Articles | Volume 18, issue 13
https://doi.org/10.5194/amt-18-3179-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-3179-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new method to retrieve relative humidity profiles from a synergy of Raman lidar, microwave radiometer, and satellite
Chengli Ji
CMA Meteorological Observation Centre, Beijing, 100081, China
Qiankai Jin
State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
Feilong Li
State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
Yuyang Liu
State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
Zhicheng Wang
CMA Meteorological Observation Centre, Beijing, 100081, China
Engineering Technology Research Center for Meteorological Observation of CMA, Beijing, 100081, China
Jiajia Mao
CMA Meteorological Observation Centre, Beijing, 100081, China
State Key Laboratory of Environment Characteristics and Effects for Near-space, Beijing, 100081, China
Xiaoyu Ren
CMA Meteorological Observation Centre, Beijing, 100081, China
Yan Xiang
Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230031, China
Wanlin Jian
Sichuan Meteorological Observation and Data Center, Chengdu, 610072, China
Sichuan Meteorological Observatory Heavy rain and Drought-Floor Disaster in Plateau and Basin Key Laboratory of Sichuan Province, Chengdu, 610072, China
State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
Key Lab. of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China
Peitao Zhao
CORRESPONDING AUTHOR
CMA Meteorological Observation Centre, Beijing, 100081, China
State Key Laboratory of Environment Characteristics and Effects for Near-space, Beijing, 100081, China
Related authors
No articles found.
Xueying Liu, Yeqi Huang, Yao Chen, Xin Feng, Yang Xu, Yi Chen, Dasa Gu, Hao Sun, Zhi Ning, Jianzhen Yu, Wing Sze Chow, Changqing Lin, Yan Xiang, Tianshu Zhang, Claire Granier, Guy Brasseur, Zhe Wang, and Jimmy C. H. Fung
EGUsphere, https://doi.org/10.5194/egusphere-2025-3227, https://doi.org/10.5194/egusphere-2025-3227, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Volatile organic compounds (VOCs) affect ozone formation and air quality. However, our understanding is limited due to insufficient measurements, especially for oxygenated VOCs. This study combines land, ship, and satellite data in Hong Kong, showing that oxygenated VOCs make up a significant portion of total VOCs. Despite their importance, many are underestimated in current models. These findings highlight the need to improve VOC representation in models to enhance air quality management.
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
Geosci. Model Dev., 18, 1947–1964, https://doi.org/10.5194/gmd-18-1947-2025, https://doi.org/10.5194/gmd-18-1947-2025, 2025
Short summary
Short summary
Direct assimilation of observations from ground-based microwave radiometers (GMRs) holds significant potential for improving forecast accuracy. Radiative transfer models (RTMs) play a crucial role in direct data assimilation. In this study, we introduce a new RTM, the Advanced Radiative Transfer Modeling System – Ground-Based (ARMS-gb), designed to simulate brightness temperatures observed by GMRs along with their Jacobians. Several enhancements have been incorporated to achieve higher accuracy.
Guangqiang Fan, Yibin Fu, Juntao Huo, Yan Xiang, Tianshu Zhang, Wenqing Liu, and Zhi Ning
Atmos. Meas. Tech., 18, 443–453, https://doi.org/10.5194/amt-18-443-2025, https://doi.org/10.5194/amt-18-443-2025, 2025
Short summary
Short summary
Our research introduces a differential absorption lidar system for monitoring tropospheric ozone, utilizing a single CO2 Raman cell. This technology enables the acquisition of high-resolution vertical ozone profiles from 0.3 to 4 km, essential for understanding air quality and climate impacts.
Qing Zheng, Wei Sun, Zhiquan Liu, Jiajia Mao, Jieying He, Jian Li, and Xingwen Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2025-12, https://doi.org/10.5194/egusphere-2025-12, 2025
Short summary
Short summary
Ground-based microwave radiometers (MWRs) offer high temporal resolution observations with strong sensitivity to the lower atmosphere, making them valuable for data assimilation. However, their assimilation has traditionally focused on retrieved profiles. This study implemented the direct assimilation of brightness temperatures from MWRs with a machine learning-based bias correction scheme. The results show improvements in the low-level atmospheric structure and precipitation predictions.
