Articles | Volume 16, issue 20
https://doi.org/10.5194/amt-16-4807-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-4807-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Single field-of-view sounder atmospheric product retrieval algorithm: establishing radiometric consistency for hyper-spectral sounder retrievals
NASA Langley Research Center, Hampton, VA 23682, USA
NASA Langley Research Center, Hampton, VA 23682, USA
Liqiao Lei
Science Systems and Applications, Inc., Hampton, VA 23666, USA
Xiaozhen Xiong
NASA Langley Research Center, Hampton, VA 23682, USA
Qiguang Yang
Science Systems and Applications, Inc., Hampton, VA 23666, USA
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Daniel K. Zhou
NASA Langley Research Center, Hampton, VA 23682, USA
Allen M. Larar
NASA Langley Research Center, Hampton, VA 23682, USA
Related authors
Xiaozhen Xiong, Xu Liu, Robert Spurr, Ming Zhao, Qiguang Yang, Wan Wu, and Liqiao Lei
Atmos. Meas. Tech., 17, 1965–1978, https://doi.org/10.5194/amt-17-1965-2024, https://doi.org/10.5194/amt-17-1965-2024, 2024
Short summary
Short summary
The term “hotspot” refers to the sharp increase in reflectance occurring when incident (solar) and reflected (viewing) directions coincide in the backscatter direction. The accurate simulation of hotspot directional signatures is important for many remote sensing applications, but current models typically require large values of computations to represent the hotspot accurately. This paper provides a numerically improved hotspot BRDF model that converges much faster and is used in VLIDORT.
Sergio DeSouza-Machado, L. Larrabee Strow, Andrew Tangborn, Xianglei Huang, Xiuhong Chen, Xu Liu, Wan Wu, and Qiguang Yang
Atmos. Meas. Tech., 11, 529–550, https://doi.org/10.5194/amt-11-529-2018, https://doi.org/10.5194/amt-11-529-2018, 2018
Short summary
Short summary
Thermodynamic fields retrieved from orbiting infrared sounders use a
derived set of measurements as their starting point, rather than the
actual observations. This leads to problems with noise and
sampling. We have developed a fast accurate model with a simple
vertical representation of clouds in the atmosphere for use in
retrievals, which allows us to use all the actual low-noise
measurements at full resolution. These should eventually help produce
more accurate weather forecasts.
Xiaozhen Xiong, Xu Liu, Robert Spurr, Ming Zhao, Qiguang Yang, Wan Wu, and Liqiao Lei
Atmos. Meas. Tech., 17, 1965–1978, https://doi.org/10.5194/amt-17-1965-2024, https://doi.org/10.5194/amt-17-1965-2024, 2024
Short summary
Short summary
The term “hotspot” refers to the sharp increase in reflectance occurring when incident (solar) and reflected (viewing) directions coincide in the backscatter direction. The accurate simulation of hotspot directional signatures is important for many remote sensing applications, but current models typically require large values of computations to represent the hotspot accurately. This paper provides a numerically improved hotspot BRDF model that converges much faster and is used in VLIDORT.
Nenghan Wan, Xiaozhen Xiong, Gerard J. Kluitenberg, J. M. Shawn Hutchinson, Robert Aiken, Haidong Zhao, and Xiaomao Lin
Atmos. Chem. Phys., 23, 711–724, https://doi.org/10.5194/acp-23-711-2023, https://doi.org/10.5194/acp-23-711-2023, 2023
Short summary
Short summary
This study used new TROPOMI measurements of NO2 and CO to characterize regional biomass burning characteristics and efficiency. We found that the NO2 / CO emission ratio was consistent with recent studies over temperate forest fires but slightly lower in savanna vegetation fires. Our results can help identify the relative contribution of smoldering and flaming activities as well as their impacts on the regional atmospheric composition and air quality.
Qing Yue, Eric J. Fetzer, Likun Wang, Brian H. Kahn, Nadia Smith, John M. Blaisdell, Kerry G. Meyer, Mathias Schreier, Bjorn Lambrigtsen, and Irina Tkatcheva
Atmos. Meas. Tech., 15, 2099–2123, https://doi.org/10.5194/amt-15-2099-2022, https://doi.org/10.5194/amt-15-2099-2022, 2022
Short summary
Short summary
The self-consistency and continuity of cloud retrievals from infrared sounders and imagers aboard Aqua and SNPP (Suomi National Polar-orbiting Partnership) are examined at the pixel scale. Cloud products are found to be consistent with each other. Differences between sounder products are mainly due to cloud clearing and the treatment of clouds in scenes with unsuccessful atmospheric retrievals. The impact of algorithm and instrument differences is clearly seen in the imager cloud retrievals.
Shi Kuang, Bo Wang, Michael J. Newchurch, Kevin Knupp, Paula Tucker, Edwin W. Eloranta, Joseph P. Garcia, Ilya Razenkov, John T. Sullivan, Timothy A. Berkoff, Guillaume Gronoff, Liqiao Lei, Christoph J. Senff, Andrew O. Langford, Thierry Leblanc, and Vijay Natraj
Atmos. Meas. Tech., 13, 5277–5292, https://doi.org/10.5194/amt-13-5277-2020, https://doi.org/10.5194/amt-13-5277-2020, 2020
Short summary
Short summary
Ozone lidar is a state-of-the-art remote-sensing instrument to measure atmospheric ozone concentrations with high spatiotemporal resolution. In this study, we show that an ozone lidar can also provide reliable aerosol measurements through intercomparison with colocated aerosol lidar observations.
Alexandre Guillaume, Brian H. Kahn, Eric J. Fetzer, Qing Yue, Gerald J. Manipon, Brian D. Wilson, and Hook Hua
Atmos. Meas. Tech., 12, 4361–4377, https://doi.org/10.5194/amt-12-4361-2019, https://doi.org/10.5194/amt-12-4361-2019, 2019
Short summary
Short summary
A method is described to classify cloud mixtures of cloud top types, termed cloud scenes, using cloud type classification derived from the CloudSat radar. The scale dependence of the cloud scenes is quantified. The cloud scenes are used to assess the characteristics of spatially collocated Atmospheric Infrared Sounder (AIRS) thermodynamic-phase and ice cloud property retrievals within scenes of varying cloud type complexity.
Kristina Pistone, Jens Redemann, Sarah Doherty, Paquita Zuidema, Sharon Burton, Brian Cairns, Sabrina Cochrane, Richard Ferrare, Connor Flynn, Steffen Freitag, Steven G. Howell, Meloë Kacenelenbogen, Samuel LeBlanc, Xu Liu, K. Sebastian Schmidt, Arthur J. Sedlacek III, Michal Segal-Rozenhaimer, Yohei Shinozuka, Snorre Stamnes, Bastiaan van Diedenhoven, Gerard Van Harten, and Feng Xu
Atmos. Chem. Phys., 19, 9181–9208, https://doi.org/10.5194/acp-19-9181-2019, https://doi.org/10.5194/acp-19-9181-2019, 2019
Short summary
Short summary
Understanding how smoke particles interact with sunlight is important in calculating their effects on climate, since some smoke is more scattering (cooling) and some is more absorbing (heating). Knowing this proportion is important for both satellite observations and climate models. We measured smoke properties in a recent aircraft-based field campaign off the west coast of Africa and present a comparison of these properties as measured using the six different, independent techniques available.
Brian H. Kahn, Hanii Takahashi, Graeme L. Stephens, Qing Yue, Julien Delanoë, Gerald Manipon, Evan M. Manning, and Andrew J. Heymsfield
Atmos. Chem. Phys., 18, 10715–10739, https://doi.org/10.5194/acp-18-10715-2018, https://doi.org/10.5194/acp-18-10715-2018, 2018
Short summary
Short summary
The Atmospheric Infrared Sounder (AIRS) satellite instrument shows statistically significant global trends in ice cloud properties between September 2002 and August 2016. The trends are not explained by known AIRS instrument limitations. Significant differences in the ice cloud particle size is found between convective clouds and thin ice clouds in the tropics. These results will be a useful benchmark for other studies of global ice cloud properties.
Fredrick W. Irion, Brian H. Kahn, Mathias M. Schreier, Eric J. Fetzer, Evan Fishbein, Dejian Fu, Peter Kalmus, R. Chris Wilson, Sun Wong, and Qing Yue
Atmos. Meas. Tech., 11, 971–995, https://doi.org/10.5194/amt-11-971-2018, https://doi.org/10.5194/amt-11-971-2018, 2018
Short summary
Short summary
We describe a new algorithm for the Atmospheric Infrared Sounder (AIRS) that uses its thermal infrared spectra directly rather than using “cloud-clearing.” By additionally modelling clouds within an AIRS field-of-view, we retrieve temperature and water vapor profiles on the AIRS ~13.5 km horizontal footprint (at nadir) rather than the ~45 km footprint of cloud-cleared spectra. Initial validation is presented, and avenues for future development are discussed.
Sergio DeSouza-Machado, L. Larrabee Strow, Andrew Tangborn, Xianglei Huang, Xiuhong Chen, Xu Liu, Wan Wu, and Qiguang Yang
Atmos. Meas. Tech., 11, 529–550, https://doi.org/10.5194/amt-11-529-2018, https://doi.org/10.5194/amt-11-529-2018, 2018
Short summary
Short summary
Thermodynamic fields retrieved from orbiting infrared sounders use a
derived set of measurements as their starting point, rather than the
actual observations. This leads to problems with noise and
sampling. We have developed a fast accurate model with a simple
vertical representation of clouds in the atmosphere for use in
retrievals, which allows us to use all the actual low-noise
measurements at full resolution. These should eventually help produce
more accurate weather forecasts.
Brian H. Kahn, Georgios Matheou, Qing Yue, Thomas Fauchez, Eric J. Fetzer, Matthew Lebsock, João Martins, Mathias M. Schreier, Kentaroh Suzuki, and João Teixeira
Atmos. Chem. Phys., 17, 9451–9468, https://doi.org/10.5194/acp-17-9451-2017, https://doi.org/10.5194/acp-17-9451-2017, 2017
Short summary
Short summary
The global-scale patterns of subtropical marine boundary layer clouds are investigated with coincident NASA A-train satellite and reanalysis data. This study is novel in that all data are used at the finest spatial and temporal resolution possible. Our results are consistent with surface-based data and suggest that the combination of satellite and reanalysis data sets have potential to add to the global context of our understanding of the subtropical cumulus-dominated marine boundary layer.
