Articles | Volume 18, issue 19
https://doi.org/10.5194/amt-18-5157-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-5157-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Calibration of weather radars with a target simulator
Marc Schneebeli
CORRESPONDING AUTHOR
Palindrome Remote Sensing, Landquart, Switzerland
now at: Geoprevent AG, Zurich, Switzerland
Andreas Leuenberger
Palindrome Remote Sensing, Landquart, Switzerland
Philipp J. Schmid
Palindrome Remote Sensing, Landquart, Switzerland
now at: Institute of Applied Physics (IAP), University of Bern, Bern, Switzerland
Jacopo Grazioli
Environmental Remote Sensing Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
Heather Corden
Environmental Remote Sensing Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
Alexis Berne
Environmental Remote Sensing Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
Patrick Kennedy
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA
Jim George
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA
Francesc Junyent
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA
V. Chandrasekar
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA
Related authors
No articles found.
Kevin Ohneiser, Patric Seifert, Willi Schimmel, Fabian Senf, Tom Gaudek, Martin Radenz, Audrey Teisseire, Veronika Ettrichrätz, Teresa Vogl, Nina Maherndl, Nils Pfeifer, Jan Henneberger, Anna J. Miller, Nadja Omanovic, Christopher Fuchs, Huiying Zhang, Fabiola Ramelli, Robert Spirig, Anton Kötsche, Heike Kalesse-Los, Maximilian Maahn, Heather Corden, Alexis Berne, Majid Hajipour, Hannes Griesche, Julian Hofer, Ronny Engelmann, Annett Skupin, Albert Ansmann, and Holger Baars
EGUsphere, https://doi.org/10.5194/egusphere-2025-2482, https://doi.org/10.5194/egusphere-2025-2482, 2025
Short summary
Short summary
This study focuses on a seeder-feeder cloud system on 8 Jan 2024 in Eriswil, Switzerland. It is shown how the interaction of these cloud systems changes the cloud microphysical properties and the precipitation patterns. A big set of advanced remote-sensing techniques and retrieval algorithms are applied, so that a detailed view on the seeder-feeder cloud system is available. The gained knowledge can be used to improve weather models and weather forecasts.
Brian C. Filipiak, David B. Wolff, Aaron Spaulding, Ali Tokay, Charles N. Helms, Adrian M. Loftus, Alexey V. Chibisov, Carl Schirtzinger, Mick J. Boulanger, Charanjit S. Pabla, Larry Bliven, Eun Yeol Kim, Francesc Junyent, V. Chandrasekar, Hein Thant, Branislav M. Notaros, Gustavo Britto Hupsel de Azevedo, and Diego Cerrai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-162, https://doi.org/10.5194/essd-2025-162, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
A GPM Ground Validation field campaign in Connecticut collected high-resolution microphysical and radar observations of winter precipitation. This field campaign was unique because there was a wide-ranging suite of instruments capable of observing all phases of precipitation co-located with comparable measurements. The observations provide an opportunity to verify and understand complex winter precipitation events through satellite data, microphysical processes, and numerical model simulations.
Valentin Wiener, Étienne Vignon, Thomas Caton Harrison, Christophe Genthon, Felipe Toledo, Guylaine Canut-Rocafort, Yann Meurdesoif, and Alexis Berne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2046, https://doi.org/10.5194/egusphere-2025-2046, 2025
Short summary
Short summary
Katabatic winds are a key feature of the climate of Antarctica, but substantial biases remain in their representation in atmospheric models. This study investigates a katabatic wind event in the ICOLMDZ model using in-situ observations. The framework allows to disentangle which part of the bias is due to horizontal resolution, to parameter calibration and to structural deficiencies in the model. We underline in particular the need to refine the physics of the model snow cover.
Zhenhai Zhang, Vesta Afzali Gorooh, Duncan Axisa, Chandrasekar Radhakrishnan, Eun Yeol Kim, Venkatachalam Chandrasekar, and Luca Delle Monache
Atmos. Meas. Tech., 18, 1981–2003, https://doi.org/10.5194/amt-18-1981-2025, https://doi.org/10.5194/amt-18-1981-2025, 2025
Short summary
Short summary
Water is a precious resource, and it is essential to monitor and predict the current and future occurrence of precipitation-producing clouds. We investigate the cloud characteristics related to precipitation using several cloud cases in the United Arab Emirates with data from aircraft measurements, satellite observations, and weather radar observations. This study provides scientific support for the development of an applicable framework to examine cloud precipitation processes.