Jiaqi Wang, Jian Gao, Fei Che, Xin Yang, Yuanqin Yang, Lei Liu, Yan Xiang, and Haisheng Li
Atmos. Chem. Phys., 23, 14715–14733, https://doi.org/10.5194/acp-23-14715-2023, https://doi.org/10.5194/acp-23-14715-2023, 2023
Short summary
Short summary
Regional-scale observations of surface O3, PM2.5 and its major chemical species, mixing layer height (MLH), and other meteorological parameters were made in the North China Plain during summer. Unlike the cold season, synchronized increases in MDA8 O3 and PM2.5 under medium MLH conditions have been witnessed. The increasing trend of PM2.5 was associated with enhanced secondary chemical formation. The correlation between MLH and secondary air pollutants should be treated with care in hot seasons.
Youwen Sun, Hao Yin, Wei Wang, Changgong Shan, Justus Notholt, Mathias Palm, Ke Liu, Zhenyi Chen, and Cheng Liu
Atmos. Meas. Tech., 15, 4819–4834, https://doi.org/10.5194/amt-15-4819-2022, https://doi.org/10.5194/amt-15-4819-2022, 2022
Short summary
Short summary
This study summarizes an overview of the status and perspective of GHG monitoring in China. This study not only improves our understanding with respect to the status, advances, and challenges of GHG monitoring in China but also presents an outlook for further improving GHG monitoring capacity in China.
Zhenyi Chen, Robyn Schofield, Melita Keywood, Sam Cleland, Alastair G. Williams, Alan Griffiths, Stephen Wilson, Peter Rayner, and Xiaowen Shu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-104, https://doi.org/10.5194/acp-2022-104, 2022
Revised manuscript not accepted
Short summary
Short summary
This study studied the marine boundary layer (MBL) process and aerosol properties in the Southern Ocean using miniMPL, ceilometer and sodar. Compared to the gradient method, the Image Edge Detection Algorithm provides more reliable boundary layer height estimations, especially when a convective MBL with stratification existed. The diurnal characteristic of BLH with the veering of the wind vector was also observed. Under the continental sources, the MBL maintained a well-mixed layer of 0.3 km.
Sonya L. Fiddes, Matthew T. Woodhouse, Steve Utembe, Robyn Schofield, Simon P. Alexander, Joel Alroe, Scott D. Chambers, Zhenyi Chen, Luke Cravigan, Erin Dunne, Ruhi S. Humphries, Graham Johnson, Melita D. Keywood, Todd P. Lane, Branka Miljevic, Yuko Omori, Alain Protat, Zoran Ristovski, Paul Selleck, Hilton B. Swan, Hiroshi Tanimoto, Jason P. Ward, and Alastair G. Williams
Atmos. Chem. Phys., 22, 2419–2445, https://doi.org/10.5194/acp-22-2419-2022, https://doi.org/10.5194/acp-22-2419-2022, 2022
Short summary
Short summary
Coral reefs have been found to produce the climatically relevant chemical compound dimethyl sulfide (DMS). It has been suggested that corals can modify their environment via the production of DMS. We use an atmospheric chemistry model to test this theory at a regional scale for the first time. We find that it is unlikely that coral-reef-derived DMS has an influence over local climate, in part due to the proximity to terrestrial and anthropogenic aerosol sources.
Siying Chen, Rongzheng Cao, Yixuan Xie, Yinchao Zhang, Wangshu Tan, He Chen, Pan Guo, and Peitao Zhao
Atmos. Chem. Phys., 21, 11489–11504, https://doi.org/10.5194/acp-21-11489-2021, https://doi.org/10.5194/acp-21-11489-2021, 2021
Short summary
Short summary
In this study, the seasonal variation in Aeolus wind product performance over China is analyzed by using L-band radiosonde detection data and ERA5 reanalysis data. The results show that the Aeolus wind product performance is affected by seasonal factors, which may be caused by seasonal changes in wind direction and cloud distribution.
Yan Xiang, Tianshu Zhang, Chaoqun Ma, Lihui Lv, Jianguo Liu, Wenqing Liu, and Yafang Cheng
Atmos. Chem. Phys., 21, 7023–7037, https://doi.org/10.5194/acp-21-7023-2021, https://doi.org/10.5194/acp-21-7023-2021, 2021
Short summary
Short summary
For the first time, a vertical observation network consisting of 13 aerosol lidars and more than 1000 ground observation stations were combined with a data assimilation technique to reveal key processes driving the 3-D dynamic evolution of PM2.5 concentrations during extreme heavy aerosol pollution on the North China Plain.
