang transport of nitrate and 2) enhanced local photochemical production of nitrate. Both of these mechanisms are related to pollution transport, as the additional nitrate from either direct transport or enhanced local photochemistry requires enhanced nitrogen sources from anthropogenic emissions.
E. J. Steig, V. Gkinis, A. J. Schauer, S. W. Schoenemann, K. Samek, J. Hoffnagle, K. J. Dennis, and S. M. Tan
Atmos. Meas. Tech., 7, 2421–2435, https://doi.org/10.5194/amt-7-2421-2014, https://doi.org/10.5194/amt-7-2421-2014, 2014
B. Medley, I. Joughin, B. E. Smith, S. B. Das, E. J. Steig, H. Conway, S. Gogineni, C. Lewis, A. S. Criscitiello, J. R. McConnell, M. R. van den Broeke, J. T. M. Lenaerts, D. H. Bromwich, J. P. Nicolas, and C. Leuschen
The Cryosphere, 8, 1375–1392, https://doi.org/10.5194/tc-8-1375-2014, https://doi.org/10.5194/tc-8-1375-2014, 2014
E. D. Sofen, B. Alexander, E. J. Steig, M. H. Thiemens, S. A. Kunasek, H. M. Amos, A. J. Schauer, M. G. Hastings, J. Bautista, T. L. Jackson, L. E. Vogel, J. R. McConnell, D. R. Pasteris, and E. S. Saltzman
Atmos. Chem. Phys., 14, 5749–5769, https://doi.org/10.5194/acp-14-5749-2014, https://doi.org/10.5194/acp-14-5749-2014, 2014
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Laboratory Measurement | Topic: Instruments and Platforms
Measuring diameters and velocities of artificial raindrops with a neuromorphic event camera
Pre-launch calibration and validation of the Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) instrument
Optimization of a Picarro L2140-i cavity ring-down spectrometer for routine measurement of triple oxygen isotope ratios in meteoric waters
Contactless optical hygrometry in LACIS-T
Laboratory characterisation and intercomparison sounding test of dual thermistor radiosondes for radiation correction
Radiation correction and uncertainty evaluation of RS41 temperature sensors by using an upper-air simulator
Laboratory characterisation of the radiation temperature error of radiosondes and its application to the GRUAN data processing for the Vaisala RS41
Modeling the dynamic behavior of a droplet evaporation device for the delivery of isotopically calibrated low-humidity water vapor
The Roland von Glasow Air-Sea-Ice Chamber (RvG-ASIC): an experimental facility for studying ocean–sea-ice–atmosphere interactions
Experimental methodology and procedure for SAPPHIRE: a Semi-automatic APParatus for High-voltage Ice nucleation REsearch
Revisiting wind speed measurements using actively heated fiber optics: a wind tunnel study
A pyroelectric thermal sensor for automated ice nucleation detection
Distributed observations of wind direction using microstructures attached to actively heated fiber-optic cables
An automated method for preparing and calibrating electrochemical concentration cell (ECC) ozonesondes
Design, construction and commissioning of the Braunschweig Icing Wind Tunnel
Temperature uniformity in the CERN CLOUD chamber
Analysis of the application of the optical method to the measurements of the water vapor content in the atmosphere – Part 1: Basic concepts of the measurement technique
Kire Micev, Jan Steiner, Asude Aydin, Jörg Rieckermann, and Tobi Delbruck
Atmos. Meas. Tech., 17, 335–357, https://doi.org/10.5194/amt-17-335-2024, https://doi.org/10.5194/amt-17-335-2024, 2024
Short summary
Short summary
This paper reports a novel rain droplet measurement method that uses a neuromorphic event camera to measure droplet sizes and speeds as they fall through a shallow plane of focus. Experimental results report accuracy similar to a commercial laser sheet disdrometer. Because these measurements are driven by event camera activity, this approach could enable the economical deployment of ubiquitous networks of solar-powered disdrometers.
