Articles | Volume 8, issue 1
https://doi.org/10.5194/amt-8-109-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-8-109-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Generation of a bending angle radio occultation climatology (BAROCLIM) and its use in radio occultation retrievals
B. Scherllin-Pirscher
CORRESPONDING AUTHOR
Wegener Center for Climate and Global Change (WEGC) and Institute for Geophysics, Astrophysics, and Meteorology/Institute of Physics (IGAM/IP), University of Graz, Graz, Austria
S. Syndergaard
Danish Meteorological Institute, Copenhagen, Denmark
U. Foelsche
Wegener Center for Climate and Global Change (WEGC) and Institute for Geophysics, Astrophysics, and Meteorology/Institute of Physics (IGAM/IP), University of Graz, Graz, Austria
K. B. Lauritsen
Danish Meteorological Institute, Copenhagen, Denmark
Related authors
Matthieu Plu, Barbara Scherllin-Pirscher, Delia Arnold Arias, Rocio Baro, Guillaume Bigeard, Luca Bugliaro, Ana Carvalho, Laaziz El Amraoui, Kurt Eschbacher, Marcus Hirtl, Christian Maurer, Marie D. Mulder, Dennis Piontek, Lennart Robertson, Carl-Herbert Rokitansky, Fritz Zobl, and Raimund Zopp
Nat. Hazards Earth Syst. Sci., 21, 2973–2992, https://doi.org/10.5194/nhess-21-2973-2021, https://doi.org/10.5194/nhess-21-2973-2021, 2021
Short summary
Short summary
Past volcanic eruptions that spread out ash over large areas, like Eyjafjallajökull in 2010, forced the cancellation of thousands of flights and had huge economic consequences.
In this article, an international team in the H2020 EU-funded EUNADICS-AV project has designed a probabilistic model approach to quantify ash concentrations. This approach is evaluated against measurements, and its potential use to mitigate the impact of future large-scale eruptions is discussed.
Marcus Hirtl, Barbara Scherllin-Pirscher, Martin Stuefer, Delia Arnold, Rocio Baro, Christian Maurer, and Marie D. Mulder
Nat. Hazards Earth Syst. Sci., 20, 3099–3115, https://doi.org/10.5194/nhess-20-3099-2020, https://doi.org/10.5194/nhess-20-3099-2020, 2020
Short summary
Short summary
The paper shows the application of a new volcanic emission preprocessor for the chemical transport model WRF-Chem. The model is evaluated with different observational data sets for the eruption of the Grimsvötn volcano 2011.
Marcus Hirtl, Delia Arnold, Rocio Baro, Hugues Brenot, Mauro Coltelli, Kurt Eschbacher, Helmut Hard-Stremayer, Florian Lipok, Christian Maurer, Dieter Meinhard, Lucia Mona, Marie D. Mulder, Nikolaos Papagiannopoulos, Michael Pernsteiner, Matthieu Plu, Lennart Robertson, Carl-Herbert Rokitansky, Barbara Scherllin-Pirscher, Klaus Sievers, Mikhail Sofiev, Wim Som de Cerff, Martin Steinheimer, Martin Stuefer, Nicolas Theys, Andreas Uppstu, Saskia Wagenaar, Roland Winkler, Gerhard Wotawa, Fritz Zobl, and Raimund Zopp
Nat. Hazards Earth Syst. Sci., 20, 1719–1739, https://doi.org/10.5194/nhess-20-1719-2020, https://doi.org/10.5194/nhess-20-1719-2020, 2020
Short summary
Short summary
The paper summarizes the set-up and outcome of a volcanic-hazard demonstration exercise, with the goals of assessing and mitigating the impacts of volcanic ash clouds on civil and military aviation. Experts in the field simulated the sequence of procedures for an artificial eruption of the Etna volcano in Italy. The scope of the exercise ranged from the detection of the assumed event to the issuance of early warnings and optimized rerouting of flights.
Hallgeir Wilhelmsen, Florian Ladstädter, Barbara Scherllin-Pirscher, and Andrea K. Steiner
Atmos. Meas. Tech., 11, 1333–1346, https://doi.org/10.5194/amt-11-1333-2018, https://doi.org/10.5194/amt-11-1333-2018, 2018
Short summary
Short summary
Tropical atmospheric variability is often described using proxy indices of the Quasi-Biennial Oscillation and the El Niño–Southern Oscillation. We introduce new proxies derived from GNSS radio occultation (RO) satellite measurements. Using the high vertical resolution of the RO temperature fields we obtain altitude-resolved indices which can improve the description of atmospheric variability patterns and can be used in climate studies where a detailed knowledge of these patterns is required.
Petr Pisoft, Petr Sacha, Jiri Miksovsky, Peter Huszar, Barbara Scherllin-Pirscher, and Ulrich Foelsche
Atmos. Meas. Tech., 11, 515–527, https://doi.org/10.5194/amt-11-515-2018, https://doi.org/10.5194/amt-11-515-2018, 2018
Short summary
Short summary
We revise selected findings regarding utilization of Global Positioning System radio occultation density profiles for analysis of internal gravity waves. The results show that previously published results are valid only for one specific data version only. Using radiosonde profiles, we also analyze a nonhydrostatic component in temperature profiles. The last part presents detailed study on the utilization of density profiles for characterization of the wave field stability.
Barbara Angerer, Florian Ladstädter, Barbara Scherllin-Pirscher, Marc Schwärz, Andrea K. Steiner, Ulrich Foelsche, and Gottfried Kirchengast
Atmos. Meas. Tech., 10, 4845–4863, https://doi.org/10.5194/amt-10-4845-2017, https://doi.org/10.5194/amt-10-4845-2017, 2017
Short summary
Short summary
We present a detailed analysis of the latest Wegener Center GPS radio occultation reprocessing (OPSv5.6) output. Knowledge of differences in data quality, as well as of data consistency, is essential when combining data from different missions to a long-term climate record. We compare quality aspects of the various processed satellite missions and present satellite-dependent variations. Temperature data from various satellites are found to be highly consistent within 8 to 25 km.
Barbara Scherllin-Pirscher, William J. Randel, and Joowan Kim
Atmos. Chem. Phys., 17, 793–806, https://doi.org/10.5194/acp-17-793-2017, https://doi.org/10.5194/acp-17-793-2017, 2017
Short summary
Short summary
Tropical temperature variability and associated Kelvin-wave activity are investigated from 10 km to 30 km using 13 years of high-resolution observational data. Strongest temperature variability is found in the tropical tropopause region between about 16 km and 20 km, where peaks of Kelvin-wave activity are irregularly distributed in time. Detailed knowledge of dynamical processes in the tropical tropopause region is an essential part of better understanding climate variability and change.
Lukas Brunner, Andrea K. Steiner, Barbara Scherllin-Pirscher, and Martin W. Jury
Atmos. Chem. Phys., 16, 4593–4604, https://doi.org/10.5194/acp-16-4593-2016, https://doi.org/10.5194/acp-16-4593-2016, 2016
Short summary
Short summary
Atmospheric blocking refers to persistent high-pressure systems which block the climatological flow at midlatitudes. We explore blocking with observations from GPS radio occultation (RO), a satellite-based remote-sensing system. Using two example cases, we find that RO data robustly capture blocking, highlighting the potential of RO observations to complement models and reanalysis as a basis for blocking research.
Y. Li, G. Kirchengast, B. Scherllin-Pirscher, R. Norman, Y. B. Yuan, J. Fritzer, M. Schwaerz, and K. Zhang
Atmos. Meas. Tech., 8, 3447–3465, https://doi.org/10.5194/amt-8-3447-2015, https://doi.org/10.5194/amt-8-3447-2015, 2015
Short summary
Short summary
We introduce a new dynamic statistical optimization algorithm to initialize ionosphere-corrected bending angles of Global Navigation Satellite System-based radio occultation measurements. The new algorithm is evaluated against the OPSv5.6 algorithm developed by the Wegener Center using both simulated and real observed data. It is found that the algorithm can significantly reduce the random errors of optimized bending angles. The retrieved refractivity and temperature profiles are also benefited.
T. Rieckh, B. Scherllin-Pirscher, F. Ladstädter, and U. Foelsche
Atmos. Meas. Tech., 7, 3947–3958, https://doi.org/10.5194/amt-7-3947-2014, https://doi.org/10.5194/amt-7-3947-2014, 2014
Short summary
Short summary
Radio Occultation (RO) observations featuring high vertical resolution, global availability, and high accuracy were used to investigate global characteristics of the lapse rate tropopause. Climatological tropopause characteristics for the
RO record from 2001 to 2013 extend previous studies on tropopause structure and its temporal variability. Latitudinal and longitudinal variations as well as the annual cycle and inter-annual variability were analyzed for the tropopause altitude and temperature.
J. Danzer, U. Foelsche, B. Scherllin-Pirscher, and M. Schwärz
Atmos. Meas. Tech., 7, 2883–2896, https://doi.org/10.5194/amt-7-2883-2014, https://doi.org/10.5194/amt-7-2883-2014, 2014
J. Danzer, B. Scherllin-Pirscher, and U. Foelsche
Atmos. Meas. Tech., 6, 2169–2179, https://doi.org/10.5194/amt-6-2169-2013, https://doi.org/10.5194/amt-6-2169-2013, 2013
A. K. Steiner, D. Hunt, S.-P. Ho, G. Kirchengast, A. J. Mannucci, B. Scherllin-Pirscher, H. Gleisner, A. von Engeln, T. Schmidt, C. Ao, S. S. Leroy, E. R. Kursinski, U. Foelsche, M. Gorbunov, S. Heise, Y.-H. Kuo, K. B. Lauritsen, C. Marquardt, C. Rocken, W. Schreiner, S. Sokolovskiy, S. Syndergaard, and J. Wickert
Atmos. Chem. Phys., 13, 1469–1484, https://doi.org/10.5194/acp-13-1469-2013, https://doi.org/10.5194/acp-13-1469-2013, 2013
Bahareh Rahimi and Ulrich Foelsche
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-81, https://doi.org/10.5194/amt-2024-81, 2024
Revised manuscript under review for AMT
Short summary
Short summary
This study explores the use of GNSS-RO data to improve understanding of the vertical structure of humidity in Atmospheric Rivers (ARs). Specific humidity profiles and IWV values from GNSS-RO are evaluated to assess if this method offers additional insights into ARs' vertical characteristics. The results suggest that combining GNSS-RO data, with its high vertical resolution, with SSMI/S data, known for high horizontal resolution, provides a more complete view of the 3D structure of ARs.
Thomas Pliemon, Ulrich Foelsche, Christian Rohr, and Christian Pfister
Clim. Past, 19, 2237–2256, https://doi.org/10.5194/cp-19-2237-2023, https://doi.org/10.5194/cp-19-2237-2023, 2023
Short summary
Short summary
Louis Morin consistently recorded precipitation intensity and duration between 1665 and 1713. We use these records to reconstruct precipitation totals. This reconstruction is validated by several methods and then presented using precipitation indexes. What is exceptional about this dataset is the availability of a sub-daily resolution and the low number of missing data points over the entire observation period.