Frédéric G. Jordan, Clément Cosson, Marco Gabella, Ioannis V. Sideris, Adrien Liernur, Alexis Berne, and Urs Germann
Abstr. Int. Cartogr. Assoc., 9, 19, https://doi.org/10.5194/ica-abs-9-19-2025, https://doi.org/10.5194/ica-abs-9-19-2025, 2025
Alfonso Ferrone, Jérôme Kopp, Martin Lainer, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 17, 7143–7168, https://doi.org/10.5194/amt-17-7143-2024, https://doi.org/10.5194/amt-17-7143-2024, 2024
Short summary
Short summary
Estimates of hail size have been collected by a network of hail sensors, installed in three regions of Switzerland, since September 2018. In this study, we use a technique called “double-moment normalization” to model the distribution of diameter sizes. The parameters of the method have been defined over 70 % of the dataset and tested over the remaining 30 %. An independent distribution of hail sizes, collected by a drone, has also been used to evaluate the method.
Kunfeng Gao, Franziska Vogel, Romanos Foskinis, Stergios Vratolis, Maria I. Gini, Konstantinos Granakis, Anne-Claire Billault-Roux, Paraskevi Georgakaki, Olga Zografou, Prodromos Fetfatzis, Alexis Berne, Alexandros Papayannis, Konstantinos Eleftheridadis, Ottmar Möhler, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9939–9974, https://doi.org/10.5194/acp-24-9939-2024, https://doi.org/10.5194/acp-24-9939-2024, 2024
Short summary
Short summary
Ice nucleating particle (INP) concentrations are required for correct predictions of clouds and precipitation in a changing climate, but they are poorly constrained in climate models. We unravel source contributions to INPs in the eastern Mediterranean and find that biological particles are important, regardless of their origin. The parameterizations developed exhibit superior performance and enable models to consider biological-particle effects on INPs.
Valentin Wiener, Marie-Laure Roussel, Christophe Genthon, Étienne Vignon, Jacopo Grazioli, and Alexis Berne
Earth Syst. Sci. Data, 16, 821–836, https://doi.org/10.5194/essd-16-821-2024, https://doi.org/10.5194/essd-16-821-2024, 2024
Short summary
Short summary
This paper presents 7 years of data from a precipitation radar deployed at the Dumont d'Urville station in East Antarctica. The main characteristics of the dataset are outlined in a short statistical study. Interannual and seasonal variability are also investigated. Then, we extensively describe the processing method to retrieve snowfall profiles from the radar data. Lastly, a brief comparison is made with two climate models as an application example of the dataset.
Sophie Erb, Elias Graf, Yanick Zeder, Simone Lionetti, Alexis Berne, Bernard Clot, Gian Lieberherr, Fiona Tummon, Pascal Wullschleger, and Benoît Crouzy
Atmos. Meas. Tech., 17, 441–451, https://doi.org/10.5194/amt-17-441-2024, https://doi.org/10.5194/amt-17-441-2024, 2024
Short summary
Short summary
In this study, we focus on an automatic bioaerosol measurement instrument and investigate the impact of using its fluorescence measurement for pollen identification. The fluorescence signal is used together with a pair of images from the same instrument to identify single pollen grains via neural networks. We test whether considering fluorescence as a supplementary input improves the pollen identification performance by comparing three different neural networks.
Alfonso Ferrone, Étienne Vignon, Andrea Zonato, and Alexis Berne
The Cryosphere, 17, 4937–4956, https://doi.org/10.5194/tc-17-4937-2023, https://doi.org/10.5194/tc-17-4937-2023, 2023
Short summary
Short summary
In austral summer 2019/2020, three K-band Doppler profilers were deployed across the Sør Rondane Mountains, south of the Belgian base Princess Elisabeth Antarctica. Their measurements, along with atmospheric simulations and reanalyses, have been used to study the spatial variability in precipitation over the region, as well as investigate the interaction between the complex terrain and the typical flow associated with precipitating systems.
Marco Gabella, Martin Lainer, Daniel Wolfensberger, and Jacopo Grazioli
Atmos. Meas. Tech., 16, 4409–4422, https://doi.org/10.5194/amt-16-4409-2023, https://doi.org/10.5194/amt-16-4409-2023, 2023
Short summary
Short summary
A still wind turbine observed with a fixed-pointing radar antenna has shown distinctive polarimetric signatures: the correlation coefficient between the two orthogonal polarization states was persistently equal to 1. The differential reflectivity and the radar reflectivity factors were also stable in time. Over 2 min (2000 Hz, 128 pulses were used; consequently, the sampling time was 64 ms), the standard deviation of the differential backscattering phase shift was only a few degrees.