Sharon P. Burton, Eduard Chemyakin, Xu Liu, Kirk Knobelspiesse, Snorre Stamnes, Patricia Sawamura, Richard H. Moore, Chris A. Hostetler, and Richard A. Ferrare
Atmos. Meas. Tech., 9, 5555–5574, https://doi.org/10.5194/amt-9-5555-2016, https://doi.org/10.5194/amt-9-5555-2016, 2016
Short summary
Short summary
Retrievals of aerosol microphysics exist for ground-based, airborne, and future space-borne lidar measurements. We investigate the information content of a lidar measurement system, using only a forward model but no explicit inversion. The simplified aerosol used here is applicable as a best case for all retrievals in the absence of additional constraints. We report (1) information content of the measurements; (2) uncertainties on the retrieved parameters; and (3) sources of compensating errors.
M. M. Schreier, B. H. Kahn, K. Sušelj, J. Karlsson, S. C. Ou, Q. Yue, and S. L. Nasiri
Atmos. Chem. Phys., 14, 3573–3587, https://doi.org/10.5194/acp-14-3573-2014, https://doi.org/10.5194/acp-14-3573-2014, 2014
B. H. Kahn, F. W. Irion, V. T. Dang, E. M. Manning, S. L. Nasiri, C. M. Naud, J. M. Blaisdell, M. M. Schreier, Q. Yue, K. W. Bowman, E. J. Fetzer, G. C. Hulley, K. N. Liou, D. Lubin, S. C. Ou, J. Susskind, Y. Takano, B. Tian, and J. R. Worden
Atmos. Chem. Phys., 14, 399–426, https://doi.org/10.5194/acp-14-399-2014, https://doi.org/10.5194/acp-14-399-2014, 2014
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Global sensitivity analysis of simulated remote sensing polarimetric observations over snow
Improving the Gaussianity of radar reflectivity departures between observations and simulations using symmetric rain rates
On the temperature stability requirements of free-running Nd:YAG lasers for atmospheric temperature profiling through the rotational Raman technique
Limitations in wavelet analysis of non-stationary atmospheric gravity wave signatures in temperature profiles
A new non-linearity correction method for the spectrum from the Geostationary Inferometric Infrared Sounder on board Fengyun-4 satellites and its preliminary assessments
Determination of high-precision tropospheric delays using crowdsourced smartphone GNSS data
Unfiltering of the EarthCARE Broadband Radiometer (BBR) observations: the BM-RAD product
Variance estimations in the presence of intermittent interference and their applications to incoherent scatter radar signal processing
A clustering-based method for identifying and tracking squall lines
A multi-instrument fuzzy logic boundary-layer-top detection algorithm
Sensitivity of thermodynamic profiles retrieved from ground-based microwave and infrared observations to additional input data from active remote sensing instruments and numerical weather prediction models
Scale separation for gravity wave analysis from 3D temperature observations in the mesosphere and lower thermosphere (MLT) region
Estimating the refractivity bias of FORMOSAT-7/COSMIC-2 Global Navigation Satellite System (GNSS) radio occultation in the deep troposphere
High Spectral Resolution Lidar – generation 2 (HSRL-2) retrievals of ocean surface wind speed: methodology and evaluation
Dual adaptive differential threshold method for automated detection of faint and strong echo features in radar observations of winter storms
Noise filtering options for conically scanning Doppler lidar measurements with low pulse accumulation
Measuring rainfall using microwave links: the influence of temporal sampling
Drone-based photogrammetry combined with deep learning to estimate hail size distributions and melting of hail on the ground
Global scale gravity wave analysis methodology for the ESA Earth Explorer 11 candidate CAIRT
The High lAtitude sNowfall Detection and Estimation aLgorithm for ATMS (HANDEL-ATMS): a new algorithm for snowfall retrieval at high latitudes
Next-generation radiance unfiltering process for the Clouds and the Earth's Radiant Energy System instrument
Improved rain event detection in commercial microwave link time series via combination with MSG SEVIRI data
A directional surface reflectance climatology determined from TROPOMI observations
Investigation of gravity waves using measurements from a sodium temperature/wind lidar operated in multi-direction mode
Retrieval pseudo BRDF-adjusted surface reflectance at 440 nm from Geostationary Environmental Monitoring Spectrometer (GEMS)
An improved BRDF hotspot model and its use in VLIDORT for studying the impact of atmospheric scattering on hotspot directional signatures in the atmosphere
A multi-decadal time series of upper stratospheric temperature profiles from Odin-OSIRIS limb-scattered spectra
Thermal tides in the middle atmosphere at mid-latitudes measured with a ground-based microwave Radiometer
CALOTRITON: a convective boundary layer height estimation algorithm from ultra-high-frequency (UHF) wind profiler data
Enhancing consistency of microphysical properties of precipitation across the melting layer in dual-frequency precipitation radar data
Development of a HAMSTER: Hyperspectral Albedo Maps dataset with high Spatial and TEmporal Resolution
Profiling the molecular destruction rates of temperature and humidity as well as the turbulent kinetic energy dissipation in the convective boundary layer
Forward operator for polarimetric radio occultation measurements
Assessing atmospheric gravity wave spectra in the presence of observational gaps
Joint 1DVar retrievals of tropospheric temperature and water vapor from Global Navigation Satellite System radio occultation (GNSS-RO) and microwave radiometer observations
Mispointing characterization and Doppler velocity correction for the conically scanning WIVERN Doppler radar
Radar and environment-based hail damage estimates using machine learning
A new power-law model for μ–Λ relationships in convective and stratiform rainfall
Suppression of precipitation bias in wind velocities from continuous-wave Doppler lidars
Difference spectrum fitting of the ion–neutral collision frequency from dual-frequency EISCAT measurements
Performance evaluation of three bio-optical models in aerosol and ocean color joint retrievals
Observation of horizontal temperature variations by a spatial heterodyne interferometer using single-sided interferograms
Drop Size Distribution Retrieval Using Dual Frequency Polarimetric Weather Radars
Version 8 IMK–IAA MIPAS temperatures from 12–15 µm spectra: Middle and Upper Atmosphere modes
GNSS radio occultation excess-phase processing for climate applications including uncertainty estimation
Impact analysis of processing strategies for long-term GPS zenith tropospheric delay (ZTD)
Irradiance and cloud optical properties from solar photovoltaic systems
Higher-order calibration on WindRAD (Wind Radar) scatterometer winds
On the polarimetric backscatter by a still or quasi-still wind turbine
OH airglow observations with two identical spectrometers: benefits of increased data homogeneity in the identification of variations induced by the 11-year solar cycle, the QBO, and other factors
Matteo Ottaviani, Gabriel Harris Myers, and Nan Chen
Atmos. Meas. Tech., 17, 4737–4756, https://doi.org/10.5194/amt-17-4737-2024, https://doi.org/10.5194/amt-17-4737-2024, 2024
Short summary
Short summary
We analyze simulated polarization observations over snow to investigate the capabilities of remote sensing to determine surface and atmospheric properties in snow-covered regions. Polarization measurements are demonstrated to aid in the determination of snow grain shape, ice crystal roughness, and the vertical distribution of impurities in the snow–atmosphere system, data that are critical for estimating snow albedo for use in climate models.
Yudong Gao, Lidou Huyan, Zheng Wu, and Bojun Liu
Atmos. Meas. Tech., 17, 4675–4686, https://doi.org/10.5194/amt-17-4675-2024, https://doi.org/10.5194/amt-17-4675-2024, 2024
Short summary
Short summary
A symmetric error model built by symmetric rain rates handles the non-Gaussian error structure of the reflectivity error. The accuracy and linearization of rain rates can further improve the Gaussianity.
José Alex Zenteno-Hernández, Adolfo Comerón, Federico Dios, Alejandro Rodríguez-Gómez, Constantino Muñoz-Porcar, Michaël Sicard, Noemi Franco, Andreas Behrendt, and Paolo Di Girolamo
Atmos. Meas. Tech., 17, 4687–4694, https://doi.org/10.5194/amt-17-4687-2024, https://doi.org/10.5194/amt-17-4687-2024, 2024
Short summary
Short summary
We study how the spectral characteristics of a solid-state laser in an atmospheric temperature profiling lidar using the Raman technique impact the temperature retrieval accuracy. We find that the spectral widening, with respect to a seeded laser, has virtually no impact, while crystal-rod temperature variations in the laser must be kept within a range of 1 K for the uncertainty in the atmospheric temperature below 1 K. The study is carried out through spectroscopy simulations.
Robert Reichert, Natalie Kaifler, and Bernd Kaifler
Atmos. Meas. Tech., 17, 4659–4673, https://doi.org/10.5194/amt-17-4659-2024, https://doi.org/10.5194/amt-17-4659-2024, 2024
Short summary
Short summary
Imagine you want to determine how quickly the pitch of a passing ambulance’s siren changes. If the vehicle is traveling slowly, the pitch changes only slightly, but if it is traveling fast, the pitch also changes rapidly. In a similar way, the wind in the middle atmosphere modulates the wavelength of atmospheric gravity waves. We have investigated the question of how strong the maximum wind may be so that the change in wavelength can still be determined with the help of wavelet transformation.
Qiang Guo, Yuning Liu, Xin Wang, and Wen Hui
Atmos. Meas. Tech., 17, 4613–4627, https://doi.org/10.5194/amt-17-4613-2024, https://doi.org/10.5194/amt-17-4613-2024, 2024
Short summary
Short summary
Non-linearity (NL) correction is a critical procedure to guarantee that the calibration accuracy of a spaceborne sensor approaches a reasonable level. Different from the classical method, a new NL correction method for a spaceborne Fourier transform spectrometer is proposed. To overcome the inaccurate linear coefficient from two-point calibration influencing NL correction, an iteration algorithm is established that is suitable for NL correction of both infrared and microwave sensors.
Yuanxin Pan, Grzegorz Kłopotek, Laura Crocetti, Rudi Weinacker, Tobias Sturn, Linda See, Galina Dick, Gregor Möller, Markus Rothacher, Ian McCallum, Vicente Navarro, and Benedikt Soja
Atmos. Meas. Tech., 17, 4303–4316, https://doi.org/10.5194/amt-17-4303-2024, https://doi.org/10.5194/amt-17-4303-2024, 2024
Short summary
Short summary
Crowdsourced smartphone GNSS data were processed with a dedicated data processing pipeline and could produce millimeter-level accurate estimates of zenith total delay (ZTD) – a critical atmospheric variable. This breakthrough not only demonstrates the feasibility of using ubiquitous devices for high-precision atmospheric monitoring but also underscores the potential for a global, cost-effective tropospheric monitoring network.