Cited articles
Adam, M., Demoz, B. B., Whiteman, D. N., Venable, D. D., Joseph, E., Gambacorta, A., Wei, J., Shephard, M. W., Milosevich, L. M., Barnet, C. D., Herman, R. L., Fitzgibbon, J., and Connell, R.: Water Vapor Measurements by Howard University Raman LiDAR during the WAVES 2006 Campaign, J. Atmos. Ocean. Tech., 27, 42–60, https://doi.org/10.1175/2009JTECHA1331.1, 2010.
Bai, W., Zhang, P., Liu, H., Zhang, W., Qi, C., Ma, G., and Li, G.: A fast piecewise-defined neural network method to retrieve temperature and humidity profile for the vertical atmospheric sounding system of FengYun-3E satellite, IEEE T. Geosci. Remote, 61, 4100910, https://doi.org/10.1109/tgrs.2023.3247776, 2023.
Barrera-Verdejo, M., Crewell, S., Löhnert, U., Orlandi, E., and Di Girolamo, P.: Ground-based lidar and microwave radiometry synergy for high vertical resolution absolute humidity profiling, Atmos. Meas. Tech., 9, 4013–4028, https://doi.org/10.5194/amt-9-4013-2016, 2016.
Blumberg, W. G., Turner, D. D., Löhnert, U., and Castleberry, S.: Ground based temperature and humidity profiling using spectral infrared and microwave observations, Part II: Actual retrieval performance in clear-sky and cloudy conditions, J. Appl. Meteorol., 54, 2305–2319, 2015.
Brocard, E., Jeannet, P., Begert, M., Levrat, G. Philipona, R., Romanens, G., and Scherrer, S. C.: Upper air temperature trends above Switzerland 1959–2011, J. Geophys. Res.-Atmos., 118, 4303–4317, https://doi.org/10.1002/jgrd.50438, 2013.
Chen, Z. Y., Ji, C. L., Mao, J. J., Wang, Z. C., Jiao, Z. M., Gao, L. N., Xiang, Y., and Zhang, T. S.: Downdraft influences on the differences of PM2.5 concentration: insights from a mega haze evolution in the winter of northern China, Environ. Res. Lett., 19, 014042, https://doi.org/10.1088/1748-9326/ad1229, 2024.
Cimini, D., Hewison, T., Martin, L., Güldner, J., Gaffard, C., and Marzano, F.: Temperature and humidity profile retrievals from ground-based microwave radiometers during TUC, Meteorol. Z., 15, 45–56, https://doi.org/10.1127/0941-2948/2006/0099, 2006.
Crewell, S. and Löhnert, U. : Accuracy of boundary layer temperature profiles retrieved with multifrequency multiangle microwave radiometry, IEEE T. Geosci. Remote, 45, 2195–2201, https://doi.org/10.1109/TGRS.2006.888434, 2007.
Delanoë, J., and Hogan, R. J.: A variational scheme for retrieving ice cloud properties from combined radar, LiDAR, and infrared radiometer, J. Geophys. Res., 113, D07204, https://doi.org/10.1029/2007JD009000, 2008.
Fan, J., Zhang, R., Li, G., Tao, W. K., and Li, X.: Effects of aerosols and relative humidity on cumulus clouds, J. Geophys. Res., 112, D14204, https://doi.org/10.1029/2006JD008136, 2007.
Foth, A., Baars, H., Di Girolamo, P., and Pospichal, B.: Water vapour profiles from Raman lidar automatically calibrated by microwave radiometer data during HOPE, Atmos. Chem. Phys., 15, 7753–7763, https://doi.org/10.5194/acp-15-7753-2015, 2015.
Foth, A. and Pospichal, B.: Optimal estimation of water vapour profiles using a combination of Raman lidar and microwave radiometer, Atmos. Meas. Tech., 10, 3325–3344, https://doi.org/10.5194/amt-10-3325-2017, 2017.
Furumoto, J., Kurimoto, K., and Tsuda, T.: Continuous observations of humidity profiles with the Mu Radar-RASS combined with GPS and radiosonde measurements, J. Atmos. Ocean. Tech., 20, 23–41, 2003.
Gangwar, R. K., Gohil, B. S., and Mathur, A. K.: Retrieval of Layer Averaged Relative Humidity Profiles from MHS Observations over Tropical Region, J. Atmos. Sci., 2014, 645970, https://doi.org/10.1155/2014/645970, 2014.
Gohil, B. S., Gairola, R. M., Mathur, A. K., Varma, A. K., Mahesh, C., Gangwar, R. K., and Pal, P. K., Algorithms for retrieving geophysical parameters from the MADRAS and SAPHIR sensors of the Megha-Tropiques satellite: Indian scenario, Q. J. Roy. Meteor. Soc., 139, 954–963, https://doi.org/10.1002/qj.2041, 2013.