Anne-Claire Billault-Roux, Paraskevi Georgakaki, Josué Gehring, Louis Jaffeux, Alfons Schwarzenboeck, Pierre Coutris, Athanasios Nenes, and Alexis Berne
Atmos. Chem. Phys., 23, 10207–10234, https://doi.org/10.5194/acp-23-10207-2023, https://doi.org/10.5194/acp-23-10207-2023, 2023
Short summary
Short summary
Secondary ice production plays a key role in clouds and precipitation. In this study, we analyze radar measurements from a snowfall event in the Jura Mountains. Complex signatures are observed, which reveal that ice crystals were formed through various processes. An analysis of multi-sensor data suggests that distinct ice multiplication processes were taking place. Both the methods used and the insights gained through this case study contribute to a better understanding of snowfall microphysics.
Alfonso Ferrone and Alexis Berne
Earth Syst. Sci. Data, 15, 1115–1132, https://doi.org/10.5194/essd-15-1115-2023, https://doi.org/10.5194/essd-15-1115-2023, 2023
Short summary
Short summary
This article presents the datasets collected between November 2019 and February 2020 in the vicinity of the Belgian research base Princess Elisabeth Antarctica. Five meteorological radars, a multi-angle snowflake camera, three weather stations, and two radiometers have been deployed at five sites, up to a maximum distance of 30 km from the base. Their varied locations allow the study of spatial variability in snowfall and its interaction with the complex terrain in the region.
Anne-Claire Billault-Roux, Gionata Ghiggi, Louis Jaffeux, Audrey Martini, Nicolas Viltard, and Alexis Berne
Atmos. Meas. Tech., 16, 911–940, https://doi.org/10.5194/amt-16-911-2023, https://doi.org/10.5194/amt-16-911-2023, 2023
Short summary
Short summary
Better understanding and modeling snowfall properties and processes is relevant to many fields, ranging from weather forecasting to aircraft safety. Meteorological radars can be used to gain insights into the microphysics of snowfall. In this work, we propose a new method to retrieve snowfall properties from measurements of radars with different frequencies. It relies on an original deep-learning framework, which incorporates knowledge of the underlying physics, i.e., electromagnetic scattering.
Zane Dedekind, Jacopo Grazioli, Philip H. Austin, and Ulrike Lohmann
Atmos. Chem. Phys., 23, 2345–2364, https://doi.org/10.5194/acp-23-2345-2023, https://doi.org/10.5194/acp-23-2345-2023, 2023
Short summary
Short summary
Simulations allowing ice particles to collide with one another producing more ice particles represented surface observations of ice particles accurately. An increase in ice particles formed through collisions was related to sharp changes in the wind direction and speed with height. Changes in wind speed and direction can therefore cause more enhanced collisions between ice particles and alter how fast and how much precipitation forms. Simulations were conducted with the atmospheric model COSMO.
Claudia Mignani, Lukas Zimmermann, Rigel Kivi, Alexis Berne, and Franz Conen
Atmos. Chem. Phys., 22, 13551–13568, https://doi.org/10.5194/acp-22-13551-2022, https://doi.org/10.5194/acp-22-13551-2022, 2022
Short summary
Short summary
We determined over the course of 8 winter months the phase of clouds associated with snowfall in Northern Finland using radiosondes and observations of ice particle habits at ground level. We found that precipitating clouds were extending from near ground to at least 2.7 km altitude and approximately three-quarters of them were likely glaciated. Possible moisture sources and ice formation processes are discussed.
Étienne Vignon, Lea Raillard, Christophe Genthon, Massimo Del Guasta, Andrew J. Heymsfield, Jean-Baptiste Madeleine, and Alexis Berne
Atmos. Chem. Phys., 22, 12857–12872, https://doi.org/10.5194/acp-22-12857-2022, https://doi.org/10.5194/acp-22-12857-2022, 2022
Short summary
Short summary
The near-surface atmosphere over the Antarctic Plateau is cold and pristine and resembles to a certain extent the high troposphere where cirrus clouds form. In this study, we use innovative humidity measurements at Concordia Station to study the formation of ice fogs at temperatures <−40°C. We provide observational evidence that ice fogs can form through the homogeneous freezing of solution aerosols, a common nucleation pathway for cirrus clouds.
Alfonso Ferrone, Anne-Claire Billault-Roux, and Alexis Berne
Atmos. Meas. Tech., 15, 3569–3592, https://doi.org/10.5194/amt-15-3569-2022, https://doi.org/10.5194/amt-15-3569-2022, 2022
Short summary
Short summary
The Micro Rain Radar PRO (MRR-PRO) is a meteorological radar, with a relevant set of features for deployment in remote locations. We developed an algorithm, named ERUO, for the processing of its measurements of snowfall. The algorithm addresses typical issues of the raw spectral data, such as interference lines, but also improves the quality and sensitivity of the radar variables. ERUO has been evaluated over four different datasets collected in Antarctica and in the Swiss Jura.