Brent A. McBride, J. Vanderlei Martins, J. Dominik Cieslak, Roberto Fernandez-Borda, Anin Puthukuddy, Xiaoguang Xu, Noah Sienkiewicz, Brian Cairns, and Henrique M. J. Barbosa
EGUsphere, https://doi.org/10.5194/egusphere-2023-865, https://doi.org/10.5194/egusphere-2023-865, 2023
Short summary
Short summary
The Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) is a new Earth-observing instrument that can provide highly accurate measurements of the atmosphere and surface. Using a physics-based calibration technique, we show that AirHARP can achieve high measurement accuracy in lab and field environments and exceed a benchmark accuracy requirement for modern aerosol and cloud climate observations. Our calibration technique makes the HARP design highly attractive for upcoming NASA climate missions.
Jack A. Hutchings and Bronwen L. Konecky
Atmos. Meas. Tech., 16, 1663–1682, https://doi.org/10.5194/amt-16-1663-2023, https://doi.org/10.5194/amt-16-1663-2023, 2023
Short summary
Short summary
The coupled variation of the three stable isotopes of oxygen in water is being studied as a relatively new tracer of the water cycle. Measurement by laser spectroscopy has a number of pitfalls that have hampered a wider exploration of this new tracer. We demonstrate successful analysis using Picarro's L2140-i analyzer and provide recommendations for other users. We find that removal of dissolved organic carbon is required when measurements are studied near the limits of instrumental accuracy.
Jakub L. Nowak, Robert Grosz, Wiebke Frey, Dennis Niedermeier, Jędrzej Mijas, Szymon P. Malinowski, Linda Ort, Silvio Schmalfuß, Frank Stratmann, Jens Voigtländer, and Tadeusz Stacewicz
Atmos. Meas. Tech., 15, 4075–4089, https://doi.org/10.5194/amt-15-4075-2022, https://doi.org/10.5194/amt-15-4075-2022, 2022
Short summary
Short summary
A high-resolution infrared hygrometer (FIRH) was adapted to measure humidity and its rapid fluctuations in turbulence inside a moist-air wind tunnel LACIS-T where two air streams of different temperature and humidity are mixed. The measurement was achieved from outside the tunnel through its glass windows and provided an agreement with a reference dew-point hygrometer placed inside. The characterization of humidity complements previous investigations of velocity and temperature fields.
Sang-Wook Lee, Sunghun Kim, Young-Suk Lee, Jae-Keun Yoo, Sungjun Lee, Suyong Kwon, Byung Il Choi, Jaewon So, and Yong-Gyoo Kim
Atmos. Meas. Tech., 15, 2531–2545, https://doi.org/10.5194/amt-15-2531-2022, https://doi.org/10.5194/amt-15-2531-2022, 2022
Short summary
Short summary
Dual thermistor radiosonde (DTR) comprising two (white and black) sensors with different emissivities was developed to correct the effects of solar radiation on temperature sensors based on in situ radiation measurements. All components contributing to the uncertainty of the radiation measurement and correction are analysed. The DTR methodology improves the accuracy of temperature measurement in the upper air within the framework of the traceability to the International System of Units.
Sang-Wook Lee, Sunghun Kim, Young-Suk Lee, Byung Il Choi, Woong Kang, Youn Kyun Oh, Seongchong Park, Jae-Keun Yoo, Joohyun Lee, Sungjun Lee, Suyong Kwon, and Yong-Gyoo Kim
Atmos. Meas. Tech., 15, 1107–1121, https://doi.org/10.5194/amt-15-1107-2022, https://doi.org/10.5194/amt-15-1107-2022, 2022
Short summary
Short summary
The measurement of temperature in the free atmosphere is of significance for weather prediction and climate monitoring. Radiosondes are used to measure essential climate variables in upper air. Herein, an upper-air simulator is developed, and its performance is evaluated to improve the measurement accuracy of radiosondes by reproducing the environments that may be encountered by radiosondes. The paper presents a methodology to correct the main source of error for the radiosonde measurements.
Christoph von Rohden, Michael Sommer, Tatjana Naebert, Vasyl Motuz, and Ruud J. Dirksen
Atmos. Meas. Tech., 15, 383–405, https://doi.org/10.5194/amt-15-383-2022, https://doi.org/10.5194/amt-15-383-2022, 2022
Short summary
Short summary
Heating by solar radiation is the dominant error source for daytime temperature measurements by radiosondes. This paper describes a new laboratory setup (SISTER) to characterise this radiation error for pressures and ventilation speeds that are typical for the conditions between the surface and 35 km altitude. This characterisation is the basis for the radiation correction that is applied in the GRUAN data processing for the RS41 radiosonde. The GRUAN data product is compared to that of Vaisala.