Almudena Velázquez Blázquez, Edward Baudrez, Nicolas Clerbaux, and Carlos Domenech
Atmos. Meas. Tech., 17, 4245–4256, https://doi.org/10.5194/amt-17-4245-2024, https://doi.org/10.5194/amt-17-4245-2024, 2024
Short summary
Short summary
The Broadband Radiometer measures shortwave and total-wave radiances filtered by the spectral response of the instrument. To obtain unfiltered solar and thermal radiances, the effect of the spectral response needs to be corrected for, done within the BM-RAD processor. Errors in the unfiltering are propagated into fluxes; thus, accurate unfiltering is required for their proper estimation (within BMA-FLX). Unfiltering errors are estimated to be <0.5 % for the shortwave and <0.1 % for the longwave.
Qihou Zhou, Yanlin Li, and Yun Gong
Atmos. Meas. Tech., 17, 4197–4209, https://doi.org/10.5194/amt-17-4197-2024, https://doi.org/10.5194/amt-17-4197-2024, 2024
Short summary
Short summary
We discuss several robust estimators to compute the variance of a normally distributed random variable to deal with interference. Compared to rank-based estimators, the methods based on the geometric mean are more accurate and are computationally more efficient. We apply three robust estimators to incoherent scatter power and velocity processing, along with the traditional sample mean estimator. The best estimator is a hybrid estimator that combines the sample mean and a robust estimator.
Zhao Shi, Yuxiang Wen, and Jianxin He
Atmos. Meas. Tech., 17, 4121–4135, https://doi.org/10.5194/amt-17-4121-2024, https://doi.org/10.5194/amt-17-4121-2024, 2024
Short summary
Short summary
The squall line is a type of convective system. Squall lines are often associated with damaging weather, so identifying and tracking squall lines plays an important role in early meteorological disaster warnings. A clustering-based method is proposed in this article. It can identify the squall lines within the radar scanning range with an accuracy rate of 95.93 %. It can also provide the three-dimensional structure and movement tracking results for each squall line.
Elizabeth N. Smith and Jacob T. Carlin
Atmos. Meas. Tech., 17, 4087–4107, https://doi.org/10.5194/amt-17-4087-2024, https://doi.org/10.5194/amt-17-4087-2024, 2024
Short summary
Short summary
Boundary-layer height observations remain sparse in time and space. In this study we create a new fuzzy logic method for synergistically combining boundary-layer height estimates from a suite of instruments. These estimates generally compare well to those from radiosondes; plus, the approach offers near-continuous estimates through the entire diurnal cycle. Suspected reasons for discrepancies are discussed. The code for the newly presented fuzzy logic method is provided for the community to use.
Laura Bianco, Bianca Adler, Ludovic Bariteau, Irina V. Djalalova, Timothy Myers, Sergio Pezoa, David D. Turner, and James M. Wilczak
Atmos. Meas. Tech., 17, 3933–3948, https://doi.org/10.5194/amt-17-3933-2024, https://doi.org/10.5194/amt-17-3933-2024, 2024
Short summary
Short summary
The Tropospheric Remotely Observed Profiling via Optimal Estimation physical retrieval is used to retrieve temperature and humidity profiles from various combinations of passive and active remote sensing instruments, surface platforms, and numerical weather prediction models. The retrieved profiles are assessed against collocated radiosonde in non-cloudy conditions to assess the sensitivity of the retrievals to different input combinations. Case studies with cloudy conditions are also inspected.
Björn Linder, Peter Preusse, Qiuyu Chen, Ole Martin Christensen, Lukas Krasauskas, Linda Megner, Manfred Ern, and Jörg Gumbel
Atmos. Meas. Tech., 17, 3829–3841, https://doi.org/10.5194/amt-17-3829-2024, https://doi.org/10.5194/amt-17-3829-2024, 2024
Short summary
Short summary
The Swedish research satellite MATS (Mesospheric Airglow/Aerosol Tomography and Spectroscopy) is designed to study atmospheric waves in the mesosphere and lower thermosphere. These waves perturb the temperature field, and thus, by observing three-dimensional temperature fluctuations, their properties can be quantified. This pre-study uses synthetic MATS data generated from a general circulation model to investigate how well wave properties can be retrieved.
Gia Huan Pham, Shu-Chih Yang, Chih-Chien Chang, Shu-Ya Chen, and Cheng Yung Huang
Atmos. Meas. Tech., 17, 3605–3623, https://doi.org/10.5194/amt-17-3605-2024, https://doi.org/10.5194/amt-17-3605-2024, 2024
Short summary
Short summary
This research examines the characteristics of low-level GNSS radio occultation (RO) refractivity bias over ocean and land and its dependency on the RO retrieval uncertainty, atmospheric temperature, and moisture. We propose methods for estimating the region-dependent refractivity bias. Our methods can be applied to calibrate the refractivity bias under different atmospheric conditions and thus improve the applications of the GNSS RO data in the deep troposphere.
Sanja Dmitrovic, Johnathan W. Hair, Brian L. Collister, Ewan Crosbie, Marta A. Fenn, Richard A. Ferrare, David B. Harper, Chris A. Hostetler, Yongxiang Hu, John A. Reagan, Claire E. Robinson, Shane T. Seaman, Taylor J. Shingler, Kenneth L. Thornhill, Holger Vömel, Xubin Zeng, and Armin Sorooshian
Atmos. Meas. Tech., 17, 3515–3532, https://doi.org/10.5194/amt-17-3515-2024, https://doi.org/10.5194/amt-17-3515-2024, 2024
Short summary
Short summary
This study introduces and evaluates a new ocean surface wind speed product from the NASA Langley Research Center (LARC) airborne High-Spectral-Resolution Lidar – Generation 2 (HSRL-2) during the NASA ACTIVATE mission. We show that HSRL-2 surface wind speed data are accurate when compared to ground-truth dropsonde measurements. Therefore, the HSRL-2 instrument is able obtain accurate, high-resolution surface wind speed data in airborne field campaigns.
Laura M. Tomkins, Sandra E. Yuter, and Matthew A. Miller
Atmos. Meas. Tech., 17, 3377–3399, https://doi.org/10.5194/amt-17-3377-2024, https://doi.org/10.5194/amt-17-3377-2024, 2024
Short summary
Short summary
We have created a new method to better identify enhanced features in radar data from winter storms. Unlike the clear-cut features seen in warm-season storms, features in winter storms are often fuzzier with softer edges. Our technique is unique because it uses two adaptive thresholds that change based on the background radar values. It can identify both strong and subtle features in the radar data and takes into account uncertainties in the detection process.
Eileen Päschke and Carola Detring
Atmos. Meas. Tech., 17, 3187–3217, https://doi.org/10.5194/amt-17-3187-2024, https://doi.org/10.5194/amt-17-3187-2024, 2024
Short summary
Short summary
Little noise in radial velocity Doppler lidar measurements can contribute to large errors in retrieved turbulence variables. In order to distinguish between plausible and erroneous measurements we developed new filter techniques that work independently of the choice of a specific threshold for the signal-to-noise ratio. The performance of these techniques is discussed both by means of assessing the filter results and by comparing retrieved turbulence variables versus independent measurements.
Luuk D. van der Valk, Miriam Coenders-Gerrits, Rolf W. Hut, Aart Overeem, Bas Walraven, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 2811–2832, https://doi.org/10.5194/amt-17-2811-2024, https://doi.org/10.5194/amt-17-2811-2024, 2024
Short summary
Short summary
Microwave links, often part of mobile phone networks, can be used to measure rainfall along the link path by determining the signal loss caused by rainfall. We use high-frequency data of multiple microwave links to recreate commonly used sampling strategies. For time intervals up to 1 min, the influence of sampling strategies on estimated rainfall intensities is relatively little, while for intervals longer than 5–15 min, the sampling strategy can have significant influences on the estimates.
Martin Lainer, Killian P. Brennan, Alessandro Hering, Jérôme Kopp, Samuel Monhart, Daniel Wolfensberger, and Urs Germann
Atmos. Meas. Tech., 17, 2539–2557, https://doi.org/10.5194/amt-17-2539-2024, https://doi.org/10.5194/amt-17-2539-2024, 2024
Short summary
Short summary
This study uses deep learning (the Mask R-CNN model) on drone-based photogrammetric data of hail on the ground to estimate hail size distributions (HSDs). Traditional hail sensors' limited areas complicate the full HSD retrieval. The HSD of a supercell event on 20 June 2021 is retrieved and contains > 18 000 hailstones. The HSD is compared to automatic hail sensor measurements and those of weather-radar-based MESHS. Investigations into ground hail melting are performed by five drone flights.
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
EGUsphere, https://doi.org/10.5194/egusphere-2024-1084, https://doi.org/10.5194/egusphere-2024-1084, 2024
Short summary
Short summary
We investigate the capabilities of a proposed satellite mission, CAIRT, for observing gravity waves throughout the middle atmosphere and present the necessary methodology for in-depth wave analysis. Our findings suggest that such a satellite mission is highly capable of resolving individual wave parameters and could give new insights into the role of gravity waves in the general atmospheric circulation and atmospheric processes.
Andrea Camplani, Daniele Casella, Paolo Sanò, and Giulia Panegrossi
Atmos. Meas. Tech., 17, 2195–2217, https://doi.org/10.5194/amt-17-2195-2024, https://doi.org/10.5194/amt-17-2195-2024, 2024
Short summary
Short summary
The paper describes a new machine-learning-based snowfall retrieval algorithm for Advanced Technology Microwave Sounder observations developed to retrieve high-latitude snowfall events. The main novelty of the approach is the radiometric characterization of the background surface at the time of the overpass, which is ancillary to the retrieval process. The algorithm shows a unique capability to retrieve snowfall in the environmental conditions typical of high latitudes.