Jeong-Su Ko, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, Gregory Thompson, and Alexis Berne
Geosci. Model Dev., 15, 4529–4553, https://doi.org/10.5194/gmd-15-4529-2022, https://doi.org/10.5194/gmd-15-4529-2022, 2022
Short summary
Short summary
This study evaluates the performance of the four microphysics parameterizations, the WDM6, WDM7, Thompson, and Morrison schemes, in simulating snowfall events during the ICE-POP 2018 field campaign. Eight snowfall events are selected and classified into three categories (cold-low, warm-low, and air–sea interaction cases). The evaluation focuses on the simulated hydrometeors, microphysics budgets, wind fields, and precipitation using the measurement data.
Paraskevi Georgakaki, Georgia Sotiropoulou, Étienne Vignon, Anne-Claire Billault-Roux, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 22, 1965–1988, https://doi.org/10.5194/acp-22-1965-2022, https://doi.org/10.5194/acp-22-1965-2022, 2022
Short summary
Short summary
The modelling study focuses on the importance of ice multiplication processes in orographic mixed-phase clouds, which is one of the least understood cloud types in the climate system. We show that the consideration of ice seeding and secondary ice production through ice–ice collisional breakup is essential for correct predictions of precipitation in mountainous terrain, with important implications for radiation processes.
Monika Feldmann, Urs Germann, Marco Gabella, and Alexis Berne
Weather Clim. Dynam., 2, 1225–1244, https://doi.org/10.5194/wcd-2-1225-2021, https://doi.org/10.5194/wcd-2-1225-2021, 2021
Short summary
Short summary
Mesocyclones are the rotating updraught of supercell thunderstorms that present a particularly hazardous subset of thunderstorms. A first-time characterisation of the spatiotemporal occurrence of mesocyclones in the Alpine region is presented, using 5 years of Swiss operational radar data. We investigate parallels to hailstorms, particularly the influence of large-scale flow, daily cycles and terrain. Improving understanding of mesocyclones is valuable for risk assessment and warning purposes.
Nicholas J. Kedzuf, J. Christine Chiu, V. Chandrasekar, Sounak Biswas, Shashank S. Joshil, Yinghui Lu, Peter Jan van Leeuwen, Christopher Westbrook, Yann Blanchard, and Sebastian O'Shea
Atmos. Meas. Tech., 14, 6885–6904, https://doi.org/10.5194/amt-14-6885-2021, https://doi.org/10.5194/amt-14-6885-2021, 2021
Short summary
Short summary
Ice clouds play a key role in our climate system due to their strong controls on precipitation and the radiation budget. However, it is difficult to characterize co-existing ice species using radar observations. We present a new method that separates the radar signals of pristine ice embedded in snow aggregates and retrieves their respective abundances and sizes for the first time. The ability to provide their quantitative microphysical properties will open up many research opportunities.
Jussi Leinonen, Jacopo Grazioli, and Alexis Berne
Atmos. Meas. Tech., 14, 6851–6866, https://doi.org/10.5194/amt-14-6851-2021, https://doi.org/10.5194/amt-14-6851-2021, 2021
Short summary
Short summary
Measuring the shape, size and mass of a large number of snowflakes is a challenging task; it is hard to achieve in an automatic and instrumented manner. We present a method to retrieve these properties of individual snowflakes using as input a triplet of images/pictures automatically collected by a multi-angle snowflake camera (MASC) instrument. Our method, based on machine learning, is trained on artificially generated snowflakes and evaluated on 3D-printed snowflake replicas.
Marc Schwaerzel, Dominik Brunner, Fabian Jakub, Claudia Emde, Brigitte Buchmann, Alexis Berne, and Gerrit Kuhlmann
Atmos. Meas. Tech., 14, 6469–6482, https://doi.org/10.5194/amt-14-6469-2021, https://doi.org/10.5194/amt-14-6469-2021, 2021
Short summary
Short summary
NO2 maps from airborne imaging remote sensing often appear much smoother than one would expect from high-resolution model simulations of NO2 over cities, despite the small ground-pixel size of the sensors. Our case study over Zurich, using the newly implemented building module of the MYSTIC radiative transfer solver, shows that the 3D effect can explain part of the smearing and that building shadows cause a noticeable underestimation and noise in the measured NO2 columns.