Erik Kerstel
Atmos. Meas. Tech., 14, 4657–4667, https://doi.org/10.5194/amt-14-4657-2021, https://doi.org/10.5194/amt-14-4657-2021, 2021
Short summary
Short summary
A model was developed to quantitatively describe the dynamics, in terms of vapor-phase water concentration and isotope ratios, of nanoliter-droplet evaporation at the end of a syringe needle. Such a low humidity generator can be used to calibrate laser-based water isotope analyzers, e.g., in Antarctica. We show that modeling of experimental data constrains isotope fractionation factors and the evaporation rate to physically realistic values in good agreement with available literature values.
Max Thomas, James France, Odile Crabeck, Benjamin Hall, Verena Hof, Dirk Notz, Tokoloho Rampai, Leif Riemenschneider, Oliver John Tooth, Mathilde Tranter, and Jan Kaiser
Atmos. Meas. Tech., 14, 1833–1849, https://doi.org/10.5194/amt-14-1833-2021, https://doi.org/10.5194/amt-14-1833-2021, 2021
Short summary
Short summary
We describe the Roland von Glasow Air-Sea-Ice Chamber, a laboratory facility for studying ocean–sea-ice–atmosphere interactions. We characterise the technical capabilities of our facility to help future users plan and perform experiments. We also characterise the sea ice grown in the facility, showing that the extinction of photosynthetically active radiation, the bulk salinity, and the growth rate of our artificial sea ice are within the range of natural values.
Jens-Michael Löwe, Markus Schremb, Volker Hinrichsen, and Cameron Tropea
Atmos. Meas. Tech., 14, 223–238, https://doi.org/10.5194/amt-14-223-2021, https://doi.org/10.5194/amt-14-223-2021, 2021
Short summary
Short summary
Icing is a severe problem in many technical applications like aviation or high-voltage components for power transmission and distribution. The presented experimental setup enables the accurate investigation of the freezing of water droplets under the impact of electric fields. All boundary conditions are well controlled and investigated in detail. Results obtained with the setup might improve the understanding of the freezing process of water droplets under the impact of high electric fields.
Justus G. V. van Ramshorst, Miriam Coenders-Gerrits, Bart Schilperoort, Bas J. H. van de Wiel, Jonathan G. Izett, John S. Selker, Chad W. Higgins, Hubert H. G. Savenije, and Nick C. van de Giesen
Atmos. Meas. Tech., 13, 5423–5439, https://doi.org/10.5194/amt-13-5423-2020, https://doi.org/10.5194/amt-13-5423-2020, 2020
Short summary
Short summary
In this work we present experimental results of a novel actively heated fiber-optic (AHFO) observational wind-probing technique. We utilized a controlled wind-tunnel setup to assess both the accuracy and precision of AHFO under a range of operational conditions (wind speed, angles of attack and temperature differences). AHFO has the potential to provide high-resolution distributed observations of wind speeds, allowing for better spatial characterization of fine-scale processes.
Fred Cook, Rachel Lord, Gary Sitbon, Adam Stephens, Alison Rust, and Walther Schwarzacher
Atmos. Meas. Tech., 13, 2785–2795, https://doi.org/10.5194/amt-13-2785-2020, https://doi.org/10.5194/amt-13-2785-2020, 2020
Short summary
Short summary
We present a cheap, adaptable, and easily assembled thermal sensor for detecting microlitre droplets of water freezing. The sensor was developed to increase the level of automation in droplet array ice nucleation experiments, reducing the total amount of time required for each experiment. As a proof of concept, we compare the ice-nucleating efficiency of a crystalline and glassy sample of K-feldpsar. The glassy sample was found to be a less efficient ice nucleator at higher temperatures.
Karl Lapo, Anita Freundorfer, Lena Pfister, Johann Schneider, John Selker, and Christoph Thomas
Atmos. Meas. Tech., 13, 1563–1573, https://doi.org/10.5194/amt-13-1563-2020, https://doi.org/10.5194/amt-13-1563-2020, 2020
Short summary
Short summary
Most observations of the atmosphere are
point observations, which only measure a small area around the sensor. This limitation creates problems for a number of disciplines, especially those that focus on how the surface and atmosphere exchange heat, mass, and momentum. We used distributed temperature sensing with fiber optics to demonstrate a key breakthrough in observing wind direction in a distributed way, i.e., not at a point, using small structures attached to the fiber-optic cables.