Lusheng Liang, Wenying Su, Sergio Sejas, Zachary Eitzen, and Norman G. Loeb
Atmos. Meas. Tech., 17, 2147–2163, https://doi.org/10.5194/amt-17-2147-2024, https://doi.org/10.5194/amt-17-2147-2024, 2024
Short summary
Short summary
This paper describes an updated process to obtain unfiltered radiation from CERES satellite instruments by incorporating the most recent developments in radiative transfer modeling and ancillary input datasets (e.g., realistic representation of land surface radiation and climatology of surface temperatures and aerosols) during the past 20 years. The resulting global mean of instantaneous SW and LW fluxes is changed by less than 0.5 W m−2 with regional differences as large as 2.0 W m−2.
Maximilian Graf, Andreas Wagner, Julius Polz, Llorenç Lliso, José Alberto Lahuerta, Harald Kunstmann, and Christian Chwala
Atmos. Meas. Tech., 17, 2165–2182, https://doi.org/10.5194/amt-17-2165-2024, https://doi.org/10.5194/amt-17-2165-2024, 2024
Short summary
Short summary
Commercial microwave links (CMLs) can be used for rainfall retrieval. The detection of rainy periods in their attenuation time series is a crucial processing step. We investigate the usage of rainfall data from MSG SEVIRI for this task, compare this approach with existing methods, and introduce a novel combined approach. The results show certain advantages for SEVIRI-based methods, particularly for CMLs where existing methods perform poorly. Our novel combination yields the best performance.
Lieuwe G. Tilstra, Martin de Graaf, Victor J. H. Trees, Pavel Litvinov, Oleg Dubovik, and Piet Stammes
Atmos. Meas. Tech., 17, 2235–2256, https://doi.org/10.5194/amt-17-2235-2024, https://doi.org/10.5194/amt-17-2235-2024, 2024
Short summary
Short summary
This paper introduces a new surface albedo climatology of directionally dependent Lambertian-equivalent reflectivity (DLER) observed by TROPOMI on the Sentinel-5 Precursor satellite. The database contains monthly fields of DLER for 21 wavelength bands at a relatively high spatial resolution of 0.125 by 0.125 degrees. The anisotropy of the surface reflection is handled by parameterisation of the viewing angle dependence.
Bing Cao and Alan Z. Liu
Atmos. Meas. Tech., 17, 2123–2146, https://doi.org/10.5194/amt-17-2123-2024, https://doi.org/10.5194/amt-17-2123-2024, 2024
Short summary
Short summary
A narrow-band sodium lidar measures atmospheric waves but is limited to vertical variations. We propose to utilize phase shifts among observations from different laser beams to derive horizontal wave information. Two gravity wave packets were identified by this method. Both waves were found to interact with thin evanescent layers, partially reflected, but transmitted energy to higher altitudes. The method can detect more medium-frequency gravity waves for similar lidar systems worldwide.
Suyoung Sim, Sungwon Choi, Daeseong Jung, Jongho Woo, Nayeon Kim, Sungwoo Park, Honghee Kim, Ukkyo Jeong, Hyunkee Hong, and Kyung-Soo Han
EGUsphere, https://doi.org/10.5194/egusphere-2024-601, https://doi.org/10.5194/egusphere-2024-601, 2024
Short summary
Short summary
Our study presents a novel method for satellite-based surface reflectance estimation, using the bi-directional Reflectance Distribution Function (BRDF) model to derive Background Surface Reflectance (BSR) in UV-VIS hyperspectral satellite imagery. Through comprehensive analysis, we show that BSR offers higher accuracy and greater stability compared to Lambertian Equivalent Reflectance (LER) methods. This data can offer a promising tool for accurate climate analysis and air quality monitoring.
Xiaozhen Xiong, Xu Liu, Robert Spurr, Ming Zhao, Qiguang Yang, Wan Wu, and Liqiao Lei
Atmos. Meas. Tech., 17, 1965–1978, https://doi.org/10.5194/amt-17-1965-2024, https://doi.org/10.5194/amt-17-1965-2024, 2024
Short summary
Short summary
The term “hotspot” refers to the sharp increase in reflectance occurring when incident (solar) and reflected (viewing) directions coincide in the backscatter direction. The accurate simulation of hotspot directional signatures is important for many remote sensing applications, but current models typically require large values of computations to represent the hotspot accurately. This paper provides a numerically improved hotspot BRDF model that converges much faster and is used in VLIDORT.
Daniel Zawada, Kimberlee Dubé, Taran Warnock, Adam Bourassa, Susann Tegtmeier, and Douglas Degenstein
Atmos. Meas. Tech., 17, 1995–2010, https://doi.org/10.5194/amt-17-1995-2024, https://doi.org/10.5194/amt-17-1995-2024, 2024
Short summary
Short summary
There remain large uncertainties in long-term changes of stratospheric–atmospheric temperatures. We have produced a time series of more than 20 years of satellite-based temperature measurements from the OSIRIS instrument in the upper–middle stratosphere. The dataset is publicly available and intended to be used for a better understanding of changes in stratospheric temperatures.
Witali Krochin, Axel Murk, and Gunter Stober
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-42, https://doi.org/10.5194/amt-2024-42, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Atmospheric tides are global-scale oscillations with periods of a fraction of a day. Their observation in the middle atmosphere is challenging and rare, as it requires continuous measurements with a high temporal resolution. In this manuscript, temperature time series of a ground-based microwave radiometer were analyzed with a spectral filter to derive thermal tide amplitudes and phases in an altitude range of 20–50 km at the geographical location of Payerne (Switzerland).
Alban Philibert, Marie Lothon, Julien Amestoy, Pierre-Yves Meslin, Solène Derrien, Yannick Bezombes, Bernard Campistron, Fabienne Lohou, Antoine Vial, Guylaine Canut-Rocafort, Joachim Reuder, and Jennifer K. Brooke
Atmos. Meas. Tech., 17, 1679–1701, https://doi.org/10.5194/amt-17-1679-2024, https://doi.org/10.5194/amt-17-1679-2024, 2024
Short summary
Short summary
We present a new algorithm, CALOTRITON, for the retrieval of the convective boundary layer depth with ultra-high-frequency radar measurements. CALOTRITON is partly based on the principle that the top of the convective boundary layer is associated with an inversion and a decrease in turbulence. It is evaluated using ceilometer and radiosonde data. It is able to qualify the complexity of the vertical structure of the low troposphere and detect internal or residual layers.
Kamil Mroz, Alessandro Battaglia, and Ann M. Fridlind
Atmos. Meas. Tech., 17, 1577–1597, https://doi.org/10.5194/amt-17-1577-2024, https://doi.org/10.5194/amt-17-1577-2024, 2024
Short summary
Short summary
In this study, we examine the extent to which radar measurements from space can inform us about the properties of clouds and precipitation. Surprisingly, our analysis showed that the amount of ice turning into rain was lower than expected in the current product. To improve on this, we came up with a new way to extract information about the size and concentration of particles from radar data. As long as we use this method in the right conditions, we can even estimate how dense the ice is.
Giulia Roccetti, Luca Bugliaro, Felix Gödde, Claudia Emde, Ulrich Hamann, Mihail Manev, Michael Fritz Sterzik, and Cedric Wehrum
EGUsphere, https://doi.org/10.5194/egusphere-2024-167, https://doi.org/10.5194/egusphere-2024-167, 2024
Short summary
Short summary
The amount of sunlight reflected by Earth’s surface (albedo) is crucial for its radiative system. Satellite instruments offer detailed spatial and temporal albedo maps, but only in seven specific wavelength bands. We generate albedo maps that fully cover the visible and near-infrared range with a machine learning algorithm. These provide information about how the reflectivity of different land surfaces vary through the year. Our dataset enhances the understanding of Earth's energy balance.
Volker Wulfmeyer, Christoph Senff, Florian Späth, Andreas Behrendt, Diego Lange, Robert M. Banta, W. Alan Brewer, Andreas Wieser, and David D. Turner
Atmos. Meas. Tech., 17, 1175–1196, https://doi.org/10.5194/amt-17-1175-2024, https://doi.org/10.5194/amt-17-1175-2024, 2024
Short summary
Short summary
A simultaneous deployment of Doppler, temperature, and water-vapor lidar systems is used to provide profiles of molecular destruction rates and turbulent kinetic energy (TKE) dissipation in the convective boundary layer (CBL). The results can be used for the parameterization of turbulent variables, TKE budget analyses, and the verification of weather forecast and climate models.
Daisuke Hotta, Katrin Lonitz, and Sean Healy
Atmos. Meas. Tech., 17, 1075–1089, https://doi.org/10.5194/amt-17-1075-2024, https://doi.org/10.5194/amt-17-1075-2024, 2024
Short summary
Short summary
Global Navigation Satellite System (GNSS) polarimetric radio occultation (PRO) is a new type of GNSS observations that can detect heavy precipitation along the ray path between the emitter and receiver satellites. As a first step towards using these observations in numerical weather prediction (NWP), we developed a computer code that simulates GNSS-PRO observations from forecast fields produced by an NWP model. The quality of the developed simulator is evaluated with a number of case studies.
Mohamed Mossad, Irina Strelnikova, Robin Wing, and Gerd Baumgarten
Atmos. Meas. Tech., 17, 783–799, https://doi.org/10.5194/amt-17-783-2024, https://doi.org/10.5194/amt-17-783-2024, 2024
Short summary
Short summary
This numerical study addresses observational gaps' impact on atmospheric gravity wave spectra. Three methods, fast Fourier transform (FFT), generalized Lomb–Scargle periodogram (GLS), and Haar structure function (HSF), were tested on synthetic data. HSF is best for spectra with negative slopes. GLS excels for flat and positive slopes and identifying dominant frequencies. Accurately estimating these aspects is crucial for understanding gravity wave dynamics and energy transfer in the atmosphere.
Kuo-Nung Wang, Chi O. Ao, Mary G. Morris, George A. Hajj, Marcin J. Kurowski, Francis J. Turk, and Angelyn W. Moore
Atmos. Meas. Tech., 17, 583–599, https://doi.org/10.5194/amt-17-583-2024, https://doi.org/10.5194/amt-17-583-2024, 2024
Short summary
Short summary
In this article, we described a joint retrieval approach combining two techniques, RO and MWR, to obtain high vertical resolution and solve for temperature and moisture independently. The results show that the complicated structure in the lower troposphere can be better resolved with much smaller biases, and the RO+MWR combination is the most stable scenario in our sensitivity analysis. This approach is also applied to real data (COSMIC-2/Suomi-NPP) to show the promise of joint RO+MWR retrieval.