Johannes K. Nielsen, Hans Gleisner, Stig Syndergaard, and Kent B. Lauritsen
Atmos. Meas. Tech., 15, 6243–6256, https://doi.org/10.5194/amt-15-6243-2022, https://doi.org/10.5194/amt-15-6243-2022, 2022
Short summary
Short summary
This paper provides a new way to estimate uncertainties and error correlations. The method is a generalization of a known method called the
three-cornered hat: Instead of calculating uncertainties from assumed knowledge about the observation method, uncertainties and error correlations are estimated statistically from tree independent observation series, measuring the same variable. The results are useful for future estimation of atmospheric-specific humidity from the bending of radio waves.
Thomas Pliemon, Ulrich Foelsche, Christian Rohr, and Christian Pfister
Clim. Past, 18, 1685–1707, https://doi.org/10.5194/cp-18-1685-2022, https://doi.org/10.5194/cp-18-1685-2022, 2022
Short summary
Short summary
We have digitized and analyzed meteorological variables (temperature, direction of the movement of the clouds, and cloud cover), which were noted by Louis Morin in the period 1665–1713 in Paris. This time period is characterized by cold winters and autumns and moderate springs and summers. A low frequency of westerlies in the winter months leads to a cooling. Morin's measurements seem to be trustworthy. Only cloud cover in quantitative terms should be taken with caution.
Matthieu Plu, Barbara Scherllin-Pirscher, Delia Arnold Arias, Rocio Baro, Guillaume Bigeard, Luca Bugliaro, Ana Carvalho, Laaziz El Amraoui, Kurt Eschbacher, Marcus Hirtl, Christian Maurer, Marie D. Mulder, Dennis Piontek, Lennart Robertson, Carl-Herbert Rokitansky, Fritz Zobl, and Raimund Zopp
Nat. Hazards Earth Syst. Sci., 21, 2973–2992, https://doi.org/10.5194/nhess-21-2973-2021, https://doi.org/10.5194/nhess-21-2973-2021, 2021
Short summary
Short summary
Past volcanic eruptions that spread out ash over large areas, like Eyjafjallajökull in 2010, forced the cancellation of thousands of flights and had huge economic consequences.
In this article, an international team in the H2020 EU-funded EUNADICS-AV project has designed a probabilistic model approach to quantify ash concentrations. This approach is evaluated against measurements, and its potential use to mitigate the impact of future large-scale eruptions is discussed.
Martin Stangl and Ulrich Foelsche
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-117, https://doi.org/10.5194/cp-2021-117, 2021
Manuscript not accepted for further review
Short summary
Short summary
We selected the Maunder Minimum (1645–1715), an astrophysically defined section of the Little Ice Age, and compared the historical data from the Grand Duchy of Transylvania with those from Germany, Austria and Switzerland. For a larger period (1500–1950), we examined on a decadal basis the extent to which an influence on the climate through long-term fluctuations in solar activity, as was inferred from isotope reconstructions from ice cores, can be seen.
Esmail Ghaemi, Ulrich Foelsche, Alexander Kann, and Jürgen Fuchsberger
Hydrol. Earth Syst. Sci., 25, 4335–4356, https://doi.org/10.5194/hess-25-4335-2021, https://doi.org/10.5194/hess-25-4335-2021, 2021
Short summary
Short summary
We assess an operational merged gauge–radar precipitation product over a period of 12 years, using gridded precipitation fields from a dense gauge network (WegenerNet) in southeastern Austria. We analyze annual data, seasonal data, and extremes using different metrics. We identify individual events using a simple threshold based on the interval between two consecutive events and evaluate the events' characteristics in both datasets.
Michael Gorbunov, Gottfried Kirchengast, and Kent B. Lauritsen
Atmos. Meas. Tech., 14, 853–867, https://doi.org/10.5194/amt-14-853-2021, https://doi.org/10.5194/amt-14-853-2021, 2021
Short summary
Short summary
Currently, the canonical transform (CT) approach to the processing of radio occultation observations is widely used. For the spherically symmetric atmosphere, the applicability of this method can be strictly proven. However, in the presence of horizontal gradients, this approach may not work. Here we introduce a generalization of the CT method in order to reduce the errors due to horizontal gradients.
Marcus Hirtl, Barbara Scherllin-Pirscher, Martin Stuefer, Delia Arnold, Rocio Baro, Christian Maurer, and Marie D. Mulder
Nat. Hazards Earth Syst. Sci., 20, 3099–3115, https://doi.org/10.5194/nhess-20-3099-2020, https://doi.org/10.5194/nhess-20-3099-2020, 2020
Short summary
Short summary
The paper shows the application of a new volcanic emission preprocessor for the chemical transport model WRF-Chem. The model is evaluated with different observational data sets for the eruption of the Grimsvötn volcano 2011.
Clara Hohmann, Gottfried Kirchengast, Sungmin O, Wolfgang Rieger, and Ulrich Foelsche
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-453, https://doi.org/10.5194/hess-2020-453, 2020
Manuscript not accepted for further review
Short summary
Short summary
Heavy precipitation events are still feeding with a large uncertainty into hydrological models. Based on the highly dense station network WegenerNet (one station per 2 km2) we analyzed the sensitivity of runoff simulations to different rain network densities and interpolation methods in small catchments. We find, and quantify relevant characteristics, that runoff curves especially from
short-duration convective rainfall events are strongly influenced by gauge station density and distribution.
Marcus Hirtl, Delia Arnold, Rocio Baro, Hugues Brenot, Mauro Coltelli, Kurt Eschbacher, Helmut Hard-Stremayer, Florian Lipok, Christian Maurer, Dieter Meinhard, Lucia Mona, Marie D. Mulder, Nikolaos Papagiannopoulos, Michael Pernsteiner, Matthieu Plu, Lennart Robertson, Carl-Herbert Rokitansky, Barbara Scherllin-Pirscher, Klaus Sievers, Mikhail Sofiev, Wim Som de Cerff, Martin Steinheimer, Martin Stuefer, Nicolas Theys, Andreas Uppstu, Saskia Wagenaar, Roland Winkler, Gerhard Wotawa, Fritz Zobl, and Raimund Zopp
Nat. Hazards Earth Syst. Sci., 20, 1719–1739, https://doi.org/10.5194/nhess-20-1719-2020, https://doi.org/10.5194/nhess-20-1719-2020, 2020
Short summary
Short summary
The paper summarizes the set-up and outcome of a volcanic-hazard demonstration exercise, with the goals of assessing and mitigating the impacts of volcanic ash clouds on civil and military aviation. Experts in the field simulated the sequence of procedures for an artificial eruption of the Etna volcano in Italy. The scope of the exercise ranged from the detection of the assumed event to the issuance of early warnings and optimized rerouting of flights.
Hans Gleisner, Kent B. Lauritsen, Johannes K. Nielsen, and Stig Syndergaard
Atmos. Meas. Tech., 13, 3081–3098, https://doi.org/10.5194/amt-13-3081-2020, https://doi.org/10.5194/amt-13-3081-2020, 2020
Short summary
Short summary
Data from GPS radio occultation (RO) instruments aboard a series of satellites have been reprocessed by the ROM SAF. We describe the monthly mean RO climate data records (CDRs) and the methods for removing sampling errors. The quality of the CDRs is evaluated, with a focus on systematic differences between satellite missions. Between 8 and 30 km, the data quality and the inter-mission differences are small enough to allow the generation of combined multi-mission data records starting in 2001.
Andrea K. Steiner, Florian Ladstädter, Chi O. Ao, Hans Gleisner, Shu-Peng Ho, Doug Hunt, Torsten Schmidt, Ulrich Foelsche, Gottfried Kirchengast, Ying-Hwa Kuo, Kent B. Lauritsen, Anthony J. Mannucci, Johannes K. Nielsen, William Schreiner, Marc Schwärz, Sergey Sokolovskiy, Stig Syndergaard, and Jens Wickert
Atmos. Meas. Tech., 13, 2547–2575, https://doi.org/10.5194/amt-13-2547-2020, https://doi.org/10.5194/amt-13-2547-2020, 2020
Short summary
Short summary
High-quality observations are critically important for monitoring the Earth’s changing climate. We provide information on the consistency and long-term stability of observations from GPS radio occultation (RO). We assess, for the first time, RO records from multiple RO missions and all major RO data providers. Our results quantify where RO can be used for reliable trend assessment and confirm its climate quality.
Martin Lasser, Sungmin O, and Ulrich Foelsche
Atmos. Meas. Tech., 12, 5055–5070, https://doi.org/10.5194/amt-12-5055-2019, https://doi.org/10.5194/amt-12-5055-2019, 2019
Short summary
Short summary
This paper evaluates the rain rate estimates from the Global Precipitation Measurement (GPM) mission's radar instrument by comparing them to the data of the WegenerNet, a local-scale high-resolution network of meteorological stations. Our results show that the GPM-DPR estimates basically match with the WegenerNet measurements, but absolute quantities are biased.
Sungmin O and Ulrich Foelsche
Hydrol. Earth Syst. Sci., 23, 2863–2875, https://doi.org/10.5194/hess-23-2863-2019, https://doi.org/10.5194/hess-23-2863-2019, 2019
Short summary
Short summary
We analyze heavy local rainfall to address questions regarding the spatial uncertainty due to the approximation of areal rainfall using point measurements. Ten years of rainfall data from a dense network of 150 rain gauges in southeastern Austria are employed, which permits robust examination of small-scale rainfall at various horizontal resolutions. Quantitative uncertainty information from the study can guide both data users and producers to estimate uncertainty in their own rainfall dataset.
Julia Danzer, Marc Schwärz, Veronika Proschek, Ulrich Foelsche, and Hans Gleisner
Atmos. Meas. Tech., 11, 4867–4882, https://doi.org/10.5194/amt-11-4867-2018, https://doi.org/10.5194/amt-11-4867-2018, 2018
Short summary
Short summary
Recently a new approach for the production of RO climatologies has been proposed. The idea is to propagate mean bending angle profiles through processing and retrieve directly climatological products of refractivity, density, pressure, and temperature. The averaging suppresses noise in the data, allowing the bending angles to be used up to 80 km without the need for background information. This work focuses on the comparison of the new climatologies between two processing centers.
Therese Rieckh, Richard Anthes, William Randel, Shu-Peng Ho, and Ulrich Foelsche
Atmos. Meas. Tech., 11, 3091–3109, https://doi.org/10.5194/amt-11-3091-2018, https://doi.org/10.5194/amt-11-3091-2018, 2018
Short summary
Short summary
Water vapor is the most important tropospheric greenhouse gas and is also highly variable in space and time. We study the vertical structure and variability of tropospheric humidity using various observing techniques (GPS radio occultation, radiosondes, Atmospheric Infrared Sounder) and models. Time–height cross sections reveal seasonal biases for different pressure layers. We find that radio occultation humidity has high accuracy and can contribute valuable information in data assimilation.