Granados-Muñoz, M. J., Navas-Guzmán, F., Bravo-Aranda, J. A., Guerrero-Rascado, J. L., Lyamani, H., Valenzuela, A., Titos, G., Fernández-Gálvez, J., and Alados-Arboledas, L.: Hygroscopic growth of atmospheric aerosol particles based on active remote sensing and radiosounding measurements: selected cases in southeastern Spain, Atmos. Meas. Tech., 8, 705–718, https://doi.org/10.5194/amt-8-705-2015, 2015.
Hogg, D., Decker, M., Guiraud, F., Earnshaw, K., Merritt, D., Moran, K., Sweezy, W., Strauch, R., Westwater, E., and Little, G.: An automatic profiler of the temperature, wind and humidity in the troposphere, J. Appl. Meteorol., 22, 807–831, 1983.
Long, L., He, L., Li, J. B., Zhang, W. L., and Zhang, Y. X.: Climatic characteristics of mesoscale convective systems in the warm season in North China, Meteorol. Atmos. Phys., 135, 21, https://doi.org/10.1007/s00703-023-00958-1, 2023.
Kang, Y. Z., Peng, X. D., Wang, S. G., Hu, Y. L., Shang, K. Z., and Lu, S.: Observational analyses of topographic effects on convective systems in an extreme rainfall event in Northern China, Atmos. Res., 229, 127–144, 2019.
Madonna, F., Amodeo, A., Boselli, A., Cornacchia, C., Cuomo, V., D'Amico, G., Giunta, A., Mona, L., and Pappalardo, G.: CIAO: the CNR-IMAA advanced observatory for atmospheric research, Atmos. Meas. Tech., 4, 1191–1208, https://doi.org/10.5194/amt-4-1191-2011, 2011.
Mattis, I., Ansmann, A., Althausen, D., Jaenisch, V., Wandinger, U., Müller, D., Arshinov, Y. F., Bobrovnikov, S. M., and Serikov, I. B.: Relative-humidity profiling in the troposphere with a Raman LiDAR, Appl. Optics, 41, 6451–6462, https://doi.org/10.1364/AO.41.006451, 2002.
Mochida, M.: Simultaneous measurements of hygroscopic property and cloud condensation nucleus activity of aerosol particles of marine biogenic origin, Western Pacific Air–Sea Interaction Study, American Geophysical Union, 71–81, https://doi.org/10.5047/w-pass.a01.008, 2014.
Navas-Guzmán, F., Fernández-Gálvez, J., Granados-Muñoz, M. J., Guerrero-Rascado, J. L., Bravo-Aranda, J. A., and Alados-Arboledas, L.: Tropospheric water vapour and relative humidity profiles from lidar and microwave radiometry, Atmos. Meas. Tech., 7, 1201–1211, https://doi.org/10.5194/amt-7-1201-2014, 2014.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Ramírez-Beltrán, N. D., Salazar, C. M., Castro Sánchez, J. M., and González, J. E.: A satellite algorithm for estimating relative humidity, based on GOES and MODIS satellite data, Int. J. Remote Sens., 40, 9237–9259, https://doi.org/10.1080/01431161.2019.1629715, 2019.
Reichardt, J., Wandinger, U., Klein, V., Mattis, I., Hilber, B., and Begbie, R.: RAMSES: German meteorological service autonomous Raman LiDAR for water vapor, temperature, aerosol, and cloud measurements, Appl. Optics, 51, 8111–8131, https://doi.org/10.1364/AO.51.008111, 2012.
Schmetz, J.: Good things need time: Progress with the first hyperspectral sounder in geostationary orbit, Geophys. Res. Lett., 48, e2021GL096207, https://doi.org/10.1029/2021GL096207, 2021.
Stankov, B. B., Martner, B. E., and Politovich, M. K.: Moisture profiling of the cloudy winter atmosphere using combined remote sensors, J. Atmos. Ocean. Tech., 12 , 488–510, 1995.
Skou, N., Søbjærg, S. S., and Kristensen, S. S.: Future high-performance spaceborne microwave radiometer systems, IEEE Geosci. Remote S., 19, 1–5, https://doi.org/10.1109/LGRS.2021.3118082, 2022.
Wang, S. F., Lu, F., and Feng. Y. T.: An Investigation of the Fengyun-4A/B GIIRS performance on temperature and humidity retrievals, Atmos., 13, 1830, 2022.