Filippo Emilio Scarsi, Alessandro Battaglia, Frederic Tridon, Paolo Martire, Ranvir Dhillon, and Anthony Illingworth
Atmos. Meas. Tech., 17, 499–514, https://doi.org/10.5194/amt-17-499-2024, https://doi.org/10.5194/amt-17-499-2024, 2024
Short summary
Short summary
The WIVERN mission, one of the two candidates to be the ESA's Earth Explorer 11 mission, aims at providing measurements of horizontal winds in cloud and precipitation systems through a conically scanning W-band Doppler radar. This work discusses four methods that can be used to characterize and correct the Doppler velocity error induced by the antenna mispointing. The proposed methodologies can be extended to other Doppler concepts featuring conically scanning or slant viewing Doppler systems.
Luis Ackermann, Joshua Soderholm, Alain Protat, Rhys Whitley, Lisa Ye, and Nina Ridder
Atmos. Meas. Tech., 17, 407–422, https://doi.org/10.5194/amt-17-407-2024, https://doi.org/10.5194/amt-17-407-2024, 2024
Short summary
Short summary
The paper addresses the crucial topic of hail damage quantification using radar observations. We propose a new radar-derived hail product that utilizes a large dataset of insurance hail damage claims and radar observations. A deep neural network was employed, trained with local meteorological variables and the radar observations, to better quantify hail damage. Key meteorological variables were identified to have the most predictive capability in this regard.
Christos Gatidis, Marc Schleiss, and Christine Unal
Atmos. Meas. Tech., 17, 235–245, https://doi.org/10.5194/amt-17-235-2024, https://doi.org/10.5194/amt-17-235-2024, 2024
Short summary
Short summary
A common method to retrieve important information about the microphysical structure of rain (DSD retrievals) requires a constrained relationship between the drop size distribution parameters. The most widely accepted empirical relationship is between μ and Λ. The relationship shows variability across the different types of rainfall (convective or stratiform). The new proposed power-law model to represent the μ–Λ relation provides a better physical interpretation of the relationship coefficients.
Liqin Jin, Jakob Mann, Nikolas Angelou, and Mikael Sjöholm
Atmos. Meas. Tech., 16, 6007–6023, https://doi.org/10.5194/amt-16-6007-2023, https://doi.org/10.5194/amt-16-6007-2023, 2023
Short summary
Short summary
By sampling the spectra from continuous-wave Doppler lidars very fast, the rain-induced Doppler signal can be suppressed and the bias in the wind velocity estimation can be reduced. The method normalizes 3 kHz spectra by their peak values before averaging them down to 50 Hz. Over 3 h, we observe a significant reduction in the bias of the lidar data relative to the reference sonic data when the largest lidar focus distance is used. The more it rains, the more the bias is reduced.
Florian Günzkofer, Gunter Stober, Dimitry Pokhotelov, Yasunobu Miyoshi, and Claudia Borries
Atmos. Meas. Tech., 16, 5897–5907, https://doi.org/10.5194/amt-16-5897-2023, https://doi.org/10.5194/amt-16-5897-2023, 2023
Short summary
Short summary
Electric currents in the ionosphere can impact both satellite and ground-based infrastructure. These currents depend strongly on the collisions of ions and neutral particles. Measuring ion–neutral collisions is often only possible via certain assumptions. The direct measurement of ion–neutral collision frequencies is possible with multifrequency incoherent scatter radar measurements. This paper presents one analysis method of such measurements and discusses its advantages and disadvantages.
Neranga K. Hannadige, Peng-Wang Zhai, Meng Gao, Yongxiang Hu, P. Jeremy Werdell, Kirk Knobelspiesse, and Brian Cairns
Atmos. Meas. Tech., 16, 5749–5770, https://doi.org/10.5194/amt-16-5749-2023, https://doi.org/10.5194/amt-16-5749-2023, 2023
Short summary
Short summary
We evaluated the impact of three ocean optical models with different numbers of free parameters on the performance of an aerosol and ocean color remote sensing algorithm using the multi-angle polarimeter (MAP) measurements. It was demonstrated that the three- and seven-parameter bio-optical models can be used to accurately represent both open and coastal waters, whereas the one-parameter model has smaller retrieval uncertainty over open water.
Konstantin Ntokas, Jörn Ungermann, Martin Kaufmann, Tom Neubert, and Martin Riese
Atmos. Meas. Tech., 16, 5681–5696, https://doi.org/10.5194/amt-16-5681-2023, https://doi.org/10.5194/amt-16-5681-2023, 2023
Short summary
Short summary
A nanosatellite was developed to obtain 1-D vertical temperature profiles in the mesosphere and lower thermosphere, which can be used to derive wave parameters needed for atmospheric models. A new processing method is shown, which allows one to extract two 1-D temperature profiles. The location of the two profiles is analyzed, as it is needed for deriving wave parameters. We show that this method is feasible, which however will increase the requirements of an accurate calibration and processing.
Daniel Durbin, Yadong Wang, and Pao-Liang Chang
EGUsphere, https://doi.org/10.5194/egusphere-2023-2220, https://doi.org/10.5194/egusphere-2023-2220, 2023
Short summary
Short summary
A method for determining Drop Size Distributions (DSDs) for rain using radar measurements from two frequencies at two polarizations is presented. Following some preprocessing and quality control, radar measurements are incorporated into a model which uses swarm intelligence to seek the most suitable DSD which would produce the input measures.
Maya García-Comas, Bernd Funke, Manuel López-Puertas, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Andrea Linden, Belén Martínez-Mondéjar, Gabriele P. Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 16, 5357–5386, https://doi.org/10.5194/amt-16-5357-2023, https://doi.org/10.5194/amt-16-5357-2023, 2023
Short summary
Short summary
We have released version 8 of MIPAS IMK–IAA temperatures and pointing information retrieved from MIPAS Middle and Upper Atmosphere mode version 8.03 calibrated spectra, covering 20–115 km altitude. We considered non-local thermodynamic equilibrium emission explicitly for each limb scan, essential to retrieve accurate temperatures above the mid-mesosphere. Comparisons of this temperature dataset with SABER measurements show excellent agreement, improving those of previous MIPAS versions.
Josef Innerkofler, Gottfried Kirchengast, Marc Schwärz, Christian Marquardt, and Yago Andres
Atmos. Meas. Tech., 16, 5217–5247, https://doi.org/10.5194/amt-16-5217-2023, https://doi.org/10.5194/amt-16-5217-2023, 2023
Short summary
Short summary
Atmosphere remote sensing using GNSS radio occultation provides a highly valuable basis for atmospheric and climate science. For the highest-quality demands, the Wegener Center set up a rigorous system for processing low-level measurement data. This excess-phase processing setup includes integrated quality control and uncertainty estimation. It was successfully evaluated and inter-compared, ensuring the capability of producing reliable long-term data records for climate applications.
Jingna Bai, Yidong Lou, Weixing Zhang, Yaozong Zhou, Zhenyi Zhang, Chuang Shi, and Jingnan Liu
Atmos. Meas. Tech., 16, 5249–5259, https://doi.org/10.5194/amt-16-5249-2023, https://doi.org/10.5194/amt-16-5249-2023, 2023
Short summary
Short summary
Homogenized atmospheric water vapor data are an important prerequisite for climate analysis. Compared to other techniques, GPS has an inherent homogeneity advantage but requires reprocessing and homogenization to eliminate impacts of applied strategy and observation environmental changes. The low-elevation cut-off angles are suggested for the best estimates of zenith tropospheric delay (ZTD) reprocessing time series when compared to homogenized radiosonde data or ERA5 reference time series.
James Barry, Stefanie Meilinger, Klaus Pfeilsticker, Anna Herman-Czezuch, Nicola Kimiaie, Christopher Schirrmeister, Rone Yousif, Tina Buchmann, Johannes Grabenstein, Hartwig Deneke, Jonas Witthuhn, Claudia Emde, Felix Gödde, Bernhard Mayer, Leonhard Scheck, Marion Schroedter-Homscheidt, Philipp Hofbauer, and Matthias Struck
Atmos. Meas. Tech., 16, 4975–5007, https://doi.org/10.5194/amt-16-4975-2023, https://doi.org/10.5194/amt-16-4975-2023, 2023
Short summary
Short summary
Measured power data from solar photovoltaic (PV) systems contain information about the state of the atmosphere. In this work, power data from PV systems in the Allgäu region in Germany were used to determine the solar irradiance at each location, using state-of-the-art simulation and modelling. The results were validated using concurrent measurements of the incoming solar radiation in each case. If applied on a wider scale, this algorithm could help improve weather and climate models.
Zhen Li, Ad Stoffelen, Anton Verhoef, Zhixiong Wang, Jian Shang, and Honggang Yin
Atmos. Meas. Tech., 16, 4769–4783, https://doi.org/10.5194/amt-16-4769-2023, https://doi.org/10.5194/amt-16-4769-2023, 2023
Short summary
Short summary
WindRAD (Wind Radar) is the first dual-frequency rotating fan-beam scatterometer in orbit. We observe non-linearity in the backscatter distribution. Therefore, higher-order calibration (HOC) is proposed, which removes the non-linearities per incidence angle. The combination of HOC and NOCant is discussed. It can remove not only the non-linearity but also the anomalous harmonic azimuth dependencies caused by the antenna rotation; hence the optimal winds can be achieved with this combination.
Marco Gabella, Martin Lainer, Daniel Wolfensberger, and Jacopo Grazioli
Atmos. Meas. Tech., 16, 4409–4422, https://doi.org/10.5194/amt-16-4409-2023, https://doi.org/10.5194/amt-16-4409-2023, 2023
Short summary
Short summary
A still wind turbine observed with a fixed-pointing radar antenna has shown distinctive polarimetric signatures: the correlation coefficient between the two orthogonal polarization states was persistently equal to 1. The differential reflectivity and the radar reflectivity factors were also stable in time. Over 2 min (2000 Hz, 128 pulses were used; consequently, the sampling time was 64 ms), the standard deviation of the differential backscattering phase shift was only a few degrees.