Francis J. Schmidlin and Bruno A. Hoegger
Atmos. Meas. Tech., 13, 1157–1166, https://doi.org/10.5194/amt-13-1157-2020, https://doi.org/10.5194/amt-13-1157-2020, 2020
Short summary
Short summary
The procedure for preparing electrochemical concentration cell (ECC) ozonesondes are considered to be standardized, but there remains the question of actual measurement accuracy, believed to be 5–10 %. It would be ideal to include a reference instrument on the balloon flight to aid in checking ECC accuracy and reliability. Balloon-borne reference instruments are not usually available, mostly because they are too expensive for other than occasional use.
Stephan E. Bansmer, Arne Baumert, Stephan Sattler, Inken Knop, Delphine Leroy, Alfons Schwarzenboeck, Tina Jurkat-Witschas, Christiane Voigt, Hugo Pervier, and Biagio Esposito
Atmos. Meas. Tech., 11, 3221–3249, https://doi.org/10.5194/amt-11-3221-2018, https://doi.org/10.5194/amt-11-3221-2018, 2018
Short summary
Short summary
Snow, frost formation and ice cubes in our drinks are part of our daily life. But what about our technical innovations like aviation, electrical power transmission and wind-energy production, can they cope with icing? Icing Wind Tunnels are an ideal laboratory environment to answer that question. In this paper, we show how the icing wind tunnel in Braunschweig (Germany) was built and how we can use it for engineering and climate research.
António Dias, Sebastian Ehrhart, Alexander Vogel, Christina Williamson, João Almeida, Jasper Kirkby, Serge Mathot, Samuel Mumford, and Antti Onnela
Atmos. Meas. Tech., 10, 5075–5088, https://doi.org/10.5194/amt-10-5075-2017, https://doi.org/10.5194/amt-10-5075-2017, 2017
Short summary
Short summary
The CERN CLOUD chamber is used to understand different processes of particle formation in the atmosphere. This information can be used by global climate models to update the influence of cloud formation. To provide the most accurate information on these processes, a thorough understanding of the chamber is necessary. Temperature measurements were performed inside the entire volume of the CLOUD chamber to ensure temperature stability and more accurate estimations of particle formation parameters.
V. D. Galkin, F. Immler, G. A. Alekseeva, F.-H. Berger, U. Leiterer, T. Naebert, I. N. Nikanorova, V. V. Novikov, V. P. Pakhomov, and I. B. Sal'nikov
Atmos. Meas. Tech., 4, 843–856, https://doi.org/10.5194/amt-4-843-2011, https://doi.org/10.5194/amt-4-843-2011, 2011
Cited articles
Allan, D.: Statistics of atomic frequency standards, Proc. IEEE, 52, 221–230, https://doi.org/10.1109/PROC.1966.4634, 1966.
Angert, A., Cappa, C. D., and DePaolo, D. J.: Kinetic 17O effects in the
hydrologic cycle: Indirect evidence and implications, Geochim.
Cosmochim. Ac., 68 , 3487–3495, https://doi.org/10.1016/j.gca.2004.02.010, 2004.
Aron, P. G., Levin, N. E., Beverly, E. J., Huth, T. E., Passey, B. H.,
Pelletier, E. M., Poulsen, C. J., Winkelstern, I. Z., and Yarian, D. A.:
Triple oxygen isotopes in the water cycle, Chem. Geol., 565, 120026, https://doi.org/10.1016/j.chemgeo.2020.120026, 2021.
Barkan, E. and Luz, B.: High precision measurements of 17O 16O and 18O 16O ratios in H2O, Rapid Commun. Mass Spectrom., 19, 3737–3742, https://doi.org/10.1002/rcm.2250, 2005.
Barkan, E. and Luz, B.: Diffusivity fractionations of H216O/H217O and
H O H O in air and their implications for isotope hydrology, Rapid Commun. Mass Spectrom., 21, 2999–3005, https://doi.org/10.1002/rcm.3180, 2007.