Hallgeir Wilhelmsen, Florian Ladstädter, Barbara Scherllin-Pirscher, and Andrea K. Steiner
Atmos. Meas. Tech., 11, 1333–1346, https://doi.org/10.5194/amt-11-1333-2018, https://doi.org/10.5194/amt-11-1333-2018, 2018
Short summary
Short summary
Tropical atmospheric variability is often described using proxy indices of the Quasi-Biennial Oscillation and the El Niño–Southern Oscillation. We introduce new proxies derived from GNSS radio occultation (RO) satellite measurements. Using the high vertical resolution of the RO temperature fields we obtain altitude-resolved indices which can improve the description of atmospheric variability patterns and can be used in climate studies where a detailed knowledge of these patterns is required.
Michael E. Gorbunov, Estel Cardellach, and Kent B. Lauritsen
Atmos. Meas. Tech., 11, 1181–1191, https://doi.org/10.5194/amt-11-1181-2018, https://doi.org/10.5194/amt-11-1181-2018, 2018
Short summary
Short summary
We apply linear and non-linear representations of wave fields, based on Fourier integral operators and Wigner distribution function, to the retrieval of reflected rays from radio occultation observations. We introduce a reflection index that characterizes the relative intensity of the reflected ray. A comparison of indices evaluated for a large base of events including the visual identification of reflections indicated a good agreement with our definition of reflection index.
Petr Pisoft, Petr Sacha, Jiri Miksovsky, Peter Huszar, Barbara Scherllin-Pirscher, and Ulrich Foelsche
Atmos. Meas. Tech., 11, 515–527, https://doi.org/10.5194/amt-11-515-2018, https://doi.org/10.5194/amt-11-515-2018, 2018
Short summary
Short summary
We revise selected findings regarding utilization of Global Positioning System radio occultation density profiles for analysis of internal gravity waves. The results show that previously published results are valid only for one specific data version only. Using radiosonde profiles, we also analyze a nonhydrostatic component in temperature profiles. The last part presents detailed study on the utilization of density profiles for characterization of the wave field stability.
Sungmin O, Ulrich Foelsche, Gottfried Kirchengast, Juergen Fuchsberger, Jackson Tan, and Walter A. Petersen
Hydrol. Earth Syst. Sci., 21, 6559–6572, https://doi.org/10.5194/hess-21-6559-2017, https://doi.org/10.5194/hess-21-6559-2017, 2017
Short summary
Short summary
We evaluate gridded satellite rainfall estimates, from GPM IMERG, through a direct grid-to-grid comparison with gauge data from the WegenerNet Feldbach (WEGN) network in southeastern Austria. As the WEGN data are independent of the IMERG gauge adjustment process, we could analyze the IMERG estimates across its three different runs. Our results show the effects of additional retrieval processes on the final rainfall estimates, and consequently provide IMERG accuracy information for data users.
Barbara Angerer, Florian Ladstädter, Barbara Scherllin-Pirscher, Marc Schwärz, Andrea K. Steiner, Ulrich Foelsche, and Gottfried Kirchengast
Atmos. Meas. Tech., 10, 4845–4863, https://doi.org/10.5194/amt-10-4845-2017, https://doi.org/10.5194/amt-10-4845-2017, 2017
Short summary
Short summary
We present a detailed analysis of the latest Wegener Center GPS radio occultation reprocessing (OPSv5.6) output. Knowledge of differences in data quality, as well as of data consistency, is essential when combining data from different missions to a long-term climate record. We compare quality aspects of the various processed satellite missions and present satellite-dependent variations. Temperature data from various satellites are found to be highly consistent within 8 to 25 km.
Therese Rieckh, Richard Anthes, William Randel, Shu-Peng Ho, and Ulrich Foelsche
Atmos. Meas. Tech., 10, 1093–1110, https://doi.org/10.5194/amt-10-1093-2017, https://doi.org/10.5194/amt-10-1093-2017, 2017
Short summary
Short summary
We use GPS radio occultation (RO) data to investigate the structure and temporal behavior of extremely dry, high-ozone tropospheric air in the tropical western Pacific and compare them to various data sets (research aircraft, radiosonde, infrared sounder, and model reanalyses). All these data sets have limitations. We show that the RO data contribute significant information on the water vapor content. Our results also verify the quality of the reanalyses.
Barbara Scherllin-Pirscher, William J. Randel, and Joowan Kim
Atmos. Chem. Phys., 17, 793–806, https://doi.org/10.5194/acp-17-793-2017, https://doi.org/10.5194/acp-17-793-2017, 2017
Short summary
Short summary
Tropical temperature variability and associated Kelvin-wave activity are investigated from 10 km to 30 km using 13 years of high-resolution observational data. Strongest temperature variability is found in the tropical tropopause region between about 16 km and 20 km, where peaks of Kelvin-wave activity are irregularly distributed in time. Detailed knowledge of dynamical processes in the tropical tropopause region is an essential part of better understanding climate variability and change.
Lukas Brunner, Andrea K. Steiner, Barbara Scherllin-Pirscher, and Martin W. Jury
Atmos. Chem. Phys., 16, 4593–4604, https://doi.org/10.5194/acp-16-4593-2016, https://doi.org/10.5194/acp-16-4593-2016, 2016
Short summary
Short summary
Atmospheric blocking refers to persistent high-pressure systems which block the climatological flow at midlatitudes. We explore blocking with observations from GPS radio occultation (RO), a satellite-based remote-sensing system. Using two example cases, we find that RO data robustly capture blocking, highlighting the potential of RO observations to complement models and reanalysis as a basis for blocking research.
Marc Olefs, Dietmar J. Baumgartner, Friedrich Obleitner, Christoph Bichler, Ulrich Foelsche, Helga Pietsch, Harald E. Rieder, Philipp Weihs, Florian Geyer, Thomas Haiden, and Wolfgang Schöner
Atmos. Meas. Tech., 9, 1513–1531, https://doi.org/10.5194/amt-9-1513-2016, https://doi.org/10.5194/amt-9-1513-2016, 2016
Short summary
Short summary
We present the Austrian RADiation monitoring network (ARAD) that has been established to advance national climate monitoring and to support satellite retrieval, atmospheric modeling and solar energy techniques' development. Measurements cover the downwelling solar and thermal infrared radiation using instruments according to Baseline Surface Radiation Network (BSRN) standards. The paper outlines the aims and scopes of ARAD, its measurement and calibration standards, methods and strategies.
Y. Li, G. Kirchengast, B. Scherllin-Pirscher, R. Norman, Y. B. Yuan, J. Fritzer, M. Schwaerz, and K. Zhang
Atmos. Meas. Tech., 8, 3447–3465, https://doi.org/10.5194/amt-8-3447-2015, https://doi.org/10.5194/amt-8-3447-2015, 2015
Short summary
Short summary
We introduce a new dynamic statistical optimization algorithm to initialize ionosphere-corrected bending angles of Global Navigation Satellite System-based radio occultation measurements. The new algorithm is evaluated against the OPSv5.6 algorithm developed by the Wegener Center using both simulated and real observed data. It is found that the algorithm can significantly reduce the random errors of optimized bending angles. The retrieved refractivity and temperature profiles are also benefited.
P. Šácha, U. Foelsche, and P. Pišoft
Atmos. Meas. Tech., 7, 4123–4132, https://doi.org/10.5194/amt-7-4123-2014, https://doi.org/10.5194/amt-7-4123-2014, 2014
Short summary
Short summary
In the presented paper, we introduce a method for the density background separation and a methodology for internal gravity waves analysis using the GPS RO density profiles. Various background choices are discussed, and the correspondence between analytical forms of the density and dry temperature background profiles is examined. Finally the advantages of the density instead of dry temperature GPS RO data utilization are listed (e.g. inclusion of non-hydrostatic waves).
T. Rieckh, B. Scherllin-Pirscher, F. Ladstädter, and U. Foelsche
Atmos. Meas. Tech., 7, 3947–3958, https://doi.org/10.5194/amt-7-3947-2014, https://doi.org/10.5194/amt-7-3947-2014, 2014
Short summary
Short summary
Radio Occultation (RO) observations featuring high vertical resolution, global availability, and high accuracy were used to investigate global characteristics of the lapse rate tropopause. Climatological tropopause characteristics for the
RO record from 2001 to 2013 extend previous studies on tropopause structure and its temporal variability. Latitudinal and longitudinal variations as well as the annual cycle and inter-annual variability were analyzed for the tropopause altitude and temperature.