Carsten Schmidt, Lisa Küchelbacher, Sabine Wüst, and Michael Bittner
Atmos. Meas. Tech., 16, 4331–4356, https://doi.org/10.5194/amt-16-4331-2023, https://doi.org/10.5194/amt-16-4331-2023, 2023
Short summary
Short summary
Two identical instruments in a parallel setup were used to observe the mesospheric OH airglow for more than 10 years (2009–2020) at 47.42°N, 10.98°E. This allows unique analyses of data quality aspects and their impact on the obtained results. During solar cycle 24 the influence of the sun was strong (∼6 K per 100 sfu). A quasi-2-year oscillation (QBO) of ±1 K is observed mainly during the maximum of the solar cycle. Unlike the stratospheric QBO the variation has a period of or below 24 months.
Cited articles
Ackerman, S., Frey, R., Strabala, K., Liu, Y., Gumley, L., Baum, B., and Menzel, P.: VIIRS/SNPP Cloud Mask and Spectral Test Results 6-Min L2 Swath 750m, Version-1, NASA Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC) [data set], Goddard Space Flight Center, USA, https://doi.org/10.5067/VIIRS/CLDMSK_L2_VIIRS_SNPP.001, 2019.
Aeris: The IASI O3 products processed with FORLI-O3 v20151001, Aeris [data set], https://iasi.aeris-data.fr/o3/, last access: 22 August 2022a.
Aeris: The IASI CO products processed with FORLI-CO v20151001, Aeris [data set], https://iasi.aeris-data.fr/co/, last access: 2 August 2022b.
ASDC: MOPITT version 8 CO product, ASDC [data set], https://asdc.larc.nasa.gov/data/MOPITT/MOP02J.008/2016.01.14/.MOPITT/ (last access: 14 August 2021), 2022.
August, T., Klaes, D., Schlüssel, P., Hultberg, T., Crapeau, M., Arriaga, A., O'Carroll, A., Coppens, D., Munro R., and Calbet, X.: IASI on Metop-A: Operational Level 2 retrievals after five years in orbit, J. Quant. Spectrosc. Ra., 113, 1340–1371, 2012.
Aumann, H. H., Chen, X., Fishbein, E., Geer, A., Havemann, S., Huang, X., Liu, X., Liuzzi, G., DeSouza-Machado, S., Manning, E. M., Masiello, G., Matricardi, M., Moradi, I., Natraj, V., Serio, C., Strow, L., Vidot, J., Chris Wilson, R., Wu, W., Yang, Q., and Yung, Y. L.: Evaluation of radiative transfer models with clouds, J. Geophys. Res.-Atmos., 123, 6142–6157, https://doi.org/10.1029/2017JD028063, 2018.
Baldridge, A. M., Hook, S. J., Grove, C. I., and Rivera, G.: The ASTER Spectral Library Version 2.0, Remote Sens. Environ., 113, 711–715, 2009.
Barnet, C.: Sounder SIPS: Suomi NPP CrIMSS Level 2 CLIMCAPS Full Spectral Resolution: Atmosphere cloud and surface geophysical state V2, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], Greenbelt, MD, USA, https://doi.org/10.5067/62SPJFQW5Q9B, 2019.
Barnet, C. D., Divakarla, M., Gambacorta, A., Iturbide-Sanchez, F., Nalli, N. R., Pryor, K., Tan, C., Wang, T., Warner, J., Zhang, K., and Zhu, T.: NOAA Unique CrIS/ATMS Processing System (NUCAPS): Algorithm Theoretical Basis Documentation, NOAA NESDIS STAR, Version 3.1, https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/ATBD_NUCAPS_v3.1.pdf (last access: 21 April 2021), 2021.
Buchholz, R. R., Emmons, L. K., Tilmes, S., and the CESM2 Development Team: CESM2.1/CAM-chem Instantaneous Output for Boundary Conditions, UCAR/NCAR – Atmospheric Chemistry Observations and Modeling Laboratory [data set], https://doi.org/10.5065/NMP7-EP60, 2019.
Boynard, A., Hurtmans, D., Garane, K., Goutail, F., Hadji-Lazaro, J., Koukouli, M. E., Wespes, C., Vigouroux, C., Keppens, A., Pommereau, J.-P., Pazmino, A., Balis, D., Loyola, D., Valks, P., Sussmann, R., Smale, D., Coheur, P.-F., and Clerbaux, C.: Validation of the IASI FORLI/EUMETSAT ozone products using satellite (GOME-2), ground-based (Brewer–Dobson, SAOZ, FTIR) and ozonesonde measurements, Atmos. Meas. Tech., 11, 5125–5152, https://doi.org/10.5194/amt-11-5125-2018, 2018.
Chahine, M. T., Pagano, T. S., Aumann, H. H., Atlas, R., Barnet, C., Blaisdell, J., Chen, L., Divakarla, M., Fetzer, E. J., Goldberg, M., Gautier, C., Granger, S., Hannon, S., Irion, F. W., Kakar R., Kalnay, E., Lambrigsten, B. H., Lee, S. Marshall, J. L., Mcmillan, W. W., Mcmillin, L., Olsen, E. T., Revercomb, H, Rosenkranz, P., Smith, W. L., Staelin, D., Strow, L. L., Susskind, J., Tobin, D., Wolf, W., and Zhou, L.: AIRS: Improving weather forecasting and providing new data on greenhouse gases, B. Am. Meteorol. Soc., 87, 911–926, 2006.
Chahine, M. T., Chen, L., Dimotakis, P., Jiang, X., Li, Q., Olsen, E. T., Pagano, T., Randerson, J., and Yung, Y. L.: Satellite remote sounding of mid-tropospheric CO2, Geophys. Res. Lett., 35, L17807, https://doi.org/10.1029/2008GL035022, 2008.
Cousins, D. and Smith, W. L.: National Polar-Orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I), in: Proceedings from the SPIE, Applicatoin of Lidar to Current Atmospheric Topics II Conference, San Diego, CA, 31 October 1997, 3127, 323–331, 1997.
Dee, D. P. and Uppala, S.: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis, Q. J. Roy. Meteor. Soc., 135, 1830–1841, https://doi.org/10.21957/8si33ip1, 2009.
DeSouza-Machado, S., Strow, L. L., Tangborn, A., Huang, X., Chen, X., Liu, X., Wu, W., and Yang, Q.: Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm, Atmos. Meas. Tech., 11, 529–550, https://doi.org/10.5194/amt-11-529-2018, 2018.
Didan, K.: MODIS/Aqua Vegetation Indices Monthly L3 Global 0.05Deg CMG V061, NASA EOSDIS Land Processes Distributed Active Archive Center [datsa set], https://doi.org/10.5067/MODIS/MYD13C2.061, 2021.
Didan, K. and Huete, A.: MOD13C2 MODIS/Terra Vegetation Indices Monthly L3 Global 0.05Deg CMG., NASA LP DAAC [data set], https://doi.org/10.5067/MODIS/MOD13C2.006, 2015.
Dlugokencky, E. J., Steele, L. P., Lang, P. M., and Masarie, K. A.: The growth rate and distribution of atmospheric methane, J. Geophys. Res., 99, 17021–17043, 1994.
Elsaesser, G., Jiang, J., Su, H., and Schiro, K.: AIRS vs MERRA-2: when and where do they both agree on the impact of convection on PBL thermodynamics?, NASA Sounder Science Team Meeting, 25–27 September 2020, College Park, MD, 2019.
Ern, M., Hoffmann, L., and Preusse, P.: Directional gravity wave momentum fluxes in the stratosphere derived from highresolution AIRS temperature data, Geophys. Res. Lett., 44, 475–485, https://doi.org/10.1002/2016GL072007, 2017.
Fetzer, E., Qing, Y., Manipon, G., and Wang, L.: SNPP CrIS-VIIRS 750-m Matchup Indexes V1, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], Greenbelt, MD, USA, https://doi.org/10.5067/MEASURES/WVCC/DATA211, 2022.
Fu, D., Kulawik, S. S., Miyazaki, K., Bowman, K. W., Worden, J. R., Eldering, A., Livesey, N. J., Teixeira, J., Irion, F. W., Herman, R. L., Osterman, G. B., Liu, X., Levelt, P. F., Thompson, A. M., and Luo, M.: Retrievals of tropospheric ozone profiles from the synergism of AIRS and OMI: methodology and validation, Atmos. Meas. Tech., 11, 5587–5605, https://doi.org/10.5194/amt-11-5587-2018, 2018.
Gettelman, A. and Fu, Q.: Observed and Simulated upper-tropospheric water vapor feedback, J. Climate, 21, 3282–3289, https://doi.org/10.1175/2007JCLI2142.1, 2008.
George, M., Clerbaux, C., Hurtmans, D., Turquety, S., Coheur, P.-F., Pommier, M., Hadji-Lazaro, J., Edwards, D. P., Worden, H., Luo, M., Rinsland, C., and McMillan, W.: Carbon monoxide distributions from the IASI/METOP mission: evaluation with other space-borne remote sensors, Atmos. Chem. Phys., 9, 8317–8330, https://doi.org/10.5194/acp-9-8317-2009, 2009.
Hall, D. K. and Riggs, G. A.: MODIS/Aqua Snow Cover Daily L3 Global 0.05Deg CMG, Version 61, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], Boulder, Colorado USA, https://doi.org/10.5067/MODIS/MYD10C1.061, 2021.
Han, Y., Delst, P., Liu, Q., Weng, F., Yan, B., and Derber, J.: CRTM: v2.4.0 User Guide, NOAA/JCSDA, https://github.com/JCSDA/crtm/wiki/files/CRTM_User_Guide.pdf (last access: 28 October 2023), 2020.
Heidinger, A. K. and Li, Y.: AWG Cloud Height Algorithm Theoretical Basis Document, NOAA NESDIS CENTER for SATELLITE APPLICATIONS and RESEARCH, https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Enterprise/ATBD_Enterprise_Cloud_Height_v3.1_Mar2017.pdf (last access: 11 June 2013), 2017.
Heidinger, A. K., Bearson, N., Foster, M. J., Li, Y., Wanzong, S., Ackerman, S., Holz, R. E., Platnick, S., and Meyer, K.: Using Sounder Data to Improve Cirrus Cloud Height Estimation from Satellite Imagers, J. Atmos. Ocean. Tech., 1331–1342, https://doi.org/10.1175/JTECH-D-18-0079.1, 2019.
Hewison, J. and English, S. J.: Airborne Retrievals of Snow and Ice Surface Emissivity at Millimetre Wavelengths, IEEE T. Geosci. Remote, 37, 1871–1879, https://doi.org/10.1109/36.774700, 1999.