Anna Špačková, Vojtěch Bareš, Martin Fencl, Marc Schleiss, Joël Jaffrain, Alexis Berne, and Jörg Rieckermann
Earth Syst. Sci. Data, 13, 4219–4240, https://doi.org/10.5194/essd-13-4219-2021, https://doi.org/10.5194/essd-13-4219-2021, 2021
Short summary
Short summary
An original dataset of microwave signal attenuation and rainfall variables was collected during 1-year-long field campaign. The monitored 38 GHz dual-polarized commercial microwave link with a short sampling resolution (4 s) was accompanied by five disdrometers and three rain gauges along its path. Antenna radomes were temporarily shielded for approximately half of the campaign period to investigate antenna wetting impacts.
Paraskevi Georgakaki, Aikaterini Bougiatioti, Jörg Wieder, Claudia Mignani, Fabiola Ramelli, Zamin A. Kanji, Jan Henneberger, Maxime Hervo, Alexis Berne, Ulrike Lohmann, and Athanasios Nenes
Atmos. Chem. Phys., 21, 10993–11012, https://doi.org/10.5194/acp-21-10993-2021, https://doi.org/10.5194/acp-21-10993-2021, 2021
Short summary
Short summary
Aerosol and cloud observations coupled with a droplet activation parameterization was used to investigate the aerosol–cloud droplet link in alpine mixed-phase clouds. Predicted droplet number, Nd, agrees with observations and never exceeds a characteristic “limiting droplet number”, Ndlim, which depends solely on σw. Nd becomes velocity limited when it is within 50 % of Ndlim. Identifying when dynamical changes control Nd variability is central for understanding aerosol–cloud interactions.
Noémie Planat, Josué Gehring, Étienne Vignon, and Alexis Berne
Atmos. Meas. Tech., 14, 4543–4564, https://doi.org/10.5194/amt-14-4543-2021, https://doi.org/10.5194/amt-14-4543-2021, 2021
Short summary
Short summary
We implement a new method to identify microphysical processes during cold precipitation events based on the sign of the vertical gradient of polarimetric radar variables. We analytically asses the meteorological conditions for this vertical analysis to hold, apply it on two study cases and successfully compare it with other methods informing about the microphysics. Finally, we are able to obtain the main vertical structure and characteristics of the different processes during these study cases.
Martin Lainer, Jordi Figueras i Ventura, Zaira Schauwecker, Marco Gabella, Montserrat F.-Bolaños, Reto Pauli, and Jacopo Grazioli
Atmos. Meas. Tech., 14, 3541–3560, https://doi.org/10.5194/amt-14-3541-2021, https://doi.org/10.5194/amt-14-3541-2021, 2021
Short summary
Short summary
We show results from two unique measurement campaigns aimed at better understanding effects of large wind turbines on radar returns by deploying a mobile X-band weather radar system in the proximity of a small wind park. Measurements were taken in 24/7 operation with dedicated scan strategies to retrieve the variability and most extreme values of reflectivity and radar cross-section of the wind turbines. The findings are useful for wind turbine interference mitigation measures in radar systems.
Daniel Wolfensberger, Marco Gabella, Marco Boscacci, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 14, 3169–3193, https://doi.org/10.5194/amt-14-3169-2021, https://doi.org/10.5194/amt-14-3169-2021, 2021
Short summary
Short summary
In this work, we present a novel quantitative precipitation estimation method for Switzerland that uses random forests, an ensemble-based machine learning technique. The estimator has been trained with a database of 4 years of ground and radar observations. The results of an in-depth evaluation indicate that, compared with the more classical method in use at MeteoSwiss, this novel estimator is able to reduce both the average error and bias of the predictions.
Anne-Claire Billault-Roux and Alexis Berne
Atmos. Meas. Tech., 14, 2749–2769, https://doi.org/10.5194/amt-14-2749-2021, https://doi.org/10.5194/amt-14-2749-2021, 2021
Short summary
Short summary
In the context of climate studies, understanding the role of clouds on a global and local scale is of paramount importance. One aspect is the quantification of cloud liquid water, which impacts the Earth’s radiative balance. This is routinely achieved with radiometers operating at different frequencies. In this study, we propose an approach that uses a single-frequency radiometer and that can be applied at any location to retrieve vertically integrated quantities of liquid water and water vapor.
Josué Gehring, Alfonso Ferrone, Anne-Claire Billault-Roux, Nikola Besic, Kwang Deuk Ahn, GyuWon Lee, and Alexis Berne
Earth Syst. Sci. Data, 13, 417–433, https://doi.org/10.5194/essd-13-417-2021, https://doi.org/10.5194/essd-13-417-2021, 2021
Short summary
Short summary
This article describes a dataset of precipitation and cloud measurements collected from November 2017 to March 2018 in Pyeongchang, South Korea. The dataset includes weather radar data and images of snowflakes. It allows for studying the snowfall intensity; wind conditions; and shape, size and fall speed of snowflakes. Classifications of the types of snowflakes show that aggregates of ice crystals were dominant. This dataset represents a unique opportunity to study snowfall in this region.