J. Danzer, U. Foelsche, B. Scherllin-Pirscher, and M. Schwärz
Atmos. Meas. Tech., 7, 2883–2896, https://doi.org/10.5194/amt-7-2883-2014, https://doi.org/10.5194/amt-7-2883-2014, 2014
J. Danzer, B. Scherllin-Pirscher, and U. Foelsche
Atmos. Meas. Tech., 6, 2169–2179, https://doi.org/10.5194/amt-6-2169-2013, https://doi.org/10.5194/amt-6-2169-2013, 2013
A. K. Steiner, D. Hunt, S.-P. Ho, G. Kirchengast, A. J. Mannucci, B. Scherllin-Pirscher, H. Gleisner, A. von Engeln, T. Schmidt, C. Ao, S. S. Leroy, E. R. Kursinski, U. Foelsche, M. Gorbunov, S. Heise, Y.-H. Kuo, K. B. Lauritsen, C. Marquardt, C. Rocken, W. Schreiner, S. Sokolovskiy, S. Syndergaard, and J. Wickert
Atmos. Chem. Phys., 13, 1469–1484, https://doi.org/10.5194/acp-13-1469-2013, https://doi.org/10.5194/acp-13-1469-2013, 2013
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Improving solution availability and temporal consistency of an optimal-estimation physical retrieval for ground-based thermodynamic boundary layer profiling
An improved geolocation methodology for spaceborne radar and lidar systems
Combining low- and high-frequency microwave radiometer measurements from the MOSAiC expedition for enhanced water vapour products
HAMSTER: Hyperspectral Albedo Maps dataset with high Spatial and TEmporal Resolution
Global-scale gravity wave analysis methodology for the ESA Earth Explorer 11 candidate CAIRT
Retrieval of pseudo-BRDF-adjusted surface reflectance at 440 nm from the Geostationary Environmental Monitoring Spectrometer (GEMS)
Drop size distribution retrieval using dual-polarization radar at C-band and S-band
Thermal tides in the middle atmosphere at mid-latitudes measured with a ground-based microwave radiometer
Global sensitivity analysis of simulated remote sensing polarimetric observations over snow
Improving the Gaussianity of radar reflectivity departures between observations and simulations using symmetric rain rates
On the temperature stability requirements of free-running Nd:YAG lasers for atmospheric temperature profiling through the rotational Raman technique
Limitations in wavelet analysis of non-stationary atmospheric gravity wave signatures in temperature profiles
A new non-linearity correction method for the spectrum from the Geostationary Inferometric Infrared Sounder on board Fengyun-4 satellites and its preliminary assessments
Determination of high-precision tropospheric delays using crowdsourced smartphone GNSS data
Unfiltering of the EarthCARE Broadband Radiometer (BBR) observations: the BM-RAD product
Variance estimations in the presence of intermittent interference and their applications to incoherent scatter radar signal processing
A clustering-based method for identifying and tracking squall lines
A multi-instrument fuzzy logic boundary-layer-top detection algorithm
Aeolus Lidar Surface Returns (LSR) at 355 nm as a new Aeolus L2A Phase-F product
Sensitivity of thermodynamic profiles retrieved from ground-based microwave and infrared observations to additional input data from active remote sensing instruments and numerical weather prediction models
Scale separation for gravity wave analysis from 3D temperature observations in the mesosphere and lower thermosphere (MLT) region
Estimating the refractivity bias of FORMOSAT-7/COSMIC-2 Global Navigation Satellite System (GNSS) radio occultation in the deep troposphere
High Spectral Resolution Lidar – generation 2 (HSRL-2) retrievals of ocean surface wind speed: methodology and evaluation
Retrieval of top-of-atmosphere fluxes from combined EarthCARE LiDAR, imager and broadband radiometer observations: the BMA-FLX product
Dual adaptive differential threshold method for automated detection of faint and strong echo features in radar observations of winter storms
Noise filtering options for conically scanning Doppler lidar measurements with low pulse accumulation
Comparative experimental validation of microwave hyperspectral atmospheric soundings in clear-sky conditions
Measuring rainfall using microwave links: the influence of temporal sampling
Drone-based photogrammetry combined with deep learning to estimate hail size distributions and melting of hail on the ground
Determination of low-level temperature profiles from microwave radiometer observations during rain
The High lAtitude sNowfall Detection and Estimation aLgorithm for ATMS (HANDEL-ATMS): a new algorithm for snowfall retrieval at high latitudes
Next-generation radiance unfiltering process for the Clouds and the Earth's Radiant Energy System instrument
Improved rain event detection in commercial microwave link time series via combination with MSG SEVIRI data
A directional surface reflectance climatology determined from TROPOMI observations
Investigation of gravity waves using measurements from a sodium temperature/wind lidar operated in multi-direction mode
Sampling the diurnal and annual cycles of the Earth’s energy imbalance with constellations of satellite-borne radiometers
An improved BRDF hotspot model and its use in VLIDORT for studying the impact of atmospheric scattering on hotspot directional signatures in the atmosphere
A multi-decadal time series of upper stratospheric temperature profiles from Odin-OSIRIS limb-scattered spectra
Observations of Tall-Building Wakes Using a Scanning Doppler Lidar
CALOTRITON: a convective boundary layer height estimation algorithm from ultra-high-frequency (UHF) wind profiler data
Enhancing consistency of microphysical properties of precipitation across the melting layer in dual-frequency precipitation radar data
Analysis of the measurement uncertainty for a 3D wind-LiDAR
Profiling the molecular destruction rates of temperature and humidity as well as the turbulent kinetic energy dissipation in the convective boundary layer
Forward operator for polarimetric radio occultation measurements
Assessing atmospheric gravity wave spectra in the presence of observational gaps
Joint 1DVar retrievals of tropospheric temperature and water vapor from Global Navigation Satellite System radio occultation (GNSS-RO) and microwave radiometer observations
Mispointing characterization and Doppler velocity correction for the conically scanning WIVERN Doppler radar
Radar and environment-based hail damage estimates using machine learning
A new power-law model for μ–Λ relationships in convective and stratiform rainfall
Suppression of precipitation bias in wind velocities from continuous-wave Doppler lidars
Bianca Adler, David D. Turner, Laura Bianco, Irina V. Djalalova, Timothy Myers, and James M. Wilczak
Atmos. Meas. Tech., 17, 6603–6624, https://doi.org/10.5194/amt-17-6603-2024, https://doi.org/10.5194/amt-17-6603-2024, 2024
Short summary
Short summary
Continuous profile observations of temperature and humidity in the lowest part of the atmosphere are essential for the evaluation of numerical weather prediction models and data assimilation for better weather forecasts. Such profiles can be retrieved from passive ground-based remote sensing instruments like infrared spectrometers and microwave radiometers. In this study, we describe three recent modifications to the retrieval framework TROPoe for improved temperature and humidity profiles.
Bernat Puigdomènech Treserras and Pavlos Kollias
Atmos. Meas. Tech., 17, 6301–6314, https://doi.org/10.5194/amt-17-6301-2024, https://doi.org/10.5194/amt-17-6301-2024, 2024
Short summary
Short summary
The paper presents a comprehensive approach to improve the geolocation accuracy of spaceborne radar and lidar systems, crucial for the successful interpretation of data from the upcoming EarthCARE mission. The paper details the technical background of the presented methods and various examples of geolocation analyses, including a short period of CloudSat observations when the star tracker was not operating properly and lifetime statistics from the CloudSat and CALIPSO missions.
Andreas Walbröl, Hannes J. Griesche, Mario Mech, Susanne Crewell, and Kerstin Ebell
Atmos. Meas. Tech., 17, 6223–6245, https://doi.org/10.5194/amt-17-6223-2024, https://doi.org/10.5194/amt-17-6223-2024, 2024
Short summary
Short summary
We developed retrievals of integrated water vapour (IWV), temperature profiles, and humidity profiles from ground-based passive microwave remote sensing measurements gathered during the MOSAiC expedition. We demonstrate and quantify the benefit of combining low- and high-frequency microwave radiometers to improve humidity profiling and IWV estimates by comparing the retrieved quantities to single-instrument retrievals and reference datasets (radiosondes).
Giulia Roccetti, Luca Bugliaro, Felix Gödde, Claudia Emde, Ulrich Hamann, Mihail Manev, Michael Fritz Sterzik, and Cedric Wehrum
Atmos. Meas. Tech., 17, 6025–6046, https://doi.org/10.5194/amt-17-6025-2024, https://doi.org/10.5194/amt-17-6025-2024, 2024
Short summary
Short summary
The amount of sunlight reflected by the Earth’s surface (albedo) is vital for the Earth's radiative system. While satellite instruments offer detailed spatial and temporal albedo maps, they only cover seven wavelength bands. We generate albedo maps that fully span the visible and near-infrared range using a machine learning algorithm. These maps reveal how the reflectivity of different land surfaces varies throughout the year. Our dataset enhances the understanding of the Earth's energy balance.
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024, https://doi.org/10.5194/amt-17-5785-2024, 2024
Short summary
Short summary
We investigate the capabilities of a proposed satellite mission, CAIRT, for observing gravity waves throughout the middle atmosphere and present the necessary methodology for in-depth wave analysis. Our findings suggest that such a satellite mission is highly capable of resolving individual wave parameters and could give new insights into the role of gravity waves in general atmospheric circulation and atmospheric processes.
Suyoung Sim, Sungwon Choi, Daeseong Jung, Jongho Woo, Nayeon Kim, Sungwoo Park, Honghee Kim, Ukkyo Jeong, Hyunkee Hong, and Kyung-Soo Han
Atmos. Meas. Tech., 17, 5601–5618, https://doi.org/10.5194/amt-17-5601-2024, https://doi.org/10.5194/amt-17-5601-2024, 2024
Short summary
Short summary
This study evaluates the use of background surface reflectance (BSR) derived from a semi-empirical bidirectional reflectance distribution function (BRDF) model based on GEMS satellite images. Analysis shows that BSR provides improved accuracy and stability compared to Lambertian-equivalent reflectivity (LER). These results indicate that BSR can significantly enhance climate analysis and air quality monitoring, making it a promising tool for accurate environmental satellite applications.
Daniel Durbin, Yadong Wang, and Pao-Liang Chang
Atmos. Meas. Tech., 17, 5397–5411, https://doi.org/10.5194/amt-17-5397-2024, https://doi.org/10.5194/amt-17-5397-2024, 2024
Short summary
Short summary
A method for determining drop size distributions (DSDs) for rain using radar measurements from two frequencies at two polarizations is presented. Following some preprocessing and quality control, radar measurements are incorporated into a model that uses swarm intelligence to seek the most suitable DSD to produce the input measurements.
Witali Krochin, Axel Murk, and Gunter Stober
Atmos. Meas. Tech., 17, 5015–5028, https://doi.org/10.5194/amt-17-5015-2024, https://doi.org/10.5194/amt-17-5015-2024, 2024
Short summary
Short summary
Atmospheric tides are global-scale oscillations with periods of a fraction of a day. Their observation in the middle atmosphere is challenging and rare, as it requires continuous measurements with a high temporal resolution. In this paper, temperature time series of a ground-based microwave radiometer were analyzed with a spectral filter to derive thermal tide amplitudes and phases in an altitude range of 25–50 km at the geographical locations of Payerne and Bern (Switzerland).
Matteo Ottaviani, Gabriel Harris Myers, and Nan Chen
Atmos. Meas. Tech., 17, 4737–4756, https://doi.org/10.5194/amt-17-4737-2024, https://doi.org/10.5194/amt-17-4737-2024, 2024
Short summary
Short summary
We analyze simulated polarization observations over snow to investigate the capabilities of remote sensing to determine surface and atmospheric properties in snow-covered regions. Polarization measurements are demonstrated to aid in the determination of snow grain shape, ice crystal roughness, and the vertical distribution of impurities in the snow–atmosphere system, data that are critical for estimating snow albedo for use in climate models.
Yudong Gao, Lidou Huyan, Zheng Wu, and Bojun Liu
Atmos. Meas. Tech., 17, 4675–4686, https://doi.org/10.5194/amt-17-4675-2024, https://doi.org/10.5194/amt-17-4675-2024, 2024
Short summary
Short summary
A symmetric error model built by symmetric rain rates handles the non-Gaussian error structure of the reflectivity error. The accuracy and linearization of rain rates can further improve the Gaussianity.
José Alex Zenteno-Hernández, Adolfo Comerón, Federico Dios, Alejandro Rodríguez-Gómez, Constantino Muñoz-Porcar, Michaël Sicard, Noemi Franco, Andreas Behrendt, and Paolo Di Girolamo
Atmos. Meas. Tech., 17, 4687–4694, https://doi.org/10.5194/amt-17-4687-2024, https://doi.org/10.5194/amt-17-4687-2024, 2024
Short summary
Short summary
We study how the spectral characteristics of a solid-state laser in an atmospheric temperature profiling lidar using the Raman technique impact the temperature retrieval accuracy. We find that the spectral widening, with respect to a seeded laser, has virtually no impact, while crystal-rod temperature variations in the laser must be kept within a range of 1 K for the uncertainty in the atmospheric temperature below 1 K. The study is carried out through spectroscopy simulations.
Robert Reichert, Natalie Kaifler, and Bernd Kaifler
Atmos. Meas. Tech., 17, 4659–4673, https://doi.org/10.5194/amt-17-4659-2024, https://doi.org/10.5194/amt-17-4659-2024, 2024
Short summary
Short summary
Imagine you want to determine how quickly the pitch of a passing ambulance’s siren changes. If the vehicle is traveling slowly, the pitch changes only slightly, but if it is traveling fast, the pitch also changes rapidly. In a similar way, the wind in the middle atmosphere modulates the wavelength of atmospheric gravity waves. We have investigated the question of how strong the maximum wind may be so that the change in wavelength can still be determined with the help of wavelet transformation.