Berman, E. S. F., Levin, N. E., Landais, A., Li, S., and Owano, T: Measurement of δ18O, δ17O, and 17O-excess in water by Off-Axis Integrated Cavity Output Spectroscopy and Isotope Ratio Mass Spectrometry, Anal. Chem., 85, 10392–10398, https://doi.org/10.1021/ac402366t, 2013.
Bigler, M., Svensson, A., Kettner, E., Vallelonga, P., Nielsen, M. E., and
Steffensen, J. P.: Optimization of High-Resolution Continuous Flow Analysis
for Transient Climate Signals in Ice Cores, Environ. Sci. Technol., 45, 4483–4489, https://doi.org/10.1021/es200118j, 2011.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468,
https://doi.org/10.1111/j.2153-3490.1964.tb00181.x, 1964.
Dibb, J. E. and Fahnestock, M.: Snow accumulation, surface height change, and
firn densification at Summit, Greenland: Insights from 2 years of in situ
observation, J. Geophys. Res., 109, D24113, https://doi.org/10.1029/2003JD004300, 2004.
Emanuelsson, B. D., Baisden, W. T., Bertler, N. A. N., Keller, E. D., and Gkinis, V.: High-resolution continuous-flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy, Atmos. Meas. Tech., 8, 2869–2883, https://doi.org/10.5194/amt-8-2869-2015, 2015.
Gkinis, V., Popp, T. J., Johnsen, S. J., and Blunier, T.: A continuous
stream flash evaporator for the calibration of an IR cavity ring-down
spectrometer for the isotopic analysis of water, Isotop. Environ. Health
Stud., 46, 463–475, 2010.
Gkinis, V., Popp, T. J., Blunier, T., Bigler, M., Schüpbach, S., Kettner, E., and Johnsen, S. J.: Water isotopic ratios from a continuously melted ice core sample, Atmos. Meas. Tech., 4, 2531–2542, https://doi.org/10.5194/amt-4-2531-2011, 2011.
Gkinis, V., Simonsen, S. B., Buchardt, S. L., White, J. W. C., and Vinther,
B. M.: Water isotope diffusion rates from the NorthGRIP ice core for the
last 16 000 years-Glaciological and paleoclimatic implications, Earth
Planet. Sc. Lett., 405, 132–141, 2014.
Hastings, M. G., Jarvis, J. C., and Steig, E. J.: Anthropogenic Impacts on
Nitrogen Isotopes of Ice core Nitrate, Science, 324, 1288–1288,
https://doi.org/10.1126/science.1170510, 2009.
Hawley, R. L., Morris, E. M., and McConnell, J. R.: Rapid techniques for
determining annual accumulation applied at Summit, Greenland, J.
Glaciol., 54, 839–845, https://doi.org/10.3189/002214308787779951, 2008.
Hawley, R. L., Neumann, T. A., Stevens, C. M., Brunt, K. M., and Sutterly,
T. C.: Greenland Ice Sheet elevation change: Direct observation of process
and attribution at summit, Geophys. Res. Lett., 47, e2020GL088864, https://doi.org/10.1029/2020GL088864, 2020.
Iannone, R. Q., Romanini, D., Cattani, O., Meijer, H. A. J., and Kerstel,
E. R. T.: Water isotope ratio (d2H and d18O) measurements in atmospheric moisture using an optical feedback cavity enhanced absorption laser spectrometer, J. Geophys. Res., 115, D10111, https://doi.org/10.1029/2009JD012895, 2010.
Jones, T. R., White, J. W. C., Steig, E. J., Vaughn, B. H., Morris, V., Gkinis, V., Markle, B. R., and Schoenemann, S. W.: Improved methodologies for continuous-flow analysis of stable water isotopes in ice cores, Atmos. Meas. Tech., 10, 617–632, https://doi.org/10.5194/amt-10-617-2017, 2017a.
Jones, T. R., Cuffey, K. M., White, J. W. C., Steig, E. J., Buizert, C.,
Markle, B. R., McConnell, J. R., and Sigl, M.: Water isotope diffusion in
the WAIS Divide ice core during the Holocene and last glacial, J.
Geophys. Res.-Earth, 122, 290–309, https://doi.org/10.1002/2016JF003938, 2017b.