Georgia Sotiropoulou, Étienne Vignon, Gillian Young, Hugh Morrison, Sebastian J. O'Shea, Thomas Lachlan-Cope, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 21, 755–771, https://doi.org/10.5194/acp-21-755-2021, https://doi.org/10.5194/acp-21-755-2021, 2021
Short summary
Short summary
Summer clouds have a significant impact on the radiation budget of the Antarctic surface and thus on ice-shelf melting. However, these are poorly represented in climate models due to errors in their microphysical structure, including the number of ice crystals that they contain. We show that breakup from ice particle collisions can substantially magnify the ice crystal number concentration with significant implications for surface radiation. This process is currently missing in climate models.
Cited articles
Atlas, D.: Radar calibration: some simple approaches, B. Am. Meteorol. Soc., 83, 1313–1316, https://doi.org/10.1175/1520-0477-83.9.1313, 2002. a
Bechini, R., Chandrasekar, V., Cremonini, R., and Lim, S.: Radome attenuation at X-band radar operations, in: Proc. Sixth European Conf. on Radar in Meteorology and Hydrology ERAD, Sibiu, Romania, P15.1., https://www.researchgate.net/publication/265383456_Radome_attenuation_at_X-band_radar_operations#fullTextFileContent (last access: 20 September 2025), 2010. a
Bringi, V. N., Hoferer, R., Brunkow, D. A., Schwerdtfeger, R., Chandrasekar, V., Rutledge, S. A., George, J., and Kennedy, P. C.: Design and performance characteristics of the new 8.5-m dual-offset Gregorian antenna for the CSU–CHILL radar, J. Atmos. Ocean. Tech., 28, 907–920, https://doi.org/10.1175/2011JTECHA1493.1, 2011. a
Chandrasekar, V., Baldini, L., Bharadwaj, N., and Smith, P. L.: Calibration procedures for global precipitation-measurement ground-validation radars, URSI Radio Science Bulletin, 2015, 45–73, 2015. a
Figueras i Ventura, J., Schauwecker, Z., Lainer, M., and Grazioli, J.: On the effect of radome characteristics on polarimetric moments and sun measurements of a weather radar, IEEE Geosci. Remote S., 18, 642–646, https://doi.org/10.1109/LGRS.2020.2981993, 2021. a
Frech, M. and Hubbert, J.: Monitoring the differential reflectivity and receiver calibration of the German polarimetric weather radar network, Atmos. Meas. Tech., 13, 1051–1069, https://doi.org/10.5194/amt-13-1051-2020, 2020. a, b, c
Gabella, M.: On the use of bright scatterers for monitoring Doppler, dual-polarization weather radars, Remote Sens.-Basel, 10, 1007, https://doi.org/10.3390/rs10071007, 2018. a
Gabella, M.: On the spectral and polarimetric signatures of a bright scatterer before and after hardware replacement, Remote Sens.-Basel, 13, 919, https://doi.org/10.3390/rs13050919, 2021. a
Gabella, M., Sartori, M., Progin, O., and Germann, U.: Acceptance tests and monitoring of the next generation polarimetric weather radar network in Switzerland, in: Proc. Int. Conf. Electromagn. Adv. Appl., IEEE, Torino, Italy, https://doi.org/10.1109/ICEAA.2013.6632311, 2013. a
Galvez, M. B., Colom, J. G., Chandrasekar, V., Junyent, F., Cruz-Pol, S., Rodríguez Solis, R. A., León, L., Rosario-Colón, J. J., De Jesús, B., Ortiz, J. A., and Mora Navarro, K. M.: First observations of the initial radar node in the Puerto Rico TropiNet X-band polarimetric Doppler weather testbed, in: 2013 IEEE International Geoscience and Remote Sensing Symposium – IGARSS, https://doi.org/10.1109/IGARSS.2013.6723287, 2337–2340, 2013. a
Gehring, J., Ferrone, A., Billault-Roux, A.-C., Besic, N., Ahn, K. D., Lee, G., and Berne, A.: Radar and ground-level measurements of precipitation collected by the École Polytechnique Fédérale de Lausanne during the International Collaborative Experiments for PyeongChang 2018 Olympic and Paralympic winter games, Earth Syst. Sci. Data, 13, 417–433, https://doi.org/10.5194/essd-13-417-2021, 2021. a
Germann, U., Boscacci, M., Clementi, L., Gabella, M., Hering, A., Sartori, M., Sideris, I. V., and Calpini, B.: Weather radar in complex orography, Radio Sci., 14, https://doi.org/10.3390/rs14030503, 2022. a