Qiang Guo, Yuning Liu, Xin Wang, and Wen Hui
Atmos. Meas. Tech., 17, 4613–4627, https://doi.org/10.5194/amt-17-4613-2024, https://doi.org/10.5194/amt-17-4613-2024, 2024
Short summary
Short summary
Non-linearity (NL) correction is a critical procedure to guarantee that the calibration accuracy of a spaceborne sensor approaches a reasonable level. Different from the classical method, a new NL correction method for a spaceborne Fourier transform spectrometer is proposed. To overcome the inaccurate linear coefficient from two-point calibration influencing NL correction, an iteration algorithm is established that is suitable for NL correction of both infrared and microwave sensors.
Yuanxin Pan, Grzegorz Kłopotek, Laura Crocetti, Rudi Weinacker, Tobias Sturn, Linda See, Galina Dick, Gregor Möller, Markus Rothacher, Ian McCallum, Vicente Navarro, and Benedikt Soja
Atmos. Meas. Tech., 17, 4303–4316, https://doi.org/10.5194/amt-17-4303-2024, https://doi.org/10.5194/amt-17-4303-2024, 2024
Short summary
Short summary
Crowdsourced smartphone GNSS data were processed with a dedicated data processing pipeline and could produce millimeter-level accurate estimates of zenith total delay (ZTD) – a critical atmospheric variable. This breakthrough not only demonstrates the feasibility of using ubiquitous devices for high-precision atmospheric monitoring but also underscores the potential for a global, cost-effective tropospheric monitoring network.
Almudena Velázquez Blázquez, Edward Baudrez, Nicolas Clerbaux, and Carlos Domenech
Atmos. Meas. Tech., 17, 4245–4256, https://doi.org/10.5194/amt-17-4245-2024, https://doi.org/10.5194/amt-17-4245-2024, 2024
Short summary
Short summary
The Broadband Radiometer measures shortwave and total-wave radiances filtered by the spectral response of the instrument. To obtain unfiltered solar and thermal radiances, the effect of the spectral response needs to be corrected for, done within the BM-RAD processor. Errors in the unfiltering are propagated into fluxes; thus, accurate unfiltering is required for their proper estimation (within BMA-FLX). Unfiltering errors are estimated to be <0.5 % for the shortwave and <0.1 % for the longwave.
Qihou Zhou, Yanlin Li, and Yun Gong
Atmos. Meas. Tech., 17, 4197–4209, https://doi.org/10.5194/amt-17-4197-2024, https://doi.org/10.5194/amt-17-4197-2024, 2024
Short summary
Short summary
We discuss several robust estimators to compute the variance of a normally distributed random variable to deal with interference. Compared to rank-based estimators, the methods based on the geometric mean are more accurate and are computationally more efficient. We apply three robust estimators to incoherent scatter power and velocity processing, along with the traditional sample mean estimator. The best estimator is a hybrid estimator that combines the sample mean and a robust estimator.
Zhao Shi, Yuxiang Wen, and Jianxin He
Atmos. Meas. Tech., 17, 4121–4135, https://doi.org/10.5194/amt-17-4121-2024, https://doi.org/10.5194/amt-17-4121-2024, 2024
Short summary
Short summary
The squall line is a type of convective system. Squall lines are often associated with damaging weather, so identifying and tracking squall lines plays an important role in early meteorological disaster warnings. A clustering-based method is proposed in this article. It can identify the squall lines within the radar scanning range with an accuracy rate of 95.93 %. It can also provide the three-dimensional structure and movement tracking results for each squall line.
Elizabeth N. Smith and Jacob T. Carlin
Atmos. Meas. Tech., 17, 4087–4107, https://doi.org/10.5194/amt-17-4087-2024, https://doi.org/10.5194/amt-17-4087-2024, 2024
Short summary
Short summary
Boundary-layer height observations remain sparse in time and space. In this study we create a new fuzzy logic method for synergistically combining boundary-layer height estimates from a suite of instruments. These estimates generally compare well to those from radiosondes; plus, the approach offers near-continuous estimates through the entire diurnal cycle. Suspected reasons for discrepancies are discussed. The code for the newly presented fuzzy logic method is provided for the community to use.
Lev D. Labzovskii, Gerd-Jan van Zadelhoff, David P. Donovan, Jos de Kloe, L. Gijsbert Tilstra, Ad Stoffelen, Damien Josset, and Piet Stammes
EGUsphere, https://doi.org/10.5194/egusphere-2024-1926, https://doi.org/10.5194/egusphere-2024-1926, 2024
Short summary
Short summary
The Atmospheric Laser Doppler Instrument (ALADIN) on the Aeolus satellite was the first of its kind to measure high-resolution vertical profiles of aerosols and cloud properties from space. We present an algorithm, producing Aeolus lidar surface returns (LSR) containing useful information for measuring UV reflectivity. Aeolus LSR matched well with existing UV reflectivity data from other satellites like GOME-2 and TROPOMI and demonstrated excellent sensitivity to modelled snow cover.
Laura Bianco, Bianca Adler, Ludovic Bariteau, Irina V. Djalalova, Timothy Myers, Sergio Pezoa, David D. Turner, and James M. Wilczak
Atmos. Meas. Tech., 17, 3933–3948, https://doi.org/10.5194/amt-17-3933-2024, https://doi.org/10.5194/amt-17-3933-2024, 2024
Short summary
Short summary
The Tropospheric Remotely Observed Profiling via Optimal Estimation physical retrieval is used to retrieve temperature and humidity profiles from various combinations of passive and active remote sensing instruments, surface platforms, and numerical weather prediction models. The retrieved profiles are assessed against collocated radiosonde in non-cloudy conditions to assess the sensitivity of the retrievals to different input combinations. Case studies with cloudy conditions are also inspected.
Björn Linder, Peter Preusse, Qiuyu Chen, Ole Martin Christensen, Lukas Krasauskas, Linda Megner, Manfred Ern, and Jörg Gumbel
Atmos. Meas. Tech., 17, 3829–3841, https://doi.org/10.5194/amt-17-3829-2024, https://doi.org/10.5194/amt-17-3829-2024, 2024
Short summary
Short summary
The Swedish research satellite MATS (Mesospheric Airglow/Aerosol Tomography and Spectroscopy) is designed to study atmospheric waves in the mesosphere and lower thermosphere. These waves perturb the temperature field, and thus, by observing three-dimensional temperature fluctuations, their properties can be quantified. This pre-study uses synthetic MATS data generated from a general circulation model to investigate how well wave properties can be retrieved.
Gia Huan Pham, Shu-Chih Yang, Chih-Chien Chang, Shu-Ya Chen, and Cheng Yung Huang
Atmos. Meas. Tech., 17, 3605–3623, https://doi.org/10.5194/amt-17-3605-2024, https://doi.org/10.5194/amt-17-3605-2024, 2024
Short summary
Short summary
This research examines the characteristics of low-level GNSS radio occultation (RO) refractivity bias over ocean and land and its dependency on the RO retrieval uncertainty, atmospheric temperature, and moisture. We propose methods for estimating the region-dependent refractivity bias. Our methods can be applied to calibrate the refractivity bias under different atmospheric conditions and thus improve the applications of the GNSS RO data in the deep troposphere.
Sanja Dmitrovic, Johnathan W. Hair, Brian L. Collister, Ewan Crosbie, Marta A. Fenn, Richard A. Ferrare, David B. Harper, Chris A. Hostetler, Yongxiang Hu, John A. Reagan, Claire E. Robinson, Shane T. Seaman, Taylor J. Shingler, Kenneth L. Thornhill, Holger Vömel, Xubin Zeng, and Armin Sorooshian
Atmos. Meas. Tech., 17, 3515–3532, https://doi.org/10.5194/amt-17-3515-2024, https://doi.org/10.5194/amt-17-3515-2024, 2024
Short summary
Short summary
This study introduces and evaluates a new ocean surface wind speed product from the NASA Langley Research Center (LARC) airborne High-Spectral-Resolution Lidar – Generation 2 (HSRL-2) during the NASA ACTIVATE mission. We show that HSRL-2 surface wind speed data are accurate when compared to ground-truth dropsonde measurements. Therefore, the HSRL-2 instrument is able obtain accurate, high-resolution surface wind speed data in airborne field campaigns.
Almudena Velázquez Blázquez, Carlos Domenech, Edward Baudrez, Nicolas Clerbaux, Carla Salas Molar, and Nils Madenach
EGUsphere, https://doi.org/10.5194/egusphere-2024-1539, https://doi.org/10.5194/egusphere-2024-1539, 2024
Short summary
Short summary
This paper focuses on the BMA-FLX processor, in which thermal and solar top-of-atmosphere radiative fluxes are obtained from longwave and shortwave radiances measured along-track by the EarthCARE Broadband Radiometer (BBR). The BBR measurements, at three fixed viewing angles (fore, nadir, aft) are co-registered either at the surface or at a reference level. A combined flux from the three BRR views is obtained. The algorithm has been successfully validated against test scenes.
Laura M. Tomkins, Sandra E. Yuter, and Matthew A. Miller
Atmos. Meas. Tech., 17, 3377–3399, https://doi.org/10.5194/amt-17-3377-2024, https://doi.org/10.5194/amt-17-3377-2024, 2024
Short summary
Short summary
We have created a new method to better identify enhanced features in radar data from winter storms. Unlike the clear-cut features seen in warm-season storms, features in winter storms are often fuzzier with softer edges. Our technique is unique because it uses two adaptive thresholds that change based on the background radar values. It can identify both strong and subtle features in the radar data and takes into account uncertainties in the detection process.
Eileen Päschke and Carola Detring
Atmos. Meas. Tech., 17, 3187–3217, https://doi.org/10.5194/amt-17-3187-2024, https://doi.org/10.5194/amt-17-3187-2024, 2024
Short summary
Short summary
Little noise in radial velocity Doppler lidar measurements can contribute to large errors in retrieved turbulence variables. In order to distinguish between plausible and erroneous measurements we developed new filter techniques that work independently of the choice of a specific threshold for the signal-to-noise ratio. The performance of these techniques is discussed both by means of assessing the filter results and by comparing retrieved turbulence variables versus independent measurements.
Lei Liu, Natalia Bliankinshtein, Yi Huang, John R. Gyakum, Philip M. Gabriel, Shiqi Xu, and Mengistu Wolde
EGUsphere, https://doi.org/10.5194/egusphere-2024-1045, https://doi.org/10.5194/egusphere-2024-1045, 2024
Short summary
Short summary
This study evaluates and compares a new microwave hyperspectrometer with an infrared hyperspectrometer for clear-sky temperature and water vapor retrievals. The analysis reveals that the information content of the infrared hyperspectrometer exceeds that of the microwave hyperspectrometer and provides higher vertical resolution in ground-based zenith measurements. Leveraging the ground-airborne synergy between the two instruments yielded optimal-sounding results.
Luuk D. van der Valk, Miriam Coenders-Gerrits, Rolf W. Hut, Aart Overeem, Bas Walraven, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 2811–2832, https://doi.org/10.5194/amt-17-2811-2024, https://doi.org/10.5194/amt-17-2811-2024, 2024
Short summary
Short summary
Microwave links, often part of mobile phone networks, can be used to measure rainfall along the link path by determining the signal loss caused by rainfall. We use high-frequency data of multiple microwave links to recreate commonly used sampling strategies. For time intervals up to 1 min, the influence of sampling strategies on estimated rainfall intensities is relatively little, while for intervals longer than 5–15 min, the sampling strategy can have significant influences on the estimates.