Hulley, G., Malakar, N., Hughes, T., Islam, T., Hook, S.: Moderate Resolution Imaging Spectroradiometer (MODIS) MOD21 Land Surface Temperature and Emissivity Algorithm Theoretical Basis Document, USGS, https://modis-land.gsfc.nasa.gov/pdf/MOD21_ATBD_Hulley_v2.4.pdf (last access: 8 May 2017), 2016.
Hurtmans, D., Coheur, P.-F, Wespes, C., Clarisse, L., Scharf, O., Clerbaux, C., Hadji-Lazaro, J., George, M., and Turquety, S.: FORLI radiative transfer and retrieval code for IASI, J. Quant. Spectrosc. Ra., 113, 1391–1408, https://doi.org/10.1016/j.jqsrt.2012.02.036, 2012.
Irion, F. W., Kahn, B. H., Schreier, M. M., Fetzer, E. J., Fishbein, E., Fu, D., Kalmus, P., Wilson, R. C., Wong, S., and Yue, Q.: Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS, Atmos. Meas. Tech., 11, 971–995, https://doi.org/10.5194/amt-11-971-2018, 2018.
Jaross, G.: OMPS-NPP L2 NM Ozone (O3) Total Column swath orbital V2, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], Greenbelt, MD, USA, https://doi.org/10.5067/0WF4HAAZ0VHK, 2017.
Johnson, M. S., Liu, X., Zoogman, P., Sullivan, J., Newchurch, M. J., Kuang, S., Leblanc, T., and McGee, T.: Evaluation of potential sources of a priori ozone profiles for TEMPO tropospheric ozone retrievals, Atmos. Meas. Tech., 11, 3457–3477, https://doi.org/10.5194/amt-11-3457-2018, 2018.
Jones, T. A. and Stensrud, D. J.: Assimilating AIRS temperature and mixing ratio profiles using an ensemble kalman filter approach for convective-scale forecasts, Weather Forecast., 27, 541–564, 2012.
Kahn, B. H., Fishbein, E., Nasiri, S. L., Eldering, A., Fetzer, E. J., Garay, M. J., and Lee, S.-Y.: The radiative consistency of Atmospheric Infrared Sounder and Moderate Resolution Imaging Spectroradiometer cloud retrievals, J. Geophys. Res., 112, D09201, https://doi.org/10.1029/2006JD007486, 2007.
LeMarshall, J., Jung, J., Derber, J., Chahine, M., Treadon, R., Lord, S. J., Goldberg, M., Wolf, W., Liu, H. C., Joiner, J., Woollen, J., Todling, R., vab Delst, P., and Tahara, Y.: Improving global analysis and forecasting with AIRS, Bull. Am. Meteorol. Soc., 87, 891–895, 2006.
Leroy, S. S., Ao, C. O., and Verkhoglyadova, O. P.: Temperature trends and anomalies in modern satellite data: Infrared sounding and GPS radio occultation, J. Geophys. Res.-Atmos., 123, 11431–11444, https://doi.org/10.1029/2018JD028990, 2018.
Li, Y., Baum, B. A., Heidinger, A. K., Menzel, W. P., and Weisz, E.: Improvement in cloud retrievals from VIIRS through the use of infrared absorption channels constructed from VIIRS+CrIS data fusion, Atmos. Meas. Tech., 13, 4035–4049, https://doi.org/10.5194/amt-13-4035-2020, 2020.
Liu, Q., Weng, F., and English, S. J.: An Improved Fast Microwave Water Emissivity Model, IEEE T. Geosci. Remote, 49, 1238–1250, https://doi.org/10.1109/TGRS.2010.2064779, 2011.
Liu, Q., van Delst, P., Chen, Y., Groff, D., Han, Y., Collard, A., Weng, F., Boukabara, S.-A., and Derber, J.: Community radiative transfer model for radiance assimilation and applications, in: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012, IEEE, 3700–3703, https://doi.org/10.1109/IGARSS.2012.6350612, 2012.
Liu, R., Su, H., Liou, K.-N., Jiang, J. H., Gu, Y., Liu, S. C., and Shiu, C.-J.: An assessment of tropospheric water vapor feedback using radiative kernels, J. Geophys. Res.-Atmos., 123, 1499–1509, https://doi.org/10.1002/2017JD027512, 2018.
Liu, X., Smith, W. L., Zhou, D. K., and Larar, A.: Principal component-based radiative transfer model for hyperspectral sensors: theoretical concept, Appl. Optics, 45, 201–209, https://doi.org/10.1364/AO.45.000201, 2006.
Liu, X., Zhou, D. K., Larar, A., Smith, W. L., and Mango, S. A.: Case-study of a principal-component-based radiative transfer forward model and retrieval algorithm using EAQUATE data, Q. J. Roy. Meteor. Soc., 133, 243–256, https://doi.org/10.1002/qj.156, 2007.
Liu, X., Zhou, D. K., Larar, A. M., Smith, W. L., Schluessel, P., Newman, S. M., Taylor, J. P., and Wu, W.: Retrieval of atmospheric profiles and cloud properties from IASI spectra using super-channels, Atmos. Chem. Phys., 9, 9121–9142, https://doi.org/10.5194/acp-9-9121-2009, 2009.
Liu, X., Wu, W., Wielicki, B. A., Yang, Q., Kizer, S. H., Huang, X., Chen, X., Kato, S., Shea, Y. L., and Mlynczak, M. G.: Spectrally Dependent CLARREO Infrared Spectrometer Calibration Requirement for Climate Change Detection, J. Climate, 30, 3979–3998, 2017.
Lynch, R., Moncet, J.-L., and Liu, X.: Efficient nonlinear inversion for atmospheric sounding and other applications, Appl. Optics, 48, 1790–1796, 2009.
Masuda, K., Takashima, T., and Takayama, Y.: Emissivity of pure water and sea waters for the sea surface in the infrared window regions, Remote Sens. Environ., 24, 313–329, 1988.
McCoy, D. T., Field, P. R., Elsaesser, G. S., Bodas-Salcedo, A., Kahn, B. H., Zelinka, M. D., Kodama, C., Mauritsen, T., Vanniere, B., Roberts, M., Vidale, P. L., Saint-Martin, D., Voldoire, A., Haarsma, R., Hill, A., Shipway, B., and Wilkinson, J.: Cloud feedbacks in extratropical cyclones: insight from long-term satellite data and high-resolution global simulations, Atmos. Chem. Phys., 19, 1147–1172, https://doi.org/10.5194/acp-19-1147-2019, 2019.
Meerdink, S. K., Hook, S. J., Roberts, D. A., and Abbott, E. A.: The ECOSTRESS spectral library version 1.0, Remote Sens. Environ., 230, 1–8, 2019.
Nalli, N. R., Minnett, P. J., and Van Delst, P.: Emissivity and reflection model for calculating unpolarized isotropic water surface-leaving radiance in the infrared. I: Theoretical development and calculations, Appl. Optics, 47, 3701–3721, https://doi.org/10.1364/AO.47.003701, 2008a.
Nalli, N. R, Minnett, P. J., Maddy, E., McMillan, W. W., and Goldberg, M. D.: Emissivity and reflection model for calculating unpolarized isotropic water surface-leaving radiance in the infrared. 2: Validation using Fourier transform spectrometers, Appl. Optics, 47, 4649–4671, https://doi.org/10.1364/AO.47.004649, 2008b.
Nalli, N. R., Tan, C., Warner, J., Divakarla, M., Gambacorta, A., Wilson, M., Zhu, T., Wang, T., Wei, Z., Pryor, K., Kalluri, S., Zhou, L., Sweeney, C., Baier, B. C., McKain, K., Wunch, D., Deutscher, N. M., Hase, F., Iraci, L. T., Kivi, R., Morino, I., Notholt, J., Ohyama, H., Pollard, D. F., Té, Y., Velazco, V. A., Warneke, T., Sussmann, R., and Rettinger, M.: Validation of Carbon Trace Gas profile retrievals from the NOAA-Unique Combined Atmospheric Processing System for the cross-track infrared sounder, Remote Sens., 12, 3245, https://doi.org/10.3390/rs12193245, 2020.
Nasiri, S. L., Dang, H. V. T., Kahn, B. H., Fetzer, E. J., Manning, E. M., Schreier, M. M., and Frey, R. A.: Comparing MODIS and AIRS Infrared-Based Cloud Retrievals, J. Appl. Meteorol. Clim., 50, 1057–1072, https://doi.org/10.1175/2010JAMC2603.1, 2011.
Perrett, J. A., Wright, C. J., Hindley, N. P., Hoffmann, L., Mitchell, N. J., Preusse, P., Strube, C., and Eckermann, S. D.: Determining gravity wave sources and propagation in the Southern Hemisphere by ray-tracing AIRS measurements, Geophys. Res. Lett., 48, e2020GL088621, https://doi.org/10.1029/2020GL088621, 2021.
Platnick, S., Meyer, K. G., Heidinger, A. K., and Holz, R.: VIIRS Atmosphere L2 Cloud Properties Product, Version-1, NASA Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC) [data set], Goddard Space Flight Center, USA, https://doi.org/10.5067/VIIRS/CLDPROP_L2_VIIRS_SNPP.001, 2017.
Rodgers, C. D.: Characterization and error analysis of profiles retrieved from remote sounding measurements, J. Geophys. Res., 95, 5587–5595, 1990.
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific Pub Co Inc, Singapore, ISBN: 978-981-281-371-8, 2000.
Ribeiro, I. O., Andreoli, R. V., Kayano, M. T., De Sousa, T. R., Medeiros, A. S., Guimaraes, P. C., Barbosa, C. G. G., Godoi, R. H. M., Martin, S. T., and De Souza, R. A. F.: Impact of the biomass burning on methane variability during dry years in the Amazon measured from an aircraft and the AIRS sensor, Sci. Total Environ., 624, 509–516, https://doi.org/10.1016/j.scitotenv.2017.12.147, 2018.
Sato, K., Tsuchiya, C., Alexander, M. J., and Hoffmann, L.: Climatology and ENSO-related interannual variability of gravity waves in the southern hemisphere subtropical stratosphere revealed by high-resolution AIRS observations, J. Geophys. Res.-Atmos., 121, 7622–7640, https://doi.org/10.1002/2015JD024462, 2016.
