Articles | Volume 16, issue 12
https://doi.org/10.5194/amt-16-3283-2023
https://doi.org/10.5194/amt-16-3283-2023
Research article
 | 
29 Jun 2023
Research article |  | 29 Jun 2023

In-orbit cross-calibration of millimeter conically scanning spaceborne radars

Alessandro Battaglia, Filippo Emilio Scarsi, Kamil Mroz, and Anthony Illingworth

Related authors

Riming-dependent Snowfall Rate and Ice Water Content Retrievals for W-band cloud radar
Nina Maherndl, Alessandro Battaglia, Anton Kötsche, and Maximilian Maahn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3916,https://doi.org/10.5194/egusphere-2024-3916, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Simulations of Spectral Polarimetric Variables measured in rain at W-band
Ioanna Tsikoudi, Alessandro Battaglia, Christine Unal, and Eleni Marinou
EGUsphere, https://doi.org/10.5194/egusphere-2024-3164,https://doi.org/10.5194/egusphere-2024-3164, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Advantages of G-band radar in multi-frequency liquid-phase microphysical retrievals
Benjamin M. Courtier, Alessandro Battaglia, and Kamil Mroz
Atmos. Meas. Tech., 17, 6875–6888, https://doi.org/10.5194/amt-17-6875-2024,https://doi.org/10.5194/amt-17-6875-2024, 2024
Short summary
Characterization of surface clutter signal in presence of orography for a spaceborne conically scanning W-band Doppler radar
Francesco Manconi, Alessandro Battaglia, and Pavlos Kollias
EGUsphere, https://doi.org/10.5194/egusphere-2024-2779,https://doi.org/10.5194/egusphere-2024-2779, 2024
Short summary
How to reduce sampling errors in spaceborne cloud radar-based snowfall estimates
Filippo Emilio Scarsi, Alessandro Battaglia, Maximilian Maahn, and Stef Lhermitte
EGUsphere, https://doi.org/10.5194/egusphere-2024-1917,https://doi.org/10.5194/egusphere-2024-1917, 2024
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
Optimization of a direct-detection UV wind lidar architecture for 3D wind reconstruction at high altitude
Thibault Boulant, Tomline Michel, and Matthieu Valla
Atmos. Meas. Tech., 17, 7049–7064, https://doi.org/10.5194/amt-17-7049-2024,https://doi.org/10.5194/amt-17-7049-2024, 2024
Short summary
The GRAS-2 radio occultation mission
Joel Rasch, Anders Carlström, Jacob Christensen, and Thomas Liljegren
Atmos. Meas. Tech., 17, 6213–6222, https://doi.org/10.5194/amt-17-6213-2024,https://doi.org/10.5194/amt-17-6213-2024, 2024
Short summary
The ALOMAR Rayleigh/Mie/Raman lidar: status after 30 years of operation
Jens Fiedler and Gerd Baumgarten
Atmos. Meas. Tech., 17, 5841–5859, https://doi.org/10.5194/amt-17-5841-2024,https://doi.org/10.5194/amt-17-5841-2024, 2024
Short summary
Chilean Observation Network De MeteOr Radars (CONDOR): Multi-Static System Configuration & Wind Comparison with Co-located Lidar
Zishun Qiao, Alan Z. Liu, Gunter Stober, Javier Fuentes, Fabio Vargas, Christian L. Adami, and Iain M. Reid
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-126,https://doi.org/10.5194/amt-2024-126, 2024
Revised manuscript accepted for AMT
Short summary
The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) – Part 1: Instrument description and level 1 radiances
Jonathan E. Murray, Laura Warwick, Helen Brindley, Alan Last, Patrick Quigley, Andy Rochester, Alexander Dewar, and Daniel Cummins
Atmos. Meas. Tech., 17, 4757–4775, https://doi.org/10.5194/amt-17-4757-2024,https://doi.org/10.5194/amt-17-4757-2024, 2024
Short summary

Cited articles

Battaglia, A., Wolde, M., D'Adderio, L. P., Nguyen, C., Fois, F., Illingworth, A., and Midthassel, R.: Characterization of Surface Radar Cross Sections at W-Band at Moderate Incidence Angles, IEEE T. Geosci. Remote, 55, 3846–3859, https://doi.org/10.1109/TGRS.2017.2682423, 2017. a, b
Bate, R. R., Mueller, D. D.,, White, J. E.: Fundamentals of Astrodynamics, Dover Publications, New York, USA, ISBN 0486600610, 1971. a
Battaglia, A., Dhillon, R., and Illingworth, A.: Doppler W-band polarization diversity space-borne radar simulator for wind studies, Atmos. Meas. Tech., 11, 5965–5979, https://doi.org/10.5194/amt-11-5965-2018, 2018. a
Battaglia, A., Kollias, P., Dhillon, R., Roy, R., Tanelli, S., Lamer, K., Grecu, M., Lebsock, M., Watters, D., Mroz, K., Heymsfield, G., Li, L., and Furukawa, K.: Spaceborne Cloud and Precipitation Radars: Status, Challenges, and Ways Forward, Rev. Geophys., 58, e2019RG000686, https://doi.org/10.1029/2019RG000686, 2020. a
Battaglia, A., Martire, P., Caubet, E., Phalippou, L., Stesina, F., Kollias, P., and Illingworth, A.: Observation error analysis for the WInd VElocity Radar Nephoscope W-band Doppler conically scanning spaceborne radar via end-to-end simulations, Atmos. Meas. Tech., 15, 3011–3030, https://doi.org/10.5194/amt-15-3011-2022, 2022. a
Download
Short summary
Some of the new generation of cloud and precipitation spaceborne radars will adopt conical scanning. This will make some of the standard calibration techniques impractical. This work presents a methodology to cross-calibrate radars in orbits by matching the reflectivity probability density function of ice clouds observed by the to-be-calibrated and by the reference radar in quasi-coincident locations. Results show that cross-calibration within 1 dB (26 %) is feasible.