Martin Lainer, Killian P. Brennan, Alessandro Hering, Jérôme Kopp, Samuel Monhart, Daniel Wolfensberger, and Urs Germann
Atmos. Meas. Tech., 17, 2539–2557, https://doi.org/10.5194/amt-17-2539-2024, https://doi.org/10.5194/amt-17-2539-2024, 2024
Short summary
Short summary
This study uses deep learning (the Mask R-CNN model) on drone-based photogrammetric data of hail on the ground to estimate hail size distributions (HSDs). Traditional hail sensors' limited areas complicate the full HSD retrieval. The HSD of a supercell event on 20 June 2021 is retrieved and contains > 18 000 hailstones. The HSD is compared to automatic hail sensor measurements and those of weather-radar-based MESHS. Investigations into ground hail melting are performed by five drone flights.
Andreas Foth, Moritz Lochmann, Pablo Saavedra Garfias, and Heike Kalesse-Los
EGUsphere, https://doi.org/10.5194/egusphere-2024-919, https://doi.org/10.5194/egusphere-2024-919, 2024
Short summary
Short summary
Microwave radiometers are usually not able to provide atmospheric quantities such as temperature profiles during rain. Here, we present a method based on a selection of specific frequencies and elevation angles from the microwave radiometer observation. A comparison with a numerical weather prediction model shows that the presented method allows to resolve temperature profiles during rain with rain rates up to 2 mm h−1 which was not possible before with state-of-the-art retrievals.
Andrea Camplani, Daniele Casella, Paolo Sanò, and Giulia Panegrossi
Atmos. Meas. Tech., 17, 2195–2217, https://doi.org/10.5194/amt-17-2195-2024, https://doi.org/10.5194/amt-17-2195-2024, 2024
Short summary
Short summary
The paper describes a new machine-learning-based snowfall retrieval algorithm for Advanced Technology Microwave Sounder observations developed to retrieve high-latitude snowfall events. The main novelty of the approach is the radiometric characterization of the background surface at the time of the overpass, which is ancillary to the retrieval process. The algorithm shows a unique capability to retrieve snowfall in the environmental conditions typical of high latitudes.
Lusheng Liang, Wenying Su, Sergio Sejas, Zachary Eitzen, and Norman G. Loeb
Atmos. Meas. Tech., 17, 2147–2163, https://doi.org/10.5194/amt-17-2147-2024, https://doi.org/10.5194/amt-17-2147-2024, 2024
Short summary
Short summary
This paper describes an updated process to obtain unfiltered radiation from CERES satellite instruments by incorporating the most recent developments in radiative transfer modeling and ancillary input datasets (e.g., realistic representation of land surface radiation and climatology of surface temperatures and aerosols) during the past 20 years. The resulting global mean of instantaneous SW and LW fluxes is changed by less than 0.5 W m−2 with regional differences as large as 2.0 W m−2.
Maximilian Graf, Andreas Wagner, Julius Polz, Llorenç Lliso, José Alberto Lahuerta, Harald Kunstmann, and Christian Chwala
Atmos. Meas. Tech., 17, 2165–2182, https://doi.org/10.5194/amt-17-2165-2024, https://doi.org/10.5194/amt-17-2165-2024, 2024
Short summary
Short summary
Commercial microwave links (CMLs) can be used for rainfall retrieval. The detection of rainy periods in their attenuation time series is a crucial processing step. We investigate the usage of rainfall data from MSG SEVIRI for this task, compare this approach with existing methods, and introduce a novel combined approach. The results show certain advantages for SEVIRI-based methods, particularly for CMLs where existing methods perform poorly. Our novel combination yields the best performance.
Lieuwe G. Tilstra, Martin de Graaf, Victor J. H. Trees, Pavel Litvinov, Oleg Dubovik, and Piet Stammes
Atmos. Meas. Tech., 17, 2235–2256, https://doi.org/10.5194/amt-17-2235-2024, https://doi.org/10.5194/amt-17-2235-2024, 2024
Short summary
Short summary
This paper introduces a new surface albedo climatology of directionally dependent Lambertian-equivalent reflectivity (DLER) observed by TROPOMI on the Sentinel-5 Precursor satellite. The database contains monthly fields of DLER for 21 wavelength bands at a relatively high spatial resolution of 0.125 by 0.125 degrees. The anisotropy of the surface reflection is handled by parameterisation of the viewing angle dependence.
Bing Cao and Alan Z. Liu
Atmos. Meas. Tech., 17, 2123–2146, https://doi.org/10.5194/amt-17-2123-2024, https://doi.org/10.5194/amt-17-2123-2024, 2024
Short summary
Short summary
A narrow-band sodium lidar measures atmospheric waves but is limited to vertical variations. We propose to utilize phase shifts among observations from different laser beams to derive horizontal wave information. Two gravity wave packets were identified by this method. Both waves were found to interact with thin evanescent layers, partially reflected, but transmitted energy to higher altitudes. The method can detect more medium-frequency gravity waves for similar lidar systems worldwide.
Thomas Hocking, Thorsten Mauritsen, and Linda Megner
EGUsphere, https://doi.org/10.5194/egusphere-2024-356, https://doi.org/10.5194/egusphere-2024-356, 2024
Short summary
Short summary
The imbalance between the energy the Earth absorbs from the Sun and the energy the Earth emits back to space gives rise to climate change, but measuring the small imbalance is challenging. We simulate satellites in various orbits to investigate how well they sample the imbalance, and find that the best option is to combine at least two satellites that see complementary parts of the Earth and cover the daily and annual cycles. This information is useful when planning future satellite missions.
Xiaozhen Xiong, Xu Liu, Robert Spurr, Ming Zhao, Qiguang Yang, Wan Wu, and Liqiao Lei
Atmos. Meas. Tech., 17, 1965–1978, https://doi.org/10.5194/amt-17-1965-2024, https://doi.org/10.5194/amt-17-1965-2024, 2024
Short summary
Short summary
The term “hotspot” refers to the sharp increase in reflectance occurring when incident (solar) and reflected (viewing) directions coincide in the backscatter direction. The accurate simulation of hotspot directional signatures is important for many remote sensing applications, but current models typically require large values of computations to represent the hotspot accurately. This paper provides a numerically improved hotspot BRDF model that converges much faster and is used in VLIDORT.
Daniel Zawada, Kimberlee Dubé, Taran Warnock, Adam Bourassa, Susann Tegtmeier, and Douglas Degenstein
Atmos. Meas. Tech., 17, 1995–2010, https://doi.org/10.5194/amt-17-1995-2024, https://doi.org/10.5194/amt-17-1995-2024, 2024
Short summary
Short summary
There remain large uncertainties in long-term changes of stratospheric–atmospheric temperatures. We have produced a time series of more than 20 years of satellite-based temperature measurements from the OSIRIS instrument in the upper–middle stratosphere. The dataset is publicly available and intended to be used for a better understanding of changes in stratospheric temperatures.
Natalie E. Theeuwes, Janet F. Barlow, Antti Mannisenaho, Denise Hertwig, Ewan O'Connor, and Alan Robins
EGUsphere, https://doi.org/10.5194/egusphere-2024-937, https://doi.org/10.5194/egusphere-2024-937, 2024
Short summary
Short summary
A doppler lidar was placed in highly built-up area in London to measure wakes from tall buildings during a period of one year. We were able to detect wakes and assess their dependence on wind speed, wind direction, and atmospheric stability.
Alban Philibert, Marie Lothon, Julien Amestoy, Pierre-Yves Meslin, Solène Derrien, Yannick Bezombes, Bernard Campistron, Fabienne Lohou, Antoine Vial, Guylaine Canut-Rocafort, Joachim Reuder, and Jennifer K. Brooke
Atmos. Meas. Tech., 17, 1679–1701, https://doi.org/10.5194/amt-17-1679-2024, https://doi.org/10.5194/amt-17-1679-2024, 2024
Short summary
Short summary
We present a new algorithm, CALOTRITON, for the retrieval of the convective boundary layer depth with ultra-high-frequency radar measurements. CALOTRITON is partly based on the principle that the top of the convective boundary layer is associated with an inversion and a decrease in turbulence. It is evaluated using ceilometer and radiosonde data. It is able to qualify the complexity of the vertical structure of the low troposphere and detect internal or residual layers.
Kamil Mroz, Alessandro Battaglia, and Ann M. Fridlind
Atmos. Meas. Tech., 17, 1577–1597, https://doi.org/10.5194/amt-17-1577-2024, https://doi.org/10.5194/amt-17-1577-2024, 2024
Short summary
Short summary
In this study, we examine the extent to which radar measurements from space can inform us about the properties of clouds and precipitation. Surprisingly, our analysis showed that the amount of ice turning into rain was lower than expected in the current product. To improve on this, we came up with a new way to extract information about the size and concentration of particles from radar data. As long as we use this method in the right conditions, we can even estimate how dense the ice is.
Wolf Knöller, Gholamhossein Bagheri, Philipp von Olshausen, and Michael Wilczek
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-184, https://doi.org/10.5194/amt-2023-184, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Three-dimensional (3D) wind velocity measurements are of major importance for the characterization of atmospheric turbulence. This paper presents a detailed study of the measurement uncertainty of a three-beam wind-LiDAR designed for mounting on airborne platforms. Considering the geometrical constraints, the analysis provides quantitative estimates for the measurement uncertainty of all components of the 3D wind vector. As a result, we propose an optimized post-processing for error reduction.
Volker Wulfmeyer, Christoph Senff, Florian Späth, Andreas Behrendt, Diego Lange, Robert M. Banta, W. Alan Brewer, Andreas Wieser, and David D. Turner
Atmos. Meas. Tech., 17, 1175–1196, https://doi.org/10.5194/amt-17-1175-2024, https://doi.org/10.5194/amt-17-1175-2024, 2024
Short summary
Short summary
A simultaneous deployment of Doppler, temperature, and water-vapor lidar systems is used to provide profiles of molecular destruction rates and turbulent kinetic energy (TKE) dissipation in the convective boundary layer (CBL). The results can be used for the parameterization of turbulent variables, TKE budget analyses, and the verification of weather forecast and climate models.
Daisuke Hotta, Katrin Lonitz, and Sean Healy
Atmos. Meas. Tech., 17, 1075–1089, https://doi.org/10.5194/amt-17-1075-2024, https://doi.org/10.5194/amt-17-1075-2024, 2024
Short summary
Short summary
Global Navigation Satellite System (GNSS) polarimetric radio occultation (PRO) is a new type of GNSS observations that can detect heavy precipitation along the ray path between the emitter and receiver satellites. As a first step towards using these observations in numerical weather prediction (NWP), we developed a computer code that simulates GNSS-PRO observations from forecast fields produced by an NWP model. The quality of the developed simulator is evaluated with a number of case studies.