Jouzel, J. and Merlivat, L.: Deuterium and oxygen 18 in precipitation:
Modeling of the isotopic effects during snow formation, J. Geophys.
Res.-Atmos., 89, 11749–11757, https://doi.org/10.1029/JD089iD07p11749, 1984.
Jouzel, J., Froehlich, K., and Schotterer, U.: Deuterium and oxygen-18 in
present-day precipitation: Data and modelling, Hydrolog. Sci.
J., 42, 747–763, https://doi.org/10.1080/02626669709492070, 1997.
Kahle, E. C., Holme, C., Jones, T. R., Gkinis, V., and Steig, E. J.: A
Generalized Approach to Estimating Diffusion Length of Stable Water Isotopes
From Ice-Core Data, J. Geophys. Res.-Earth, 123, 2377–2391, https://doi.org/10.1029/2018JF004764, 2018.
Kahle, E. C., Steig, E. J., Jones, T. R., Fudge, T. J., Koutnik, M. R.,
Morris, V. A., Vaughn, B. H., Schauer, A. J., Stevens, C. M., Conway, H.,
Waddington, E. D., Buizert, C., Epifanio, J., and White, J. W. C.:
Reconstruction of Temperature, Accumulation Rate, and Layer Thinning From an
Ice Core at South Pole, Using a Statistical Inverse Method, J.
Geophys. Res.-Atmos., 126, e2020JD033300, https://doi.org/10.1029/2020JD033300, 2021.
Kerstel, E. R. T., van Trigt, R., Dam, N., Reuss, J., and Meijer, H. A. J.:
Simultaneous determination of the 2H 1H, 17O 16O and 18O 16O isotope abundance ratios in water by means of laser spectrometry, Anal. Chem., 71, 5297–5303, 1999.
Landais, A., Barkan, E., and Luz, B.: Record of δ18O and
17O-excess in ice from Vostok Antarctica during the last 150 000 years,
Geophys. Res. Lett., 35, L02709, https://doi.org/10.1029/2007GL032096, 2008.
Landais, A., Ekaykin, A., Barkan, E., Winkler, R., and Luz, B.: Seasonal
Variations of 17 O-Excess and d-Excess in Snow Precipitation at Vostok
Station, East Antarctica, J. Glaciol., 58, 725–733, https://doi.org/10.3189/2012JoG11J237, 2012a.
Landais, A., Steen-Larsen, H. C., Guillevic, M., Masson-Delmotte, V.,
Vinther, B., and Winkler, R.: Triple isotopic composition of oxygen in
surface snow and water vapor at NEEM (Greenland), Geochim. Cosmochim.
Ac., 77, 304–316, https://doi.org/10.1016/j.gca.2011.11.022, 2012b.
Luz, B. and Barkan, E.: Variations of 17O 16O and 18O 16O in meteoric waters, Geochim. Cosmochim. Ac., 74, 6276–6286, https://doi.org/10.1016/j.gca.2010.08.016, 2010.
Meese, D. A., Gow, A. J., Grootes, P., Stuiver, M., Mayewski, P. A.,
Zielinski, G. A., Ram, M., Taylor, K. C., and Waddington, E. D.: The
Accumulation Record from the GISP2 Core as an Indicator of Climate Change
Throughout the Holocene, Science, 266, 1680–1682, https://doi.org/10.1126/science.266.5191.1680, 1994.
Merlivat, L. and Jouzel, J.: Global climatic interpretation of the
deuterium-oxygen 18 relationship for precipitation, J. Geophys. Res., 84, 5029, https://doi.org/10.1029/JC084iC08p05029, 1979.
Schauer, A. J., Schoenemann, S. W., and Steig, E. J.: Routine High-Precision
Analysis of Triple Water-Isotope Ratios Using Cavity Ring-down Spectroscopy,
Rapid Commun. Mass Spectrom., 30, 2059–2069, 2016.
Schoenemann, S. W. and Steig, E. J.: Seasonal and spatial variations of
17Oexcess and dexcess in Antarctic precipitation: Insights from an intermediate complexity isotope model, J. Geophys. Res.-Atmos., 121, 11215–11247, https://doi.org/10.1002/2016JD025117, 2016.
