Articles | Volume 18, issue 20
https://doi.org/10.5194/amt-18-5637-2025
https://doi.org/10.5194/amt-18-5637-2025
Research article
 | 
21 Oct 2025
Research article |  | 21 Oct 2025

Cloud fraction estimation using random forest classifier on sky images

Sougat Kumar Sarangi, Chandan Sarangi, Niravkumar Patel, Bomidi Lakshmi Madhavan, Shantikumar Singh Ningombam, Belur Ravindra, and Madineni Venkat Ratnam

Related authors

Predictability of mean summertime diurnal winds over ungauged mountain glaciers
J. Krishnanand, Argha Banerjee, R. Shankar, Himanshu Kaushik, Mohd. Farooq Azam, and Chandan Sarangi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3756,https://doi.org/10.5194/egusphere-2025-3756, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Regional transport of aerosols from northern India and its impact on boundary layer height and air quality over Chennai, a coastal megacity in southern India
Saleem Ali, Chandan Sarangi, and Sanjay Kumar Mehta
Atmos. Chem. Phys., 25, 8769–8783, https://doi.org/10.5194/acp-25-8769-2025,https://doi.org/10.5194/acp-25-8769-2025, 2025
Short summary
Shortwave radiative impacts of the Asian Tropopause Aerosol Layer (ATAL) using balloon-borne in situ measurements at three distinct locations in India
Vadassery Neelamana Santhosh, Bomidi Lakshmi Madhavan, Sivan Thankamani Akhil Raj, Madineni Venkat Ratnam, Jean-Paul Vernier, and Frank Gunther Wienhold
Atmos. Chem. Phys., 25, 8255–8270, https://doi.org/10.5194/acp-25-8255-2025,https://doi.org/10.5194/acp-25-8255-2025, 2025
Short summary
Investigating the role of typhoon-induced waves and stratospheric hydration in the formation of tropopause cirrus clouds observed during the 2017 Asian monsoon
Amit Kumar Pandit, Jean-Paul Vernier, Thomas Duncan Fairlie, Kristopher M. Bedka, Melody A. Avery, Harish Gadhavi, Madineni Venkat Ratnam, Sanjeev Dwivedi, Kasimahanthi Amar Jyothi, Frank G. Wienhold, Holger Vömel, Hongyu Liu, Bo Zhang, Buduru Suneel Kumar, Tra Dinh, and Achuthan Jayaraman
Atmos. Chem. Phys., 24, 14209–14238, https://doi.org/10.5194/acp-24-14209-2024,https://doi.org/10.5194/acp-24-14209-2024, 2024
Short summary
Projected increases in wildfires may challenge regulatory curtailment of PM2.5 over the eastern US by 2050
Chandan Sarangi, Yun Qian, L. Ruby Leung, Yang Zhang, Yufei Zou, and Yuhang Wang
Atmos. Chem. Phys., 23, 1769–1783, https://doi.org/10.5194/acp-23-1769-2023,https://doi.org/10.5194/acp-23-1769-2023, 2023
Short summary

Cited articles

Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Calbó, J., Calbó, J., and Sabburg, J.: Feature Extraction from Whole-Sky Ground-Based Images for Cloud-Type Recognition, J. Atmos. Ocean. Tech., https://doi.org/10.1175/2007jtecha959.1, 2008. 
Chauvin, R., Nou, J., Thil, S., Traoré, A., and Grieu, S.: Cloud Detection Methodology Based on a Sky-imaging System, Energy Procedia, 69, 1970–1980, https://doi.org/10.1016/j.egypro.2015.03.198, 2015. 
Chow, C. W., Urquhart, B., Lave, M., Dominguez, A., Kleissl, J., Shields, J., and Washom, B.: Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed, Solar Energy, 85, 2881–2893, https://doi.org/10.1016/j.solener.2011.08.025, 2011. 
Dietterich, T. G.: Ensemble Methods in Machine Learning, in: Multiple Classifier Systems, 15 pp., https://doi.org/10.1007/3-540-45014-9_1, 2000. 
Download
Short summary
This study introduces a new approach to measure cloud cover from image data taken by ground-based sky observations. Our method used diverse sky images taken from various locations across the globe to train our machine learning model. We achieved a very high accuracy in detecting cloud cover, even in polluted areas. Our model surpasses traditional methods by running efficiently with minimal computational needs.
Share