Mohamed Mossad, Irina Strelnikova, Robin Wing, and Gerd Baumgarten
Atmos. Meas. Tech., 17, 783–799, https://doi.org/10.5194/amt-17-783-2024, https://doi.org/10.5194/amt-17-783-2024, 2024
Short summary
Short summary
This numerical study addresses observational gaps' impact on atmospheric gravity wave spectra. Three methods, fast Fourier transform (FFT), generalized Lomb–Scargle periodogram (GLS), and Haar structure function (HSF), were tested on synthetic data. HSF is best for spectra with negative slopes. GLS excels for flat and positive slopes and identifying dominant frequencies. Accurately estimating these aspects is crucial for understanding gravity wave dynamics and energy transfer in the atmosphere.
Kuo-Nung Wang, Chi O. Ao, Mary G. Morris, George A. Hajj, Marcin J. Kurowski, Francis J. Turk, and Angelyn W. Moore
Atmos. Meas. Tech., 17, 583–599, https://doi.org/10.5194/amt-17-583-2024, https://doi.org/10.5194/amt-17-583-2024, 2024
Short summary
Short summary
In this article, we described a joint retrieval approach combining two techniques, RO and MWR, to obtain high vertical resolution and solve for temperature and moisture independently. The results show that the complicated structure in the lower troposphere can be better resolved with much smaller biases, and the RO+MWR combination is the most stable scenario in our sensitivity analysis. This approach is also applied to real data (COSMIC-2/Suomi-NPP) to show the promise of joint RO+MWR retrieval.
Filippo Emilio Scarsi, Alessandro Battaglia, Frederic Tridon, Paolo Martire, Ranvir Dhillon, and Anthony Illingworth
Atmos. Meas. Tech., 17, 499–514, https://doi.org/10.5194/amt-17-499-2024, https://doi.org/10.5194/amt-17-499-2024, 2024
Short summary
Short summary
The WIVERN mission, one of the two candidates to be the ESA's Earth Explorer 11 mission, aims at providing measurements of horizontal winds in cloud and precipitation systems through a conically scanning W-band Doppler radar. This work discusses four methods that can be used to characterize and correct the Doppler velocity error induced by the antenna mispointing. The proposed methodologies can be extended to other Doppler concepts featuring conically scanning or slant viewing Doppler systems.
Luis Ackermann, Joshua Soderholm, Alain Protat, Rhys Whitley, Lisa Ye, and Nina Ridder
Atmos. Meas. Tech., 17, 407–422, https://doi.org/10.5194/amt-17-407-2024, https://doi.org/10.5194/amt-17-407-2024, 2024
Short summary
Short summary
The paper addresses the crucial topic of hail damage quantification using radar observations. We propose a new radar-derived hail product that utilizes a large dataset of insurance hail damage claims and radar observations. A deep neural network was employed, trained with local meteorological variables and the radar observations, to better quantify hail damage. Key meteorological variables were identified to have the most predictive capability in this regard.
Christos Gatidis, Marc Schleiss, and Christine Unal
Atmos. Meas. Tech., 17, 235–245, https://doi.org/10.5194/amt-17-235-2024, https://doi.org/10.5194/amt-17-235-2024, 2024
Short summary
Short summary
A common method to retrieve important information about the microphysical structure of rain (DSD retrievals) requires a constrained relationship between the drop size distribution parameters. The most widely accepted empirical relationship is between μ and Λ. The relationship shows variability across the different types of rainfall (convective or stratiform). The new proposed power-law model to represent the μ–Λ relation provides a better physical interpretation of the relationship coefficients.
Liqin Jin, Jakob Mann, Nikolas Angelou, and Mikael Sjöholm
Atmos. Meas. Tech., 16, 6007–6023, https://doi.org/10.5194/amt-16-6007-2023, https://doi.org/10.5194/amt-16-6007-2023, 2023
Short summary
Short summary
By sampling the spectra from continuous-wave Doppler lidars very fast, the rain-induced Doppler signal can be suppressed and the bias in the wind velocity estimation can be reduced. The method normalizes 3 kHz spectra by their peak values before averaging them down to 50 Hz. Over 3 h, we observe a significant reduction in the bias of the lidar data relative to the reference sonic data when the largest lidar focus distance is used. The more it rains, the more the bias is reduced.
Cited articles
AIAA: Guide to Reference and Standard Atmosphere Models, ANSI/AIAA G-003B-2004, American Institute of Aeronautics and Astronautics, 2004.
Anthes, R. A.: Exploring Earth's atmosphere with radio occultation: contributions to weather, climate and space weather, Atmos. Meas. Tech., 4, 1077–1103, https://doi.org/10.5194/amt-4-1077-2011, 2011.
Anthes, R. A., Bernhardt, P. A., Chen, Y., Cucurull, L., Dymond, K. F., Ector, D., Healy, S. B., Ho, S.-P., Hunt, D. C., Kuo, Y.-H., Liu, H., Manning, K., McCormick, C., Meehan, T. K., Randel, W. J., Rocken, C., Schreiner, W. S., Sokolovskiy, S. V., Syndergaard, S., Thompson, D. C., Trenberth, K. E., Wee, T.-K., Yen, N. L., and Zeng, Z.: The COSMIC/FORMOSAT-3 mission: early results, B. Am. Meteorol. Soc., 89, 313–333, https://doi.org/10.1175/BAMS-89-3-313, 2008.
Ao, C. O., Mannucci, A. J., and Kursinski, E. R.: Improving GPS radio occultation stratospheric refractivity retrievals for climate benchmarking, Geophys. Res. Lett., 39, L12701, https://doi.org/10.1029/2012GL051720, 2012.
Chauhan, S., Höpfner, M., Stiller, G. P., von Clarmann, T., Funke, B., Glatthor, N., Grabowski, U., Linden, A., Kellmann, S., Milz, M., Steck, T., Fischer, H., Froidevaux, L., Lambert, A., Santee, M. L., Schwartz, M., Read, W. G., and Livesey, N. J.: MIPAS reduced spectral resolution UTLS-1 mode measurements of temperature, O3, HNO3, N2O, H2O and relative humidity over ice: retrievals and comparison to MLS, Atmos. Meas. Tech., 2, 337–353, https://doi.org/10.5194/amt-2-337-2009, 2009.
CIRA: COSPAR International Reference Atmosphere–2012, CIRA-2012, Models of the Earth's Upper Atmosphere, Technical report, chapters 1 to 3, CIRA, available at: http://spaceweather.usu.edu/files/uploads/PDF/COSPAR_INTERNATIONAL_REFERENCE_ATMOSPHERE-CHAPTER-1_3 28rev-01-11-08-2012 29.pdf (last access: July 2014), 2012.
Cucurull, L. and Derber, J. C.: Operational implementation of COSMIC observations into NCEP's global data assimilation system, Weather Forecast., 23, 702–711, https://doi.org/10.1175/2008WAF2007070.1, 2008.
Culverwell, I.: The Radio Occultation Processing Package (ROPP) – An Overview, Version 7.0 (ROPP-7 v7.0), ROM SAF CDOP-2, ROM SAF, Ref: SAF/ROM/METO/UG/ROPP/001, July 2013, available at: http://www.romsaf.org (last access: July 2014), 2013.
Danzer, J., Scherllin-Pirscher, B., and Foelsche, U.: Systematic residual ionospheric errors in radio occultation data and a potential way to minimize them, Atmos. Meas. Tech., 6, 2169–2179, https://doi.org/10.5194/amt-6-2169-2013, 2013.
Fjeldbo, G., Kliore, A. J., and Eshleman, V. R.: The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments, Astron. J., 76, 123–140, https://doi.org/10.1086/111096, 1971.
Fleming, E. L., Chandra, S., Barnett, J. J., and Corney, M.: Zonal mean temperature, pressure, zonal wind, and geopotential height as functions of latitude, COSPAR International Reference Atmosphere: 1986, Part II: Middle Atmosphere Models, Adv. Space Res., 10, 11–59, 1990.
Foelsche, U. and Scherllin-Pirscher, B.: Development of bending angle climatology from RO data, CDOP visiting scientist report 14, GRAS SAF, Ref: SAF/GRAS/DMI/REP/VS14/001, July 2012, available at: http://www.romsaf.org (last access: July 2014), 2012.
Foelsche, U., Borsche, M., Steiner, A. K., Gobiet, A., Pirscher, B., Kirchengast, G., Wickert, J., and Schmidt, T.: Observing upper troposphere-lower stratosphere climate with radio occultation data from the CHAMP satellite, Clim. Dynam., 31, 49–65, https://doi.org/10.1007/s00382-007-0337-7, 2008.
Foelsche, U., Pirscher, B., Borsche, M., Steiner, A. K., Kirchengast, G., and Rocken, C.: Climatologies based on radio occultation data from CHAMP and Formosat-3/COSMIC, in: New Horizons in Occultation Research: Studies in Atmosphere and Climate, edited by: Steiner, A. K., Pirscher, B., Foelsche, U., and Kirchengast, G., Springer, 181–194, https://doi.org/10.1007/978-3-642-00321-9_15, 2009.
Foelsche, U., Scherllin-Pirscher, B., Ladstädter, F., Steiner, A. K., and Kirchengast, G.: Refractivity and temperature climate records from multiple radio occultation satellites consistent within 0.05
Fritzer, J., Kirchengast, G., and Pock, M.: EGOPS 5.6/DDD, End-to-End Generic Occultation Performance Simulation and Processing System Version 5.6 (EGOPS 5.6)}/Detailed Design Document, WEGC-IGAM/{UniGraz technical report for ESA/ESTEC no. 2/2012, doc-id: WEGC-EGOPS-2012-TR-02, issue 1.1, WEGC and IGAM, 2012.
Fujiwara, M., Polavarapu, S., and Jackson, D.: A proposal of the SPARC reanalysis/analysis intercomparison project, SPARC Newsletter, 38, 14–17, 2012.
Gleisner, H. and Healy, S. B.: A simplified approach for generating GNSS radio occultation refractivity climatologies, Atmos. Meas. Tech., 6, 121–129, https://doi.org/10.5194/amt-6-121-2013, 2013.
Gobiet, A. and Kirchengast, G.: Advancements of Global Navigation Satellite System radio occultation retrieval in the upper stratosphere for optimal climate monitoring utility, J. Geophys. Res., 109, D24110, https://doi.org/10.1029/2004JD005117, 2004.
Gobiet, A., Kirchengast, G., Manney, G. L., Borsche, M., Retscher, C., and Stiller, G.: Retrieval of temperature profiles from CHAMP for climate monitoring: intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses, Atmos. Chem. Phys., 7, 3519–3536, https://doi.org/10.5194/acp-7-3519-2007, 2007.
Gorbunov, M. E.: Canonical transform method for processing radio occultation data in the lower troposphere, Radio Sci., 37, 1076, https://doi.org/10.1029/2000RS002592, 2002.
Gorbunov, M. E. and Lauritsen, K. B.: Analysis of wave fields by Fourier integral operators and their application for radio occultations, Radio Sci., 39, RS4010, https://doi.org/10.1029/2003RS002971, 2004.