Schoenemann, S. W., Schauer, A. J., and Steig, E. J.: Measurement of SLAP2 and GISP δ17O and proposed VSMOW-SLAP normalization for δ17O and 17O excess, Rapid Commun. Mass Sp., 27, 582–590, https://doi.org/10.1002/rcm.6486, 2013.
Schoenemann, S. W., Steig, E. J., Ding, Q., Markle, B. R., and Schauer, A.
J.: Triple water-isotopologue record from WAIS Divide, Antarctica: Controls
on glacial-interglacial changes in 17Oexcess of precipitation: WAIS LGM-Holocene 17O excess Record, J. Geophys. Res.-Atmos., 119, 8741–8763, https://doi.org/10.1002/2014JD021770, 2014.
Steen-Larsen, H. C., Masson-Delmotte, V., Sjolte, J., Johnsen, S. J.,
Vinther, B. M., Bréon, F.-M., Clausen, H. B., Dahl-Jensen, D., Falourd,
S., Fettweis, X., Gallée, H., Jouzel, J., Kageyama, M., Lerche, H.,
Minster, B., Picard, G., Punge, H. J., Risi, C., Salas, D., Schwander, J.,
Steffen, K., Sveinbjörnsdóttir, A. E., Svensson, A., and White, J.:
Understanding the Climatic Signal in the Water Stable Isotope Records from
the NEEM Shallow Firn/Ice Cores in Northwest Greenland., J. Geophys. Res.,
116, D06108, https://doi.org/10.1029/2010JD014311, 2011.
Steen-Larsen, H. C., Masson-Delmotte, V., Hirabayashi, M., Winkler, R., Satow, K., Prié, F., Bayou, N., Brun, E., Cuffey, K. M., Dahl-Jensen, D., Dumont, M., Guillevic, M., Kipfstuhl, S., Landais, A., Popp, T., Risi, C., Steffen, K., Stenni, B., and Sveinbjörnsdottír, A. E.: What controls the isotopic composition of Greenland surface snow?, Clim. Past, 10, 377–392, https://doi.org/10.5194/cp-10-377-2014, 2014.
Steig, E. J., Gkinis, V., Schauer, A. J., Schoenemann, S. W., Samek, K., Hoffnagle, J., Dennis, K. J., and Tan, S. M.: Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance, Atmos. Meas. Tech., 7, 2421–2435, https://doi.org/10.5194/amt-7-2421-2014, 2014.
Steig, E. J., Jones, T. R., Schauer, A. J., Kahle, E. C., Morris, V. A.,
Vaughn, B. H., Davidge, L., and White, J. W. C.: Continuous-Flow Analysis of
δ17O, δ18O, and δD of H2O on an Ice Core from the South Pole, Front. Earth Sci., 9, 640292, https://doi.org/10.3389/feart.2021.640292, 2021.
Tian, C., Wang, L., and Novick, K. A.: Water vapor δ2H, δ18O and δ17O measurements using an off-axis integrated cavity output spectrometer – sensitivity to water vapor concentration, delta value and averaging-time, Rapid Commun. Mass Spectrom., 30, 2077–2086,
https://doi.org/10.1002/rcm.7714, 2016.
Uemura, R., Barkan, E., Abe, O., and Luz, B.: Triple isotope composition of
oxygen in atmospheric water vapor: the 17O-excess of water vapor,
Geophys. Res. Lett., 37, L04402, https://doi.org/10.1029/2009GL041960, 2010.
Werle, P., Miicke, R., and Slemr, F.: The limits of signal averaging in
atmospheric trace-gas monitoring by tunable diode-laser absorption
spectroscopy (TDLAS), Appl. Phys. B-Photo., 57, 131–139, https://doi.org/10.1007/BF00425997, 1993.
Short summary
We describe a continuous-flow analysis (CFA) method to measure Δ17O by laser spectroscopy, and we show that centimeter-scale information can be measured reliably in ice cores by this method. We present seasonally resolved Δ17O data from Greenland and demonstrate that the measurement precision is not reduced by the CFA process. Our results encourage the development and use of CFA methods for Δ17O, and they identify calibration strategies as a target for method improvement.
We describe a continuous-flow analysis (CFA) method to measure Δ17O by laser spectroscopy, and...