Schulte, R. M. and Kummerow, C. D.: An Optimal Estimation Retrieval Algorithm for Microwave Humidity Sounding Channels with Minimal Scan Position Bias, J. Atmos. Ocean. Tech., 36, 409–425, https://doi.org/10.1175/JTECH-D-18-0133.1, 2019.
Smith, N. and Barnet, C. D.: Uncertainty Characterization and Propagation in the Community Long-Term Infrared Microwave Combined Atmospheric Product System (CLIMCAPS), Remote Sens.-Basel, 11, 1227, https://doi.org/10.3390/rs11101227, 2019.
Smith, N. and Barnet, C. D.: CLIMCAPS observing capability for temperature, moisture, and trace gases from AIRS/AMSU and CrIS/ATMS, Atmos. Meas. Tech., 13, 4437–4459, https://doi.org/10.5194/amt-13-4437-2020, 2020.
Smith Sr., W. L. and Weisz, E.: 7.09 - Dual-Regression Approach for High-Spatial-Resolution Infrared Soundings, Comprehensive Remote Sensing, 7, 297–311, https://doi.org/10.1016/B978-0-12-409548-9.10394-X, 2018.
Smith Sr., W. L., Weisz, E., Kireev, S. V., Zhou, D. K., Li, Z., and Borbas, E. E.: Dual-Regression Retrieval Algorithm for Real-Time Processing of Satellite Ultraspectral Radiances, J. Appl. Meteorol. Clim., 51, 1455–1476, 2012.
Stamnes, K., Tsay, S.-C., Wiscombe, W., and Jayaweera, K.: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting media, Appl. Optics, 27, 2502–2509, https://doi.org/10.1364/AO.27.002502, 1988.
Strow, L. L., Hepplewhite, C., Motteler, H., Buczkowski, S., and DeSouza-Machado, S.: A Climate Hyperspectral Infrared Radiance Product (CHIRP) Combining the AIRS and CrIS Satellite Sounding Record, Remote Sens.-Basel, 13, 418, https://doi.org/10.3390/rs13030418, 2021.
Susskind, J. and Blaisdell, J.: CrIS CHART Retrieval Algorithm ATBD, NASA GFSC, https://docserver.gesdisc.eosdis.nasa.gov/public/project/SNPP/SNPP_limited_edition/SNPP.CrIMSS.CHART_V1.ATBD.pdf (last access: 30 December 2017), 2017.
Walther, A. and Heidinger, A. K.: Implementation of the Daytime Cloud Optical and Microphysical Properties Algorithm (DCOMP) in PATMOS-x, J. Appl. Meteorol. Clim., 51, 1371–1390, https://doi.org/10.1175/JAMC-D-11-0108.1, 2012.
Wan, Z., Hook, S., and Hulley, G.: MODIS/Aqua Land Surface Temperature/Emissivity Monthly L3 Global 0.05Deg CMG V061, NASA EOSDIS Land Processes Distributed Active Archive Center [data set], https://doi.org/10.5067/MODIS/MYD11C3.061, 2021.
Wang, T., Roman, J., Yue, Q., and Sun, W.: Test Report of Performance of CLIMCAPS-SNPP and CLIMCAPS-JPSS1 Retrievals, Jet Propulsion Lab, https://docserver.gesdisc.eosdis.nasa.gov/public/project/Sounder/CLIMCAPS.V2.Test.Report.pdf (last access: 26 August 2020), 2020.
Warner, J. X., Dickerson, R. R., Wei, Z., Strow, L. L., Wang, Y., and Liang, Q.: Increased atmospheric ammonia over the world's major agricultural areas detected from space, Geophys. Res. Lett., 44, 2875–2884, https://doi.org/10.1002/2016GL072305, 2017.
Wei, J. C., Pan, L. L., Maddy, E., Pittman, J. V., Divarkarla, M., Xiong, X., and Barnet, C.: Ozone Profile Retrieval from an Advanced Infrared Sounder: Experiments with Tropopause-Based Climatology and Optimal Estimation Approach, J. Atmos. Ocean. Tech., 27, 1123–1139, 2010.
Wilheit, T. T.: A Model for the Microwave Emissivity of the Ocean's Surface as a Function of Wind Speed, IEEE T. Geosci. Elect., 17, 244–249, https://doi.org/10.1109/TGE.1979.294653, 1979.
Wu, W., Liu, X., Zhou, D. K., Larar, A. M., Yang, Q., Kizer, S. H., and Liu, Q.: The Application of PCRTM Physical Retrieval Methodology for IASI Cloudy Scene Analysis, IEEE T. Geosci. Remote, 55, 5042–5056, https://doi.org/10.1109/TGRS.2017.2702006, 2017.
Wu, W., Liu, X., Yang, Q., Zhou, D. K., Larar, A., Zhao, M., and Zhou, L., All Sky Single Field of View Retrieval System for Hyperspectral Sounding, in: Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium, 28 July–2 August 2019, Yokohama, Japan, https://doi.org/10.1109/IGARSS.2019.8898307, 7560–7563, 2019.
Wu, W., Liu, X., Yang, Q., Zhou, D. K., and Larar, A. M.: Radiometrically Consistent Climate Fingerprinting Using CrIS and AIRS Hyperspectral Observations, Remote Sens.-Basel, 12, 1291, https://doi.org/10.3390/rs12081291, 2020.
Xiong, X., Liu, X., Wu, W., Knowland, K. E., Yang, Q., Welsh, J., and Zhou, D. K.: Satellite observation of stratospheric intrusions and ozone transport using CrIS on SNPP, Atmos. Environ., 273, 118956, https://doi.org/10.1016/j.atmosenv.2022.118956, 2022a.
Xiong, X., Liu, X., Wu, W., Knowland, K. E., Yang, F., Yang, Q., and Zhou, D. K.: Impact of Stratosphere on Cold Air Outbreak: Observed Evidence by CrIS on SNPP and Its Comparison with Models, Atmosphere, 13, 876, https://doi.org/10.3390/atmos13060876, 2022b.
Xiong, X., Liu, X., Wu, W., Yang, Q., and Zhou, D. K.: Observtion of Carbon Monoxide and Ozone From 2019–2020 Australia Fires Using Thermal Infrared and Near-Infrared Satellite Sensors, in: Proceedings of 2022 IEEE International Geoscience and Remote Sensing Symposium, 17–22 July 2022, Kuala Lumpur, Malaysia, IEEE, 6502–6505, https://doi.org/10.1109/IGARSS46834.2022.9884471, 2022c.
Yang, K. and Liu, X.: Ozone profile climatology for remote sensing retrieval algorithms, Atmos. Meas. Tech., 12, 4745–4778, https://doi.org/10.5194/amt-12-4745-2019, 2019.
Yue, Q., Lambrigtsen, B., Farahmand, A., Fetzer, E. J., Fishben, E. Griffin, E., Iredell, L., Irion, F. W., Kahn, B. H., Kalmus, P., Manning, E., Marchetti, Y., Pagano, T., Smith, N., Susskind, J., Teixeira, J., Thrastarson, H. T., Wang, T., Wen, Y., Wilson, R. Ch., and Wong, S.: AIRS Version 7 Level 2 Performance Test and Validation Report, Jet Propulsion Lab, https://docserver.gesdisc.eosdis.nasa.gov/public/project/AIRS/V7_L2_Performance_Test_and_Validation_report.pdf (last access: 1 October 2021), 2020.
Yue, Q., Fetzer, E. J., Wang, L., Kahn, B. H., Smith, N., Blaisdell, J. M., Meyer, K. G., Schreier, M., Lambrigtsen, B., and Tkatcheva, I.: Evaluating the consistency and continuity of pixel-scale cloud property data records from Aqua and SNPP (Suomi National Polar-orbiting Partnership), Atmos. Meas. Tech., 15, 2099–2123, https://doi.org/10.5194/amt-15-2099-2022, 2022.
Zhou, D. K., Smith Sr., W. L., Liu, X., Larar, A. M., and Mango, S. A.: Tropospheric CO observed with the NAST-I retrieval methodology, analyses, and first results, Appl. Optics, 44, 3032–3044, https://doi.org/10.1364/AO.44.003032, 2005.
Zhou, D. K., Smith Sr., W. L., Liu, X., Larar, A. M., Mango, S. A., and Huang, H.: Physically Retrieving Cloud and Thermodynamic Parameters from Ultraspectral IR Measurements, J. Atmos. Sci., 64, 969–982, https://doi.org/10.1175/JAS3877.1, 2007.
Zhou, D. K., Smith, W. L., Larar, A. M., Liu, X., Taylor, J. P., Schlüssel, P., Strow, L. L., and Mango, S. A.: All weather IASI single field-of-view retrievals: case study – validation with JAIVEx data, Atmos. Chem. Phys., 9, 2241–2255, https://doi.org/10.5194/acp-9-2241-2009, 2009.
Zhou, D. K., Larar, A. M., Liu, X., Smith, W. L., Strow, L. L., Yang, P., Schlüssel, P., and Calbet, X.: Global land surface emissivity retrieved from satellite ultraspectral IR measurements, IEEE T. Geosci. Remote, 49, 1277–1290, https://doi.org/10.1109/TGRS.2010.2051036, 2010.
Zhou, Y. and Grassotti, C.: Development of a Machine Learning-Based Radiometric Bias Correction for NOAA's Microwave Integrated Retrieval System (MiRS), Remote Sens.-Basel, 12, 3160, https://doi.org/10.3390/rs12193160, 2020.
Zhu, Y., Derber, J., Collard, A., Dee, D. P., Treadon, R., Gayno, G., and Jung, J. A.: Enhanced radiance bias correction in the National Centers for Environmental Prediction's Gridpoint Statistical Interpolation data assimilation system, Q. J. Roy. Meteor. Soc., 140, 1479–1492, https://doi.org/10.1002/qj.2233, 2014.
Short summary
We present a new operational physical retrieval algorithm that is used to retrieve atmospheric properties for each single field-of-view measurement of hyper-spectral IR sounders. The physical scheme includes a cloud-scattering calculation in its forward-simulation part. The data product generated using this algorithm has an advantage over traditional IR sounder data production algorithms in terms of improved spatial resolution and minimized error due to cloud contamination.
We present a new operational physical retrieval algorithm that is used to retrieve atmospheric...