Gorgucci, E., Scarchilli, G., and Chandrasekar, V.: A procedure to calibrate multiparameter weather radar using properties of the rain medium, IEEE T. Geosci. Remote, 37, 269–276, https://doi.org/10.1109/36.739161, 1999. a
Gray, A., Vachon, P., Livingstone, C., and Lukowski, T.: Synthetic aperture radar calibration using reference reflectors, IEEE T. Geosci. Remote, 28, 374–383, https://doi.org/10.1109/36.54363, 1990. a
Holleman, I., Huuskonen, A., Gill, R., and Tabary, P.: Operational monitoring of radar differential reflectivity using the sun, J. Atmos. Ocean. Tech., 27, 881–887, https://doi.org/10.1175/2010JTECHA1381.1, 2010. a, b
Hubbert, J. C., Ellis, S., Meymaris, G., and Dixon, M.: Antenna polarization errors and biases in polarimetric variables for simultaneous horizontal and vertical transmit radar, in: Preprints, 6th European Conference on Radar in Meteorology and Hydrology, Sibiu, Romania, 59–64, https://opensky.ucar.edu/islandora/object/conference:618 (last access: 20 September 2025), 2010. a
Joe, P. and Smith Jr., P. L.: Summary of the radar calibration workshop, in: 30th Conference on Radar Meteorology, Invited Presentation 3.1, American Meteolological Society, 1–3, https://ams.confex.com/ams/30radar/techprogram/paper_21882.htm (last access: 20 September 2025), 2001. a
Joshil, S. S. and Chandrasekar, V.: Calibration of D3R Weather Radar Using UAV-Hosted Target, Remote Sens.-Basel, 14, https://doi.org/10.3390/rs14153534, 2022. a
Junyent, F., Chandrasekar, V., Bringi, V. N., Rutledge, S. A., Kennedy, P. C., Brunkow, D., George, J., and Bowie, R.: Transformation of the CSU–CHILL radar facility to a dual-frequency, dual-polarization Doppler system, B. Am. Meteorol. Soc., 96, 75–996, https://doi.org/10.1175/BAMS-D-13-00150.1, 2015. a
Louf, V. and Protat, A.: Real-time monitoring of weather radar network calibration and antenna pointing, J. Atmos. Ocean. Tech., 40, 823–844, https://doi.org/10.1175/JTECH-D-22-0118.1, 2023. a
Martner, B. E., Clark, K. A., and Bartram, B. W.: Radar Calibration Using a Trihedral Corner Reflector, in: Proc. 31st AMS Conf. Radar Meteorol., Seattle, USA, P3C.8, https://ams.confex.com/ams/32BC31R5C/techprogram/paper_63895.htm (last access: 20 September 2025), 2003. a
Moisseev, D., Keränen, R., Puhakka, P., Salmivaara, J., and Leskinen, M.: Analysis of dual-polarization antenna performance and its effect on QPE, in: Proceedings of the 6th European Conference on Radar in Meteorology and Hydrology, https://eurelettronicaicas.com/files/prodotti/05_erad2010_0247_extended.pdf (last access: 20 September 2025), 2010. a, b, c
Myagkov, A., Seifert, P., Wandinger, U., Bauer-Pfundstein, M., and Matrosov, S. Y.: Effects of antenna patterns on cloud radar polarimetric measurements, J. Atmos. Ocean. Tech., 32, 1813–1828, 2015. a
Probert-Jones, J. R.: The radar equation in meteorology, Q. J. Roy. Meteor. Soc., 88, 485–495, 1962. a
Reimann, J. and Hagen, M.: Antenna pattern measurements of weather radars using the sun and a point source, J. Atmos. Ocean. Tech., 33, 891–898, https://doi.org/10.1175/JTECH-D-15-0185.1, 2016. a, b
Rinehart, R. E.: Radar for Meteorologists, Rinehart Publ., Grand Forks, ND, ISBN 978-0965800204, 1997. a
Scarchilli, G., Gorgucci, E., Giuli, D., Baldini, L., Facheris, L., and Palmisano, R.: Weather radar calibration by means of the metallic sphere and multiparameter radar measurements, Nuovo Cimento C, 18, 57–70, https://doi.org/10.1007/BF02561459, 1995. a
Schneebeli, M. and Leuenberger, A.: Testing the influcence of wind turbines on weather radars by generating virtual Doppler-RCS signatures, in: Oral presentation at the third Weather Radar Calibration and Monitoring Workshop WXRCALMON, Météo-France, Toulouse, France, http://www.meteo.fr/cic/meetings/2021/wxrcalmon/documents.html (last access: 20 September 2024), 2021. a
Schneebeli, M., Dawes, N., Lehning, M., and Berne, A.: High-resolution vertical profiles of X-band polarimetric radar observables during snowfall in the Swiss Alps, J. Appl. Meteorol., 52, 378–394, 2013. a