Gorbunov, M. E., Benzon, H.-H., Jensen, A. S., Lohmann, M. S., and Nielsen, A. S.: Comparative analysis of radio occultation processing approaches based on Fourier integral operators, Radio Sci., 39, RS6004, https://doi.org/10.1029/2003RS002916, 2004.
Hajj, G. A., Ao, C. O., Iijima, B. A., Kuang, D., Kursinski, E. R., Mannucci, A. J., Meehan, T. K., Romans, L. J., de la Torre Juarez, M., and Yunck, T. P.: CHAMP and SAC-C atmospheric occultation results and intercomparisons, J. Geophys. Res., 109, D06109, https://doi.org/10.1029/2003JD003909, 2004.
Healy, S.: Operational assimilation of GPS radio occultation measurements at ECMWF, ECMWF Newsletter, 111, 6–11, 2007.
Healy, S. B.: Radio occultation bending angle and impact parameter errors caused by horizontal refractive index gradients in the troposphere: a simulation study, J. Geophys. Res., 106, 11875–11889, https://doi.org/10.1029/2001JD900050, 2001.
Healy, S. B. and Thépaut, J. N.: Assimilation experiments with CHAMP GPS radio occultation measurements, Q. J. Roy. Meteor. Soc., 132, 605–623, https://doi.org/10.1256/qj.04.182, 2006.
Healy, S. B., Jupp, A. M., and Marquardt, C.: Forecast impact experiment with GPS radio occultation measurements, Geophys. Res. Lett., 32, L03804, https://doi.org/10.1029/2004GL020806, 2005.
Hedin, A. E.: A revised thermospheric model based on mass spectrometer and incoherent scatter data: MSIS-83, J. Geophys. Res., 88, 10170–10188, https://doi.org/10.1029/JA088iA12p10170, 1983.
Hedin, A. E.: MSIS-86 thermospheric model, J. Geophys. Res., 92, 4649–4662, https://doi.org/10.1029/JA092iA05p04649, 1987.
Hedin, A. E.: Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159–1172, https://doi.org/10.1029/90JA02125, 1991.
Ho, S.-P., Hunt, D., Steiner, A. K., Mannucci, A. J., Kirchengast, G., Gleisner, H., Heise, S., von Engeln, A., Marquardt, C., Sokolovskiy, S., Schreiner, W., Scherllin-Pirscher, B., Ao, C., Wickert, J., Syndergaard, S., Lauritsen, K., Leroy, S., Kursinski, E. R., Kuo, Y.-H., Foelsche, U., Schmidt, T., and Gorbunov, M.: Reproducibility of GPS radio occultation data for climate monitoring: Profile-to-profile inter-comparison of CHAMP climate records 2002 to 2008 from six data centers, J. Geophys. Res., 117, D18111, https://doi.org/10.1029/2012JD017665, 2012.
Hocke, K., Igarashi, K., and Tsuda, T.: High-resolution profiling of layered structures in the lower stratosphere by GPS occultation, Geophys. Res. Lett., 30, 1426, https://doi.org/10.1029/2002GL016566, 2003.
Høeg, P., Hauchecorne, A., Kirchengast, G., Syndergaard, S., Belloul, B., Leitinger, R., and Rothleitner, W.: Derivation of atmospheric properties using a radio occultation technique, DMI Sci. Rep. 95-4, Danish Meteorological Institute, Copenhagen, Denmark, 1995.
Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P., and Hardy, K. R.: Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System, J. Geophys. Res., 102, 23429–23465, https://doi.org/10.1029/97JD01569, 1997.
Lohmann, M.: Application of dynamical error estimation for statistical optimization of radio occultation bending angles, Radio Sci., 40, RS3011, https://doi.org/10.1029/2004RS003117, 2005.
Melbourne, W. G., Davis, E. S., Duncan, C. B., Hajj, G. A., Hardy, K. R., Kursinski, E. R., Meehan, T. K., Young, L. E., and Yunck, T. P.: The application of spaceborne GPS to atmospheric limb sounding and global change monitoring, JPL Publication, 94–18, 147 pp., 1994.
Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.: NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues, J. Geophys. Res., 107, 1468, https://doi.org/10.1029/2002JA009430, 2002.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.: Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, New York, NY, USA, 1986.
Ramsauer, J. and Kirchengast, G.: Sensitivity of atmospheric profiles retrieved from GNSS radio occultation data to instrumental errors, Igam/ug technical report for esa/estec no. 6/2001, Institute for Geophysics, Astrophysics, and Meteorology, University of Graz, 2001.
Randel, W., Udelhofen, P., Fleming, E., Geller, M., Gelman, M., Hamilton, K., Karoly, D., Ortland, D., Pawson, S., Swinbank, R., Wu, F., Baldwin, M., Chanin, M.-L., Keckhut, P., Labitzke, K., Remsberg, E., Simmons, A., and Wu, D.: The SPARC intercomparison of middle-atmosphere climatologies, J. Climate, 17, 986–1003, https://doi.org/10.1175/1520-0442(2004)017<0986:TSIOMC>2.0.CO;2, 2004.
Ringer, M. A. and Healy, S. B.: Monitoring twenty-first century climate using GPS radio occultation bending angles, Geophys. Res. Lett., 35, L05708, https://doi.org/10.1029/2007GL032462, 2008.
Rocken, C., Anthes, R., Exner, M., Hunt, D., Sokolovskiy, S., Ware, R., Gorbunov, M., Schreiner, W., Feng, D., Herman, B., Kuo, Y.-H., , and Zuo, X.: Analysis and validation of GPS/MET data in the neutral atmosphere, J. Geophys. Res., 102, 29849–29866, https://doi.org/10.1029/97JD02400, 1997.
Rocken, C., Sokolovskiy, S., Schreiner, W., Hunt, D., Ho, S.-P., Kuo, Y.-H., and Foelsche, U.: Climate monitoring with radio occultation data: systematic error sources, presentation at the GPS RO climate applications workshop, 2008.
Rodgers, C. D.: Inverse methods for atmospheric sounding: theory and practice, in: Series on Atmospheric Oceanic and Planetary Physics, vol. 2, World Scientific Publishing Company, Singapore, 2000.
Scherllin-Pirscher, B.: Further development of BAROCLIM and implementation in ROPP, ROM SAF CDOP-2 visiting scientist report 19, ROM SAF, Ref: SAF/ROM/DMI/REP/VS19/001, June 2013, available at: http://www.romsaf.org (last access: July 2014), 2013.
Scherllin-Pirscher, B., Kirchengast, G., Steiner, A. K., Kuo, Y.-H., and Foelsche, U.: Quantifying uncertainty in climatological fields from GPS radio occultation: an empirical-analytical error model, Atmos. Meas. Tech., 4, 2019–2034, https://doi.org/10.5194/amt-4-2019-2011, 2011a.
Scherllin-Pirscher, B., Steiner, A. K., Kirchengast, G., Kuo, Y.-H., and Foelsche, U.: Empirical analysis and modeling of errors of atmospheric profiles from GPS radio occultation, Atmos. Meas. Tech., 4, 1875–1890, https://doi.org/10.5194/amt-4-1875-2011, 2011b.
Schreiner, W., Rocken, C., Sokolovskiy, S., Syndergaard, S., and Hunt, D.: Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission, Geophys. Res. Lett., 34, L04808, https://doi.org/10.1029/2006GL027557, 2007.
Schreiner, W., Kuo, Y.-H., Ho, S.-P., Sokolovskiy, S., and Hunt, D.: Use of GNSS Radio Occultation data for Climate Applications, world Climate Research Program Conference, 24–28 October 2011, Denver, Colorado USA, available at: http://www.cosmic.ucar.edu/groupAct/references/WCRP-2011-Schreiner-Final.pdf (last access: July 2014), 2011.
Schreiner, W. S., Rocken, C., Sokolovskiy, S., and Hunt, D.: Quality assessment of COSMIC/FORMOSAT-3 GPS radio occultation data derived from single- and double-difference atmospheric excess phase processing, GPS Solut., 14, 13–22, https://doi.org/10.1007/s10291-009-0132-5, 2009.
Schwärz, M., Scherllin-Pirscher, B., Kirchengast, G., Schwarz, J., Ladstädter, F., Fritzer, J., and Ramsauer, J.: Multi-Mission Validation by Satellite Radio Occultation, Final report for ESA}/ESRIN {No. 01/2013, WEGC, 2013.
Sokolovskiy, S., Rocken, C., Hunt, D., Schreiner, W., Johnson, J., Masters, D., and Esterhuizen, S.: GPS profiling of the lower troposphere from space: inversion and demodulation of the open-loop radio occultation signals, Geophys. Res. Lett., 33, L14816, https://doi.org/10.1029/2006GL026112, 2006.
Spiegel, M. R. (Ed.): Handbuch für Mathematik: Formeln und Tabellen, Theorie und Anwendung, Schaum's Outline, McGraw-Hill, Düsseldorf, New York, St. Louis, 1979.
Steiner, A. K., Lackner, B. C., Ladstädter, F., Scherllin-Pirscher, B., Foelsche, U., and Kirchengast, G.: GPS radio occultation for climate monitoring and change detection, Radio Sci., 46, RS0D24, https://doi.org/10.1029/2010RS004614, 2011.
Steiner, A. K., Hunt, D., Ho, S.-P., Kirchengast, G., Mannucci, A. J., Scherllin-Pirscher, B., Gleisner, H., von Engeln, A., Schmidt, T., Ao, C., Leroy, S. S., Kursinski, E. R., Foelsche, U., Gorbunov, M., Heise, S., Kuo, Y.-H., Lauritsen, K. B., Marquardt, C., Rocken, C., Schreiner, W., Sokolovskiy, S., Syndergaard, S., and Wickert, J.: Quantification of structural uncertainty in climate data records from GPS radio occultation, Atmos. Chem. Phys., 13, 1469–1484, https://doi.org/10.5194/acp-13-1469-2013, 2013.
Syndergaard, S.: Modeling the impact of the Earth's oblateness on the retrieval of temperature and pressure profiles from limb sounding, J. Atmos. Sol.-Terr. Phy., 60, 171–180, https://doi.org/10.1016/S1364-6826(97)00056-4, 1998.
Syndergaard, S.: Retrieval Analysis and Methodologies in Atmospheric Limb Sounding Using the GNSS Radio Occultation Technique, Danish Meteorological Institute, Copenhagen, Denmark, 1999.
von Engeln, A., Healy, S., Marquardt, C., Andres, Y., and Sancho, F.: Validation of operational GRAS radio occultation data, Geophys. Res. Lett., 36, L17809, https://doi.org/10.1029/2009GL039968, 2009.
Vorob'ev, V. V. and Krasil'nikova, T. G.: Estimation of the accuracy of the atmospheric refractive index recovery from Doppler shift measurements at frequencies used in the NAVSTAR system, Izv. Atmos. Ocean. Phy., 29, 602–609, 1994.
Zeng, Z. and Sokolovskiy, S.: Effect of sporadic E clouds on GPS radio occultation signals, Geophys. Res. Lett., 37, L18817, https://doi.org/10.1029/2010GL044561, 2010.