Toporov, M., and Löhnert, U.: Synergy of satellite- and ground-based observations for continuous monitoring of atmospheric stability, liquid water path, and integrated water vapor: theoretical evaluations using reanalysis and neural networks, J. Appl. Meteorol. Clim., 59, 1153–1170, https://doi.org/10.1175/JAMC-D-19-0169.1, 2020.
Turner, D. D. and Löhnert, U.: Ground-based temperature and humidity profiling: combining active and passive remote sensors, Atmos. Meas. Tech., 14, 3033–3048, https://doi.org/10.5194/amt-14-3033-2021, 2021.
Wex, H., Stratmann, F., Hennig, T., Hartmann, S., Niedermeier, D., Nilsson, E., Ocskay, R., Rose, D., Salma, I., and Ziese, M.: Connecting hygroscopic growth at high humidities to cloud activation for different particle types, Environ. Res. Lett., 3, 035004, https://doi.org/10.1088/1748-9326/3/3/035004, 1–10, 2008.
Ware, R., Carpenter, R., Guldner, J., Liljegren, J., Nehrkorn, T., Solheim, F., and Vandenberghe, F. A.: Multi-channel radiometric profiles of temperature, humidity and cloud liquid, Radio Sci., 38, 8079–8032, 2003.
Wang, X., Miao, H., Liu, Y., Bao, Q., He, B., Li, J., and Zhao, Y.: The use of satellite data-based “critical relative humidity” in cloud parameterization and its role in modulating cloud feedback, J. Adv. Model. Earth Sy., 14, e2022MS003213, https://doi.org/10.1029/2022MS003213, 2022.
Wang, Z. Z., Wang, W. Y., Tong, X. L., Zhang, Z., Liu, J. Y., Lu, H. H., Ding, J., Wu, Y. T.: Progress in spaceborne passive microwave remote sensing technology and its application (in Chinese), Chin. J. Space Sci., 43, 986–1015, https://doi.org/10.11728/cjss2023.06.yg15, 2023.
Whiteman, D. N., Melfi, S. H., and Ferrare, R. A.: Raman LiDAR system for the measurement of water vapor and aerosols in the earth's atmosphere, Appl. Optics, 31, 3068–3082, https://doi.org/10.1364/AO.31.003068, 1992.
Xu, G. R., B. K., Zhang, W. G., Cui, C. G., Dong, X. Q., Liu, Y. Y., and Yan, G. P.: Comparison of atmospheric profiles between microwave radiometer retrievals and radiosonde soundings, J. Geophys. Res.-Atmos., 120, 313–323, https://doi.org/10.1002/2015JD023438, 2015.
Yang, J., Zhang, Z., Wei, C., Lu, F., and Guo, Q.: Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4, B. Am. Meteorol. Soc., 98, 1637–1658, 2017.
Yang, W., Chen, Y., Bai, W., Sun, X., Zheng, H., and Qin, L.: Evaluation of temperature and humidity profiles retrieved from Fengyun-4B and implications for typhoon assimilation and forecasting, Remote Sens., 15, 5339, https://doi.org/10.3390/rs15225339, 2023.
Zhang, L., Liu, M., He, W., Xia, X. G.,Yu, H. N., Li, S., X., and Li, J.: Ground passive microwave remote sensing of atmospheric profiles using WRF simulations and machine learning techniques, J. Meteorol. Res.-PRC, 38, 680–692, https://doi.org/10.1007/s13351-024-4004-2, 2024.
Zhang, Z., Dong, X., and Zhu, D.: Optimal channel selection of spaceborne microwave radiometer for surface pressure retrieval over Oceans, J. Atmos. Ocean. Tech., 39, 1857–1868, https://doi.org/10.1175/JTECH-D-21-0121.1, 2022.
Zieger, P., Fierz-Schmidhauser, R., Weingartner, E., and Baltensperger, U.: Effects of relative humidity on aerosol light scattering: results from different European sites, Atmos. Chem. Phys., 13, 10609–10631, https://doi.org/10.5194/acp-13-10609-2013, 2013.
Short summary
This study presents the humidity measurements with a synergistic algorithm combining Raman lidar, microwave radiometer, and satellite. The results from 47 sites in China show the best correlation over 0.9 concerning the radiosonde measurements. This validates the relative humidity (RH) accuracy with various data integrations. Three representative sites present the different seasonal characteristics, indicating the geographic and height influences on the RH vertical distribution.
This study presents the humidity measurements with a synergistic algorithm combining Raman...