Schneebeli, M., Leuenberger, A., Siegenthaler, U., and Wellig, P.: Testing a multistatic C-band radar with a target simulator, in: International Radar Symposium 2020, IEEE, Warsaw, Poland, https://doi.org/10.23919/IRS48640.2020.9253811, 2020. a
Schneebeli, M., Leuenberger, A., Wabeke, L., Kloke, K., Kitching, C., Siegenthaler, U., and Wellig, P.: Drone detection with a multistatic C-band radar, in: 2021 21st International Radar Symposium (IRS), https://doi.org/10.23919/IRS51887.2021.9466200, 1–10, 2021. a
Schneebeli, M., Leuenberger, A., Frech, M., and Figueras i Ventura, J.: Advances in Weather Radar, Vol. 2, Precipitation science, scattering and processing algorithms, Chap. Weather radar data calibration and monitoring, SciTech/IET, https://doi.org/10.1049/SBRA557G_ch2, 2023a. a, b, c, d
Schneebeli, M., Leuenbergery, A., Siegenthaler, U., and Wellig, P.: Multistatic Radar Applications in Combination With Two Target Simulators, in: 2023 24th International Radar Symposium (IRS), https://doi.org/10.23919/IRS57608.2023.10172461, 1–10, 2023b. a
Schvartzman, D., Zrnić, D., Cheong, B., Segales, A. R., and Schneebeli, M.: Measurement of transmitted differential phase on polarimetric radars, IEEE Geosci. Remote S., 1–1, https://doi.org/10.1109/LGRS.2024.3371387, 2024. a, b, c
Segales, A. R., Schvartzman, D., Burdi, K., Herndon, M. M., and Palmer, R. D.: UAS-Based Antenna Pattern Measurements of the Fully Digital Horus Phased Array Radar, in: 2024 IEEE Radar Conference (RadarConf24), https://doi.org/10.1109/RadarConf2458775.2024.10548316, 1–6, 2024. a
Ulaby, F. T. and Long, D. G.: Antenna radiation characteristics, in: Microwave Radar and Radiometric Remote Sensing, Chap. 3, The University of Michigan Press, Ann Arbor, US, ISBN 9780472119356, 2014. a
van den Heuvel, F., Gabella, M., Schneebeli, M., Joos, S., Figueras i Ventura, J., Grazioli, J., Speirs, P., Leuenberger, A., and Berne, A.: Sphere calibration of two co-located polarimetric X-band radars, in: Proc. Tech. Conf. on Meteorol. and Environmental Instruments and Methods of Observation TECO, Amsterdam, the Netherlands, https://www.researchgate.net/publication/328560661_Sphere_calibration_of_two_co-located_polarimetric_X-band_radars (last access: 20 September 2025), 2018. a
Wang, Y. and Chandrasekar, V.: Polarization isolation requirements for linear dual-polarization weather Radar in simultaneous transmission mode of operation, IEEE T. Geosci. Remote, 44, 2019–2028, https://doi.org/10.1109/TGRS.2006.872138, 2006. a
Williams, E. R.: End-to-end Calibration of NEXRAD Differential Reflectivity with Metal Spheres, in: Proc. AMS 36th Conf. Radar Meteorol., 1–17, https://ams.confex.com/ams/36Radar/webprogram/Paper228796.html (last access: 20 September 2025), 2013. a
Ye, F., Wang, X., Li, L., Chen, Y., Lei, Y., Yu, H., Yin, J., Shi, L., Yang, Q., and Huang, Z.: Weather radar calibration method based on UAV-suspended metal sphere, Sensors, 24, https://doi.org/10.3390/s24144611, 2024. a
Yin, J., Hoogeboom, P., Unal, C., Russchenberg, H., Van Der Zwan, F., and Oudejans, E.: UAV-aided weather radar calibration, IEEE T. Geosci. Remote, 57, 10362–10375, 2019. a
Zrnić, D., Doviak, R., Zhang, G., and Ryzhkov, A.: Bias in differential reflectivity due to cross coupling through the radiation patterns of polarimetric weather radars, J. Atmos. Ocean. Tech., 27, 1624–1637, https://doi.org/10.1175/2010JTECHA1350.1, 2010. a, b
Short summary
A new technique for the end-to-end calibration of weather radars is introduced. Highly precise artificial radar targets are generated with a radar target simulator and serve as a calibration reference for weather radar observables like reflectivity and Doppler velocity. The system allows investigating and correcting any biases associated with weather radar observations.
A new technique for the end-to-end calibration of weather radars is introduced. Highly precise...