Articles | Volume 17, issue 15
https://doi.org/10.5194/amt-17-4675-2024
https://doi.org/10.5194/amt-17-4675-2024
Research article
 | 
13 Aug 2024
Research article |  | 13 Aug 2024

Improving the Gaussianity of radar reflectivity departures between observations and simulations using symmetric rain rates

Yudong Gao, Lidou Huyan, Zheng Wu, and Bojun Liu

Related authors

Study on The Error Structure of Radar Reflectivity Using The Symmetric Rainrate Predictor
Lidou Huyan, Yudong Gao, Zheng Wu, and Bojun Liu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-72,https://doi.org/10.5194/amt-2023-72, 2023
Preprint withdrawn
Short summary

Cited articles

Ayzel, G., Scheffer, T., and Heistermann, M.: RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting, Geosci. Model Dev., 13, 2631–2644, https://doi.org/10.5194/gmd-13-2631-2020, 2020. 
Bannister, R. N., Chipilski, H. G., and Martinez-Alvarado, O.: Techniques and challenges in the assimilation of atmospheric water observations for numerical weather prediction towards convective scales, Q. J. R. Meteorol. Soc., 146, 1–48, https://doi.org/10.1002/qj.3652, 2020. 
Baron, P., Kawashima, K., Kim, D., Hanado, H., Kawamura, S., Maesaka, T., Nakagawa, K., Satoh, K., and Ushio, T.: Nowcasting Multiparameter Phased-Array Weather Radar (MP-PAWR) Echoes of Localized Heavy Precipitation Using a 3D Recurrent Neural Network Trained with an Adversarial Technique, J. Atmos. Ocean. Technol., 40, 803–821, https://doi.org/10.1175/JTECH-D-22-0109.1, 2023. 
Bishop, C. H.: The GIGG-EnKF: ensemble Kalman filtering for highly skewed non-negative uncertainty distributions, Q. J. R. Meteorol. Soc., 142, 1395–1412, https://doi.org/10.1002/qj.2742, 2016. 
Bishop, C. H.: Data assimilation strategies for state-dependent observation error variances, Q. J. R. Meteorol. Soc., 145, 217–227, https://doi.org/10.1002/qj.3424, 2019. 
Download
Short summary
A symmetric error model built by symmetric rain rates handles the non-Gaussian error structure of the reflectivity error. The accuracy and linearization of rain rates can further improve the Gaussianity.
Share