Articles | Volume 18, issue 18
https://doi.org/10.5194/amt-18-4771-2025
https://doi.org/10.5194/amt-18-4771-2025
Research article
 | 
25 Sep 2025
Research article |  | 25 Sep 2025

Machine learning data fusion for high spatio-temporal resolution PM2.5

Andrea Porcheddu, Ville Kolehmainen, Timo Lähivaara, and Antti Lipponen

Related authors

Post-process correction improves the accuracy of satellite PM2.5 retrievals
Andrea Porcheddu, Ville Kolehmainen, Timo Lähivaara, and Antti Lipponen
Atmos. Meas. Tech., 17, 5747–5764, https://doi.org/10.5194/amt-17-5747-2024,https://doi.org/10.5194/amt-17-5747-2024, 2024
Short summary

Cited articles

Belward, A. S., Estes, J. E., and Kline, K. D.: The IGBP-DIS global 1-km land-cover data set DISCover: A project overview, Photogrammetric Engineering and Remote Sensing, 65, 1013–1020, 1999. a
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., Uesawa, D., Yokota, H., and Yoshida, R.: An Introduction to Himawari-8/9 – Japan's New-Generation Geostationary Meteorological Satellites, Journal of the Meteorological Society of Japan. Ser. II, 94, 151–183, https://doi.org/10.2151/jmsj.2016-009, 2016. a
Bishop, C. M. and Bishop, H.: Deep Learning: Foundations and Concepts, Springer International Publishing, Cham, ISBN 978-3-031-45467-7, https://doi.org/10.1007/978-3-031-45468-4, 2024. a, b
Buchard, V., Da Silva, A., Randles, C., Colarco, P., Ferrare, R., Hair, J., Hostetler, C., Tackett, J., and Winker, D.: Evaluation of the surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States, Atmospheric Environment, 125, 100–111, 2016. a
Chu, Y., Liu, Y., Li, X., Liu, Z., Lu, H., Lu, Y., Mao, Z., Chen, X., Li, N., Ren, M., Liu, F., Tian, L., Zhu, Z., and Xiang, H.: A Review on Predicting Ground PM2.5 Concentration Using Satellite Aerosol Optical Depth, Atmosphere, 7, https://doi.org/10.3390/atmos7100129, 2016. a
Download
Short summary
This study proposes a novel machine learning method to estimate pollution levels (PM2.5) on urban areas at fine scale. Our model generates hourly PM2.5 maps with high spatial resolution, by combining satellite data, ground measurements, geophysical model data, and different geographical indicators. The model properly accounts for spatial and temporal variability of the urban pollution levels, and can be highly beneficial for air quality monitoring and health protection.
Share